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Abstract With the development of real-time ray trac-
ing in recent years, it is now very interesting to ask if
real-time performance can be achieved for high-quality
rendering algorithms based on ray tracing. In this pa-
per, we propose a pipelined architecture to implement
reverse photon mapping. Our architecture can use real-
time ray tracing to generate photon points and cam-
era points, so the main challenge is how to implement
the gathering phase that computes the final image. Tra-
ditionally, the gathering phase of photon mapping has
only allowed coarse-grain parallelism, and this situation
has been a source of inefficiency, cache thrashing, and
limited throughput. To avail fine-grain pipelining and
data parallelism, we arrange computations so that pho-
tons can be processed independently, similar to the way
that triangles are efficiently processed in traditional real-
time graphics hardware. We employ several techniques
to improve cache behavior and to reduce communication
overhead. Simulations show that the bandwidth require-
ments of this architecture are within the capacity of cur-
rent and future hardware, and this suggests that photon
mapping may be a good choice for real-time performance
in the future.

1 Introduction

One of the main goals in computer graphics is to achieve
real-time, photorealistic rendering. The state of the art
is close to this goal – a decent subset of global illumina-
tion effects is possible in real-time with large-scale par-
allelism. However, for real-time global illumination that
includes physically accurate lighting effects, performance
still needs to improve by at least an order of magnitude.

These days, tracing a ray through a scene can be
done very fast [36], and it is straightforward to model
full global illumination with ray tracing. The current
state of the art can trace 4-8 million rays per second on
a single processor, which is enough to render 15 frames

per second at 512 × 512 resolution, with basic Phong
shading. With specialized ray tracing hardware, there
will be significantly more parallelism and efficiency, and
it is projected that hundreds of millions of rays per sec-
ond can be achieved within the next 5-10 years [32]. This
suggests that within 5-10 years a variety of high-quality
algorithms that use ray tracing can also work in real-
time – for example, bidirectional path tracing, instant
global illumination, or photon mapping.

We feel that photon mapping is promising for real-
time performance. It is widely agreed to be an efficient,
versatile method for realistic image synthesis. Compared
to classic path tracing and bidirectional path tracing,
photon mapping requires fewer number of rays for a
given image quality. At the same time, it can handle
glossy reflections and complex light paths better than
current real-time techniques such as instant global illu-
mination. The first phase of photon mapping can already
benefit from real-time ray tracing: photons are generated
by tracing rays from light sources, and camera points are
generated by tracing rays from the camera view.

The main issue discussed in this paper is how to effec-
tively implement the second phase of photon mapping,
which we call gathering. In this phase, each camera point
uses the photons to compute a radiance estimate that is
displayed in the final image. Mathematically, this is done
by estimating the density of photons. Traditional pho-
ton mapping uses k nearest neighbor (kNN) density esti-
mation, where each camera point searches for k nearest
photons. In the past this process has been slow, because
each kNN search was performed immediately after each
ray tracing operation. This order of operations not only
thrashes cache, but also prevents the use of fine-grain
pipelining and data parallelism, two key properties of
existing real-time graphics hardware.

Our key observation is that sample-point estimation,
another kernel density estimation technique, exposes a
finer granularity of parallelism. Instead of waiting for
k nearest photons to be found for each camera point,
we process every 〈photon, camera point〉 pair indepen-
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dently. Each pair contributes a partial radiance estimate

directly to the pixels of the image. Sample-point esti-
mation and kNN estimation are both adaptive kernel
estimation techniques, and thus using sample-point esti-
mation does not degrade the quality of density estima-
tion [33]. Exposing this fine-grain data parallelism is the
key to our approach, because it allows us to implement
a pipeline that can achieve large-scale parallelism on a
single piece of hardware.

Our approach builds on a variation of photon map-
ping known as reverse photon mapping [12]. In their
work, they also use sample-point estimation, but it is
used only to gain algorithmic benefits. Instead of camera
points searching for photons, photons search for camera
points. As a result, the logarithmic dependency is placed
on the larger set of points (camera points), and the lin-
ear dependency is placed on the smaller set of points
(photons). In software, reverse photon mapping works
efficiently, but not real-time.
Contributions. In this paper, we present an efficient,
pipelined architecture that implements reverse photon
mapping. This work has several main contributions. First,
we modify the reverse photon mapping algorithm so that
each photon contributes directly to pixels on the im-
age. Second, we propose the architecture itself, which is
designed for fine-grain pipelining, data parallelism, and
good cache behavior to achieve high throughput. Finally,
we quantitatively demonstrate that the bandwidth re-
quirements for photon mapping are indeed feasible, even
on today’s hardware technology.

