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Abstract

Simulating the physical laws that govern the motion of complex groups of objects is becoming increas-

ingly important for interactive entertainment applications. Looking forward in the future, the computational

demands of such applications along with the requirement for real-time performance poses a unique com-

putational load and challenge for microprocessor designers. In this paper, we introduce real-time physical

simulation, as it applies to interactive entertainment applications, as a novel area of research in architec-

ture. For the most demanding example we show, the worst case execution time for one frame’s physics

simulation is 133ms. This is 4 times the time allocated for an entire frame’s computation of all tasks, not

just physics simulation. We motivate the challenges and the idiosyncrasies of this computational load by

analyzing one of its most complex elements, collision detection, and suggest ways to accelerate it.
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1 Introduction and Motivation

Interactive entertainment is one application that truly drives the demand for microprocessor performance.

Future interactive entertainment applications will continue this trend, exploring more realistic, immersive

virtual worlds populated with ever increasing numbers of objects and characters. Such applications will be

composed of a diverse set of computationally demanding tasks. One critical component of this is modeling

how such objects and characters move in a virtual environment and interact with one another.

Most interactive entertainment applications still make use of pre-recorded motion clips to synthesize the

motion of virtual objects. But as these objects and their interactions grow increasingly more complex, it has

become impractical to record the entire set of possible motions for a given object. Physics-based simulation

has emerged as an attractive alternative to kinematic techniques, providing high levels of physical realism

through automated motion calculation.

The benefits of physics-based simulation over current techniques comes with a considerably higher

computational cost. Consider a multi-player on-line environment with 15 users racing cars around busy city

streets littered with other cars, pedestrians, and other objects. The staggering amount of calculation required

to model the complex interactions and collisions that could occur between participants and objects would

be beyond any conventional processor. As demand for heightened realism and complexity scales, future

hardware for interactive entertainment will need to scale performance to match this demand.

Furthermore, to maintain a fluid visual experience, interactive entertainment applications typically pro-

vide at least 30 frames of display each second. This minimum frame rate provides a bound on the amount

of time a single frame can take - 1/30th of a second (i.e. 33 ms). This is the total time that will be allotted to

physics-based simulation, graphics display, path-finding or other AI activities, and any other game engine

code to glue everything together. For the most demanding example we show, the worst-case execution time

on a 2.8GHz Pentium4 for one frame is 133ms with an average of 55ms.

This demand for performance is somewhat mitigated by the fact that physics-based simulation has
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tremendous amounts of parallelism. Chip multiprocessors [19] and other multi-threaded processor designs

have the potential to exploit this, but certain parts of physics simulation are more amenable to paralleliza-

tion than others. Moreover, as the complexity of virtual worlds increases, even embarrassing amounts of

parallelism may not be able to accelerate performance enough to satisfy the frame rate constraint.

In this paper, we make the following contributions:

� We introduce physical simulation, as it applies to interactive entertainment applications, as a novel

area of research in microarchitecture.

� We motivate the challenges and the idiosyncrasies of this computational load by analyzing one of its

most complex elements, collision detection, and we suggest ways to accelerate it. In particular:

– We explore the locality and correlation of control values with higher-level application abstrac-

tions of physics simulation

– We propose an architectural approach to leverage this higher-level application data for control

speculation, along with alternatives for communicating higher-level application data to the ar-

chitecture level.

– We propose and evaluate a scheme to increase the parallelism in collision detection by lever-

aging object locality. We consider the hardware cost of such a scheme, and the impact of mis-

speculation.

The rest of the paper is organized as follows. In section 2 we discuss physics simulation and the specific

engine we use in this paper, along with a set of benchmarks we have created to capture the key idiosyncrasies

of interactive entertainment applications. Section 3 identifies important high-level features of the application

data. Section 4 explores a branch prediction architecture that leverages this high-level application data.