The rest of this paper is organized as follows. In Sec-
tion 2 we describe background and related work. Sec-
tion 3 discusses sample-point estimation and reverse pho-
ton mapping. Our architecture is detailed in Section 4.
Section 4.2 describes the KD-tree build process, Sec-
tion 4.3 describes the tree traversal process, and Sec-
tion 4.4 describes the shader stage. An analysis of cache
behavior and bandwidth is given in Section 5. In Sec-
tion 6 we discuss limitations and future work. Finally,
we conclude in Section 7.

2 Background and Related Work

Ray tracing. There are two tasks to trace a ray, and
both can be done extremely fast. The first task is to com-
pute the point of intersection between a ray and a geo-
metric primitive, such as a triangle. The state of the art
can efficiently compute a ray-triangle intersection test in
less than 25 floating-point operations [34]. Recent work
suggests that intersections can also be computed in real-
time for complex surfaces such as NURBS [2].

The second task is to decide what intersection tests
must be performed. Naively, a ray must be tested against
every object or triangle in the scene. A better approach is
to organize geometry so that it can be searched easily, for
example in a KD-tree – a binary tree where each node di-
vides a k-dimensional space into two regions. Havran [11]

presents a detailed survey of the data structures that can
be used to accelerate the tracing of rays and shows that
KD-trees are generally the best choice. Most state of the
art approaches build a KD-tree that optimizes the cost
of tracing a ray through each node instead of building a
balanced tree [22].

Real-time ray tracing has a substantial list of advan-
tages over the traditional polygon pipeline [36]. A fully
programmable ray tracing architecture has been proto-
typed [37], demonstrating a variety of practical scenes
rendered in real-time with simple shading. Simulations
show that a real hardware implementation will soon be
able to trace hundreds of millions of rays per second [32].
With this level of performance it will be possible to im-
plement high-quality rendering algorithms based on ray
tracing that have real-time performance.

Global illumination using ray tracing. Generally
speaking, these high-quality rendering algorithms use
ray tracing to determine light paths between the camera
view and light sources. For example, basic Monte Carlo
path tracing [24], [8] traces light paths starting from the
camera view. When the ray intersects a surface, a new
ray is generated based on the reflection properties of the
surface, and this ray is also traced. At each point along
the path, rays are traced to light sources to compute the
illumination that contributes to the path. Repeatedly
tracing sample paths eventually converges to an accu-
rate estimate of the lighting for a given pixel.

On the other extreme, photon splatting [20] traces
paths starting from light sources. Photons are abstract
points emitted by light sources and scattered throughout
the scene by simulating how light reflects off each object.
While photons are traced through the scene, they are
projected, or “splatted,” onto the camera plane. Most
photons will not be visible in the final image, so many
photons are required to ensure that enough of them con-
tribute to the final image. Photon splatting has been
proposed for real-time, however in this form it is depen-
dent on rasterization and loses many of the advantages
of ray tracing.

In both Monte Carlo path tracing and photon splat-
ting, the number of rays required to produce a realistic
image is unreasonably high for real-time performance.
A typical image rendered with Monte Carlo ray trac-
ing may require thousands of paths per pixel, and each
path would require at least 6-10 rays, including shadow
rays [24]. Bidirectional path tracing [18] reduces this re-
quirement by tracing from both the camera view and
light sources, completing paths somewhere in the mid-
dle. This approach requires significantly fewer total rays
for a given image quality, but still may require thousands
of paths per pixel.

Two methods that require even fewer rays for full
global illumination are instant global illumination [35]
and photon mapping [14], both of which use a bidirec-
tional approach. Instant global illumination is based on
instant radiosity [17], which traces a minimal number of
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particles from light sources, and uses these particles as
virtual point lights (VPLs). The original instant radios-
ity method uses multi-pass rendering on the traditional
polygon pipeline, so in practice it is limited to diffuse sur-
faces. Instant global illumination uses only ray tracing,
which allows it to handle non-diffuse reflections, such as
caustics or glossy surfaces. Instant global illumination
can be understood as bidirectional path tracing with sig-
nificant re-use of the paths traced from light sources, and
it has been demonstrated in real-time with large-scale
parallelism.

Photon mapping. Photon mapping goes one step fur-
ther. Instead of treating particles as virtual light sources,
it uses density estimation to compute how each particle
(photon) contributes to a given camera point. While the
computational overhead is slightly more than computing
with virtual point lights, photon mapping does not need
to trace a shadow ray for each virtual point light, and
so the number of photons can scale much higher than
the number of VPLs without affecting performance. For
high image quality, instant global illumination and pho-
ton mapping may also require hundreds or thousands of
samples per pixel, but unlike all previously mentioned
approaches, photon mapping would require only one or
two rays per sample.

Heckbert [13] observed that the two-pass approach
(simulating light transport and computing visibility) is
density estimation, a well studied field of statistics [28].
The goal of density estimation is to estimate the under-
lying density of a function at any point, using samples
at various point locations. In our context, rays traced
from the camera view generate points where we want
to estimate the density of photons. Initially this notion
was applied only to caustics [5], [7]. Soon after, it was
applied to overcome the setbacks of radiosity [16], [27].
Since then, density estimation has become widely used
as way to visualize particle tracing illumination informa-
tion [8]. The use of density estimation in photon map-
ping is particularly effective, because the representation
of illumination, photons, is separated from geometry.

Prior work has tried to address performance bottle-
necks in photon mapping, aiming to eventually accel-
erate it towards real-time. P. H. Christensen [6] pre-
computes irradiance at a subset of photon locations to
speed up radiance estimates. Larsen and N.J. Chris-
tensen [19] simulate the photon map using a hemi-cube
render-to-texture approximation on the GPU. Purcell
et al. [25] have mapped the photon mapping algorithm
to the streaming paradigm, demonstrating it very ef-
fectively on the GPU. However, because the GPU does
not support recursion or unrestricted access to memory,
these approaches require many rendering passes and sim-
pler data structures, resulting in limited scalability.

As a growing number of processing cores share the
same memory bandwidth on a single piece of hardware,
bandwidth becomes the bottleneck in photon mapping,
and some work tried to address this. Ma and McCool [21]

use hashing to implement an approximate nearest neigh-
bor search. Hashing avoids the need to traverse a tree
structure and also reduces memory overhead. Steinhurst
et al. [31] show that reordering the kNN queries can
improve cache behavior theoretically by several orders
of magnitude. In practice they were able to reduce the
bandwidth requirement of photon mapping down to tens
of gigabytes per frame, an order of magnitude improve-
ment. Reverse photon mapping [12], the algorithm we
use in this paper, also shows good cache behavior by
reordering computations.

Comparison to our work. The main contribution of
our work is to propose one of the first hardware architec-
tures to accelerate photon mapping. To our knowledge,
only one other hardware architecture is being proposed
for photon mapping [30], concurrent to our work. While
most previous work on photon mapping tries to approxi-
mate or speed up the k nearest neighbor search, we avoid
this overhead by using a fixed-radius search, similar to
reverse photon mapping [12]. However, our implementa-
tion is different from the original reverse photon map-
ping in two major ways. First, we modify reverse pho-
ton mapping so that each photon contributes directly
to each pixel. Our modification exposes fine-grain par-
allelism and further reduces the overhead of the fixed-
radius search. Second, we use a breadth-first traversal
instead of the usual depth-first traversal. This results
in more coherent ordering of operations that improves
cache behavior.

Unlike other approaches to real-time global illumina-
tion, our architecture is designed to allow for pipelining,
drawing from the early success of graphics hardware [4].
Most implementations of global illumination use coarse-
grain parallelism on clusters of CPUs [26], or the stream-
ing paradigm on GPUs, like many of the works described
above. However, the bandwidth available on a network
to connect CPUs is not enough for a high-performance
pipeline, and today’s GPU programming paradigm does
not explicitly allow for pipelining of different stages of
an algorithm. We feel that pipelining is an important
technique in addition to multithreading and data par-
allelism. Instead of requiring each processing element to
satisfy multiple functions, each stage in a pipeline can be
fully optimized to its task, resulting in a simpler, more
compact implementation – allowing for large-scale par-
allelism on a single piece of hardware.

Terminology. We use the term camera rays to denote
any rays that originate from the camera view, including
secondary rays. We use the term camera points to de-
note the points that were generated by tracing camera
rays, while photons are the points generated by tracing
rays from light sources. Recall that radiance is power per
unit area per unit solid angle. A radiance estimate is an
approximation of radiance exiting a surface point along
a specific direction (ray). Given a ray, photon mapping
computes a radiance estimate based on the density and
lighting information of nearby photons.
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3 Exposing Fine-grain Parallelisim of Reverse

Photon Mapping

In this section, we briefly describe photon mapping and
reverse photon mapping, and we show how fine-grain
parallelism can be exposed in reverse photon mapping.
Reverse photon mapping was first presented by Havran
et al. [12]. As the name suggests, it is essentially pho-
ton mapping, except the algorithm is inverted. Reverse
photon mapping is physically based and just as accu-
rate as photon mapping, shown in Figure 1. It retains
the benefits of traditional photon mapping, specifically
that it is logarithmically scalable and can handle arbi-
trary BRDFs using importance sampling. Havran et al.
showed that under certain reasonable assumptions, re-
verse photon mapping is algorithmically faster than tra-
ditional photon mapping. They also described a coarse-
grain parallel implementation that is good for software
and reordering for good cache behavior.