Section 5 proposes a scheme to parallelize collision detection, again leveraging this high-level application

data. We conclude in section 6.
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2 Physics Simulation

The laws of physics offer the most general constraint over the motion of virtual objects. Not only do they

guarantee realistic motion, but they also avoid repetition. Any variation in the initial conditions (i.e. contact

points) will produce a different motion. In a sense, the set of possible actions is as large as the domain of

the initial conditions, and not restricted to a small set of recorded motions. Once the equations of motion

are provided for each object in a virtual world, motion can be computed automatically based on the applied

forces and torques.

In this study, we focus exclusively on constrained rigid body simulation [7, 1, 10] and leave the soft-body

simulation domain for future work. In the majority of games, the central elements are humanoid characters.

Humanoid motion is dominated by the rigid body motion of the character’s body parts. Soft-body simulation

such as flesh, cloth and hair animation are typically secondary effects.

The physics board by AGEIA [1] is one of the most interesting efforts to accelerate physical simulation

with dedicated hardware. However, in addition to being off the chip, its current version seems to target

mostly the main parallel elements of the physical simulation load.

Graphics Processing Units (GPUs) are specialized hardware cores designed to accelerate rendering and

display. Because GPUs are designed to maximize throughput from the graphics card to the display, data that

enters the pipeline and the results of intermediate computations cannot be accessed easily or efficiently by

the CPU. This is problematic for physics simulation that works in a continuous feedback loop. In addition,

graphics hardware is primarily designed to store 2D arrays (textures). This is suitable for computations

involving grids (2D-fluids) but not 3D rigid bodies. Mapping constrained rigid body simulation to modern

GPUs is not straightforward and is an active area of research.

To evaluate the use of application-level information, we employed a freely available physics engine and

constructed three diverse benchmarks.
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2.1 Open Dynamics Engine

We make use of the Open Dynamics Engine (ODE) to evaluate the ideas and designs proposed in this paper.

ODE follows a constraint-based approach for modeling articulated figures, similar to [3]. ODE is specifi-

cally designed for efficient rather than accurate computation, and is specifically tuned for constrained rigid

body dynamics simulation. Applications employing ODE would utilize the following high-level algorithmic

structure:

1. Create a dynamics world.

2. Create bodies in the dynamics world.

3. Set the state (position and velocities) of all bodies.

4. Create the joints (constraints) that connect bodies.

5. Create a collision world and collision geometry objects.

6. While �	��

��������

�����������

(a) Apply forces to the bodies as necessary.

(b) Call collision detection.

(c) Create a contact joint for every collision point, and put it in the contact joint group.

(d) Take a forward simulation step.

(e) Remove all joints in the contact joint group.

(f) Advance the time: ��

��������

��� �"!#�

7. End.

As objects move in space they come into contact - the resolution of this contact is the most complex

part of physics simulation. The computational load of ODE physics simulation is dominated by two main

components: Collision Detection (CD) and the Forward Dynamics Step. The former uses geometrical ap-

proaches to identify bodies that are in contact and the location of contact points. The latter, given the applied
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Figure 1: Battle 2

forces and torques, first computes the constraint forces (both contact and joint), then computes the accelera-

tions, and finally integrates the accelerations to compute the new position and velocity of every body in the

simulated world.

2.2 Physics Benchmarks

Name Number of Islands Island Complexity Temporal Number Inter-space
(Max, Min, Avg, Dev) Behavior of Spaces Comm

CrashWall 105, 99, 101, 1.4 wall, car, stable, 1,3 range from
sphere projectiles abrupt change none to high

Battle 120, 2, 93, 18 groups of humans stable, 1, 3 none
projectiles fast change

Battle2 156, 113, 134, 18 multiple walls, humans, fast changing 1,15 high
car, simple projectiles

Table 1: Parameters Affecting Computation Load

The benchmarks we have created represent scenes of realistic complexity (interactions) but not neces-

sarily realistic motions. Our benchmarks involve virtual humans, cars, walls and projectiles:

� Humans: The virtual humans are of anthropomorphic dimensions and mass properties. Each character

consists of 16 segments (bones) connected with idealized joints that allow movement similar to their

real world counterparts.

� Cars: The car consists of a single rigid body and four wheels that can rotate around their main axis.

Four slider joints model the suspension at the wheels.

� Walls: The walls are modeled with blocks of light concrete that are stacked on top of one another.
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� Projectiles: The projectiles are single bodies with spherical, cylindrical or box geometry - these are

shot from a stationary tank.

The behavior of different entity types affect collision detection computation in different ways. Bricks

that make up walls produce stacking behavior. Humans represent highly articulated objects. Projectiles are

small, fast moving objects, and cars are fast moving large objects.

In all benchmarks, the simulator is configured to resolve collisions and resting contact with friction. The

three benchmarks are:

� CrashWall: Extreme-speed Car crashing on wall, tank shooting projectiles - a high speed car (velocity

200Mph) crashing into a wall, while a tank shoots varying shape projectiles towards the wall. The

wall consists of a large number of blocks.

� Battle: Battle scene 1 - One group of 10 humanoids being attacked by a tank. 2 groups of 4 and 6

humanoids crashing into each other.

� Battle2: Battle scene 2 - a relatively complex battle scene (Figure 1). A tank is behind the far wall

shooting projectiles in different directions. A car crashes on the right wall while two groups of five

people are fighting inside the compound. The walls eventually get destroyed and fall on the people.

Table 1 summarizes the quantitative differences between benchmarks.

3 Application-Level Correlation and Locality

Intuitively, the low-level behavior of physics simulation code should have a great deal of locality and corre-

lation with higher-level application constructs. Motion at a simulation step by step basis should be smooth

and collisions between particular objects can persist across many steps – unless they are from objects mov-

ing extremely fast. Behavioral locality in the form of temporal coherence has been shown by prior collision

detection work [16, 13, 15, 6]. Temporal coherence describes the fact that in dynamic environments, objects
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do not move large distances between consecutive steps of physics simulation, except for objects with high

velocities.

However, such collision locality is difficult to extract by conventional program counter based methods

because of the diversity of objects using the same set of engine code. If the notion of higher-level application

constructs can be communicated down to the architectural level, new forms of locality and correlation can

be exploited.

To better demonstrate this notion of locality and correlation with high-level application constructs, we

focus on the collision detection part of the physics simulation loop, and show how the notion of object-pairs

effectively correlates with branch behavior in collision detection.

3.1 Collision Detection

Collision Detection is a well studied problem and an excellent collection of theory and available software

can be found at [8]. The brute force approach to CD would be to compare each object with all of the other

objects which results in $&%
'�()'+* complexity, where ' is the total number of objects. The most common

approach to speed up CD is to use a two-step algorithm [11] composed of broad-phase and narrow-phase.

3.1.1 Broad-Phase CD

Broad-phase refers to the first step of CD which efficiently culls away pairs of objects that cannot possibly

collide. This step uses a fast approximation test to quickly prune pairs from the total '"(,' pairs. Most

broad-phase methods use hierarchical bounding volumes. The object is enclosed inside a sufficiently large

volume of simpler shape. This volume is used instead of the object’s true shape by broad-phase for fast, but

approximate collision detection. The pairs which pass broad-phase are passed to narrow-phase. Hierarchical

methods produce on the order of -/.102' number of pairs.

To more accurately characterize broad-phase, we can further break down this task into two steps: (1)
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update of spatial partitioning structure using new object position and orientation, and (2) filter object-pairs

by bounding box comparisons.

3.1.2 Narrow-Phase CD

Narrow-phase CD determines the exact intersection points between two objects. Each pair’s computational

load depends significantly on the geometric properties of the objects involved, and the overall performance

is affected by the ability of broad-phase to minimize the required number of comparisons.

A recent study [17] examines the tradeoff of broad-phase accuracy vs total computation time for different

broad-phase methods. The results show that broad-phase needs to be very fast, even at the expense of

generating a larger number of collision pairs because of the dependencies between not only broad-phase CD

and narrow-phase CD, but also between CD as a whole and the forward dynamics step.

3.2 Correlation and Locality Exploration

In a sense, the branches in both broad-phase and narrow-phase CD are conditioned on whether or not the

two objects under consideration collide. Broad-phase CD attempts to filter out pairs of objects that are easily

identified as not being able to collide together. Narrow-phase CD takes this filtered set of object pairs and

determines whether or not they actually collide and where the collision occurs.

It is particularly difficult for branches in broad-phase CD to leverage traditional means of correlation.

First, broad-phase CD does not use a consistent ordering when iterating through the set of available objects –

something which can be particularly harmful for predictors that use branch history to correlate. The ordering

of pair-wise comparisons is based on the spatial partitioning commonly done by broad-phase. Second, a

diverse set of objects which may have no correlation or interaction with one another make use of the same

code to detect collisions – something which can impair predictors that correlate on the PC of the branch.

However, at the application level, there are some factors that can be correlated to help branch prediction
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Figure 2: Correlation of the branch prediction rate with the program counter (PC), branch history, and high-level
objects.

in broad-phase CD. For example, objects that collide tend to collide for several physics simulation steps,

unless they are moving extremely fast. High level objects may also have repeated collision patterns. One

simple example would be a human walking where one foot stays in contact with the ground for some time

until the other foot lands, and the whole process repeats. Due to the dynamic nature of objects and the

flexibility inherent in a physics engine, it is difficult to capture this locality entirely in software.

Branch prediction in narrow-phase CD may do slightly better than broad-phase because it is already

looking at a filtered set of object pairs. If broad-phase had done a good job, the branches in narrow-phase

will be strongly biased. But as [17] points out, broad-phase accuracy needs to be balanced with broad-

phase’s execution time.

To explore this further, we demonstrate how predictable the main conditional branches of broad-phase

and narrow-phase CD are when correlated with the PC of the branch, branch history, and the two objects

being compared. Figure 2 presents data for the three benchmarks detailed in Section 2.2 – in each case we
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show locality for broad-phase CD on the left and narrow-phase CD on the right. The y-axis in each graph

represents the branch prediction accuracy during the execution of the frame (only counting the predictions

of correct path instructions). Each frame in the execution of the benchmark is tracked along the x-axis. We

evaluate five architectures: a simple Not Taken predictor (always guess branch not taken), a simple Taken

predictor (always guess branch taken), a gshare [18] predictor (PC + History) (16KB), a Perceptron branch

predictor [12] (16KB), and an object-pair predictor (16KB). This latter predictor correlates with the base

address of the two objects under consideration.

For broad-phase CD, the object-based predictor clearly outperforms any other option by a wide margin.

The gshare predictor ranges in performance – particularly for the CrashWall benchmark. The object-based

predictor improves over the perceptron predictor by an average of 22% for broadphase and an average of

13% for narrowphase.

The perceptron predictor does a little better than other PC-based methods, but still cannot leverage the

rich correlation that exists with the higher-level application notion of the object-pair.

Narrow-phase CD performs similarly, but due to the filtered nature of the objects going through narrow-

phase, the conventional approaches perform slightly better.

4 Branch Prediction for CD

Based on the branch correlation with object-pair addresses we saw in section 3, we propose an approach to

leverage this information at the architecture level and improve control speculation for collision detection.

4.1 Object-Pair Based Branch Prediction

There has been an enormous amount of prior work on branch direction prediction. And while schemes have

addressed correlating with global behavior [20], reducing aliasing [18, 5], improving correlation [12], or

even focusing on specific branch types [4], all of these techniques rely on information present in the archi-
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tecture to help make an accurate prediction. The majority of approaches are based on some combination of

the program counter (PC) and either local or global branch history. All of these approaches are orthogonal to

our goal, which is to improve correlation and locality using application-level information in the architecture.

We consider indexing a pattern history table (PHT) - a table of two-bit counters indicating a prediction of

taken/not taken - using the base address of the current object-pair under consideration. In collision detection,

objects are compared in pairs, and therefore we will augment the architecture with two registers to hold the

base addresses in memory of the two objects under consideration at any point in time. These registers will

not be visible to the compiler, and techniques to set them will be discussed in section 4.

While object-pair information correlates well with certain control decisions, it does not work for others.

We must also consider how to avoid using object-pair information in cases where it is not helpful. One

approach is to leverage existing confidence techniques to selectively use the object-pair register only in

cases where it is useful. Consider a simple pattern history table (PHT) indexed via PC and the object-pair

register. This can be used in concert with a conventional PC-based PHT. An additional PHT can be used to

select which PHT to use for a given prediction, just as in the bi-mode predictor [14].

4.2 Loading the Object Registers

While high-level application information can dramatically improve low-level architectural correlation and

locality for physics simulation, the question remains how to communicate this information from the appli-

cation to the architecture.

The most straightforward technique conceptually, would be to augment the ISA with new instructions

that propagate high-level information. The use of specialized move instructions, for example, would allow

the compiler or application writer to place values into the object registers or clear the object registers.

Specialized instructions would increase code size in addition to the cost of consuming potentially scarce

opcodes in the ISA.
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Another approach might be to leverage the flexibility of ISA-specific address generation instructions for

this purpose. For example, the x86 ISA features the load effective address (LEA) instruction.

LEA is used to set a register with the value of an address computation. This address computation can take the

form of any of the addressing modes supported by x86. For example LEA edx, [esi+4*ebx] would

place 4 bytes of data at address ESI+4*EBX into EDX. We can use this instruction to set the object registers

with the effective address calculated by LEA. We can change the architectural implementation of LEA so

that in addition to writing to the register specified by the instruction itself, it will also implicitly write to one

of the two object registers. The syntax of the effective address computation will determine which of the two

will actually be written. Note that we are not making the object registers visible to the compiler with this

approach – the LEA instruction from the perspective of the ISA need not change, we are simply enhancing

it in the microarchitecture.

By using an existing instruction, we avoid adding opcodes to the ISA, but we may need to restrict the

use of LEA. This can either be a complete restriction where LEA is only used for the purpose of setting

the object registers, or a partial restriction where certain addressing modes are dedicated for the purpose of

setting the object registers.

5 Increasing Parallelism for CD with the Object Table

High-level application information can also be leveraged by adding application-specific structures that accel-

erate certain components of execution. For example, a texture cache [9] is an application-specific structure

that helps GPUs achieve higher performance. Another example is network processors, which use content-

addressable memories for fast searches [2]. In this section, we propose an application-specific structure to

add parallelism to collision detection.

To show the performance potential of decoupling collision detection by the use of object-pair filter, we

measured the contribution of both broad-phase and narrow-phase on collision detection’s execution time.
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Figure 6: Collision Detection’s Role in the Physics Simulation Flow

Figures 3, 4, and 5 show the execution time breakdown for collision detection on a 2.8 GHz Pentium 4. It is

interesting to note the variation in the proportional amount of time spent in broad-phase versus narrow-phase

for these different benchmarks. Collision detection for CrashWall is dominated by the runtime of narrow-

phase CD, Battle is dominated by broad-phase CD, and Battle2 is somewhat evenly distributed. One way

to reduce the overall runtime of CD is to overlap broad-phase and narrow-phase as much as possible. This

would allow us to optimally get a total CD runtime that is the maximum latency of the two components.

Since broad-phase is effectively a technique to filter the work done by narrow-phase, it should also be

possible to dynamically balance the amount of work done by each of these. In this way, if we can achieve

parallelism between the two components, we should be able to cut the runtime of CD at most in half. In the

rest of this section, we will explore a technique to provide this parallelism.

Figure 6 shows the inter-task dependencies for existing collision detection methods. Both narrow-phase

CD and broad-phase CD must wait on the forward dynamics from the previous step. The forward dynamics
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Figure 7: Collision Detection Flow with Decoupled Broad-Phase and Narrow-Phase

of one step relies on the narrow-phase CD of that same step – and it cannot form islands (clusters of colliding

objects) and begin the actual physics simulation until the narrow-phase CD has completed all object pairs.

Narrow-phase CD depends on the output of broad-phase CD. Note that this is shown for an arbitrary step in

the calculation of a single frame – there would also be information streaming from step 3 465 to step 3 487

in the same manner that step 394:7 streams to step 3 .

While different object-pairs can perform bounding box filtering and narrow-phase CD in parallel, broad-

phase stage 1 (the update of spatial partitioning data structures) is serial with respect to all other components.

This serial task will represent an increasingly larger amount of the total execution time as the number

of objects in the virtual world and the number of processor cores on-die increases for future CMPs. This

observation is confirmed by Luque et al [17] – they conclude that broad-phase CD must be done as efficiently

as possible for good overall physics performance, even if it means filtering fewer object pairs.

In section 3, we observed that there is considerable locality in CD. One approach to creating more

parallelism in CD would be to use the result of broad-phase CD from one step to feed the narrow-phase

CD of the next step. This would allow the broad-phase and narrow-phase components of CD to be done in
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parallel. However, there are two problems with this approach. First, it is certainly possible that the result of

broad-phase CD from a previous step before does not include all pairs from the current result of broad-phase

CD. Narrow-phase CD only uses pairs from broad-phase, so this is clearly a correctness issue where we may

miss a collision. Therefore, we would like to add a correction mechanism that puts any extra pairs detected

in the current step’s broad-phase CD through narrow-phase CD. We will refer to these extra pairs that must

be done serially as serial narrow-phase comparisons.

Second, there may be pairs that were in the previous step’s broad-phase result that are not in the current

step’s broad-phase result. Because narrow-phase will verify any pairs from broad-phase, this is not a cor-

rectness problem – but if too many extra pairs are added, we may lose the benefit from parallelization. We

will refer to pairs that are in the former step’s broad-phase CD result but not in the current step’s result as

unnecessary narrow-phase comparisons.

The overall flow of this new approach to CD is shown in figure 7. We are effectively decoupling broad-

phase and narrow-phase CD as much as possible to improve parallelism. We split narrow-phase CD into two

components: a primary stage that handles the speculative set of object pairs from the prior step’s broad-phase

CD and a secondary stage that handles any serial narrow-phase comparisons. Note that step 3 ’s primary stage

of narrow-phase CD is using step 3;4<7 ’s broad-phase result. We use a simple object-pair buffer to queue

pairs from one step to the other – we will discuss the size of this structure a little later in this section. Step

3 ’s secondary stage of narrow-phase CD is using step 3 ’s broad-phase CD as input. This broad-phase CD

result can potentially have pairs that were already given to the primary stage of narrow-phase CD – we will

call these redundant narrow-phase comparisons. Redundant comparisons are not functionally incorrect, but

can potentially negate any performance gain. The critical component of this new approach to CD is how to

efficiently filter these redundant narrow-phase comparisons at the output of broad-phase CD. In the diagram,

we refer to this generally as an object-pair filter, but in the next section we will investigate a particular design

of this filter.
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Figure 8: Unnecessary Narrow-Phase Comparisons and New Object-Pairs

Note again that this is shown for an arbitrary step in the calculation of a single frame – there would also

be information streaming from step 3=465 to step 394:7 in the same manner that step 394>7 streams to step 3 .

The object-pair filter would have been filled from the broad-phase calculation of step 3=4?5 . The initial step

in a frame would leverage information from the last step of the previous frame.

Figure 8 shows the increase in both unnecessary narrow-phase comparisons and serial narrow-phase

comparisons for our three benchmarks. The y-axis shows the percent increase in object pairs relative to

the total number of pairs that would have been passed directly from broad-phase in the normal CD flow

(figure 6). For all frames simulated, this never grows above 4% on average.

To model the increase in redundant narrow-phase comparisons, we must consider the actual implemen-

tation of the object-pair filter. We could use a software-based filter here, but the cost of storing all of the

object pairs to memory could interfere with the locality of other data blocks. We instead propose a hard-

ware structure that can efficiently filter redundant comparisons. These structures are mapped into a special

section of memory so that application software can access them directly using conventional data transfer

instructions.

5.1 Object-Pair Filter

The object-pair filter needs to determine, for a given pair of objects, whether or not these objects have

already been communicated to the narrow-phase CD. And so given two object addresses, the filter gives a

yes or no.
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Figure 9: Object-Pair Filter Performance: the total redundant narrow-phase comparisons as a function of the number
of stored object-pairs and associativity.

Due to the serial nature of broad-phase CD, it will be unlikely that more than one core on a future

CMP will be handling this component of CD (unless the application contains relatively disjoint spaces).

Therefore, we will likely only need a single object-pair filter for the results of broad-phase. However, this

structure is challenging since it needs to contain a potentially large number of objects – this may make the

use of a CAM structure expensive.

The object filter we evaluate is a cache-like structure (it has a number of sets and an associativity), but

has a few differences from a conventional cache. First, on a miss, we do not index a second level structure –

when an object pair misses in the filter, it is sent to narrow-phase CD. Second, we never evict anything from

the filter until the end of the current physics step. If we run out of room in the filter, we simply disregard

the object pairs that do not fit in the filter. In the worst case, these object pairs will be processed twice by

narrow-phase CD, but there will not be any correctness issues. Each filter entry only stores the two 32-bit

addresses - if it is in the filter, it does not need to be sent to narrow-phase CD. If it is not in the filter, it was

either not sent to narrow-phase CD or could not fit in the filter, and will be sent to narrow-phase CD.

To reduce thrashing in the filter, we use two filters together. Each filter employs a different hash, but

both filters have the same number of entries. For a pair of object filters with @ sets, the primary filter takes

-
.10A@ bits from each object address and xor’s these to form the index into the filter. The secondary filter takes
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BDCFEHGI bits from each object address and concatenates them to form a -
.10A@ bit index. When the broad-phase

CD output is written to the object filter, we first use the primary filter until the set we are writing to has

filled. We do not evict pairs from a set, but instead use the secondary filter to find an alternative location

to place the pair. If the corresponding set in the secondary filter is not full, we write the object pair to the

secondary filter. This helps to better distribute the sets that heavily thrash. On an access to the filter (when

broad-phase CD is determining what to send to the narrow-phase CD within its own step), both filters are

checked in parallel – each using its own hash function.

At the end of the step, all filter entries are invalidated, and the filters are refilled using the object buffer.

Figure 9 shows the performance of our cache when varying the total number of object-pairs it can hold

and the associativity of the cache.

5.1.1 Further Reduction in Size

A naive implementation of this filter would store pairs of 32-bit addresses for each entry. To reduce the

storage requirement, we can utilize a dictionary table to map 32-bit addresses to a much smaller object

number. Now, the dictionary table stores all unique objects’ 32-bit addresses, with the index of the entry

as the implicit object number. The object-pair filter then just stores a pair of object numbers, but requires

translation from the 32-bit addresses to object numbers in order to access the filter.

5.2 Object-Pair Buffer

The object-pair buffer needs to be able to hold incoming object-pairs for the primary narrow-phase CD from

the broad-phase CD of the previous step (see figure 7). There are two ways to do this in a CMP environment:

1) the buffer is distributed among the cores responsible for narrow-phase CD or 2) the buffer is centralized

at the core responsible for broad-phase CD. As mentioned for the object-pair filter, it is unlikely that more

than one core will be doing broad-phase CD. In either approach, the worst-case number of object-pairs in
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the examples we looked at was 1700. This would require a total buffer capacity of 14KB. However, this is a

simple FIFO buffer since it does not require CAM logic.

6 Summary

Physical simulation is becoming a significant component of current and future interactive entertainment

applications. We have demonstrated the locality and correlation that exists with high-level application data

in collision detection, a critical component of future physics simulation. And we have further leveraged this

locality to perform control prediction and to provide parallelism between broad-phase and narrow-phase

collision detection.

By proposing architectural techniques to accelerate collision detection, we have shown that the idiosyn-

crasies and the real-time performance requirement of interactive applications create many opportunities and

challenges for microprocessor architecture design. We hope that our paper will make the community aware

of these opportunities and spark further research.
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