Mathematically, the difference between traditional
and reverse photon mapping is the density estimation
technique used to compute radiance along camera rays:
the k nearest neighbor estimator is used in traditional
photon mapping, while the sample-point estimator is
used in reverse photon mapping. Both techniques are
adaptive kernel estimators, a class of density estimation
techniques that can robustly handle arbitrary data with-
out any a priori knowledge about the data. These two
different techniques lead to different search methods, and
in turn different search methods result in different al-
gorithmic properties. In Section 3.1, we describe both
density estimation techniques, leading up to the key ob-
servation that allows us to achieve fine-grain parallelism.
In Section 3.2, we discuss one important issue about how
to use sample-point estimation in practice.

3.1 Adaptive Kernel Estimators

K nearest neighbor estimator. Let us first recall tra-
ditional photon mapping [15]. First, photons are traced
from light sources. These photons are organized into a
KD-tree to make them easy to search. Then, camera rays
are traced, generating a set of camera points. Each cam-
era point searches for k nearest photons. Using these
photons and the radius r that encloses these photons,
the radiance along each camera ray can be computed.
In density estimation literature, this k nearest neighbor
estimate is known as a balloon estimator [33]:

L̂(y, ωo) =
1

πr2

k
∑

i=1

f(y, ωi, ωo)∆ΦiK

(

y − xi

r

)

. (1)

Here, L is the radiance we want to estimate, K is a ker-
nel function centered around each photon. The kernel
is scaled by the photon power ∆Φi and the BRDF re-
flectance f , and r is the radius of a sphere that encloses

Fig. 1 Sponza scene (model by Marko Dabrovic) using 200k
photons and 10.2 million camera rays. The top image was
rendered with traditional kNN gathering (k = 50). It took
142 seconds, using the equivalent of 500 million shader op-
erations. The bottom image used reverse gathering, taking
64 seconds with 500 million shader operations. This image
shows only indirect lighting, so the visual quality is strongly
dependent on the quality of the density estimation.

all k photons. Note that, in order to efficiently perform a
k nearest neighbor search, a heap or priority queue data
structure is needed to keep track of the closest photons.
Also the radiance estimate must wait for all k photons
to be collected before r can be computed; this severely
limits the potential throughput of the algorithm.
Sample-point estimator. Reverse photon mapping uses
a different density estimation technique known as the
sample-point estimator [33]. The sample-point radiance
estimate can be written as:

L̂r(y, ωo) =

n
∑

i=1

1

h(xi)2
f(y, ωi, ωo)∆ΦiK

(

y − xi

h(xi)

)

,

(2)
where h(xi) is the kernel width, derived from an initial
coarse estimate of photon density. As before, a kernel
function centered around each photon is applied to the
estimate each camera point. However, instead of each
camera point searching for photons, this time all n pho-
tons search for nearby camera points. This is a fixed-

radius search through the set of camera points, updat-
ing any rays that are located within the kernel width of
the photon. Even though it is a fixed-radius search, the
radius used by each photon can vary. Varying the kernel
width is discussed in Section 3.2.

The resulting algorithm is naturally inverted. First
rays are traced from the camera, rendering direct light-
ing to the image and building a KD-tree of camera points.
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For each primary ray {

Search for k nearest photons

// wait for all k photons

Determine radius r

For i = 1 to k {

totalScale = Kernel * BRDF

estimate += photonPower[i] * totalScale

}

estimate = estimate / (PI * r * r)

Add final estimate to pixel

}

Traditional Radiance Estimate

For each photon {

Search for camera points within distance h

For each camera point {

totalScale = Kernel * BRDF / h

estimate = photonPower * totalScale

estimate *= partial_contribution

Accumulate partial estimate to pixel

}

}

Reverse Radiance Estimate

Fig. 2 Comparison of the traditional k nearest neighbor ra-
diance estimate and sample-point radiance estimate. A single
kNN estimate uses k photons for one camera ray. Note there
is an implicit synchronization barrier that requires waiting
for all k photons to be found before they can be processed;
this severely limits throughput of any possible implementa-
tion. The sample-point estimator processes one photon for
one final gather ray, computing a partial sum. The cumula-
tive result is almost the same, but now each partial sum can
proceed independently without any synchronization.

Then photons are traced from the light sources. Each
photon then searches through the KD-tree to find neigh-
boring camera points. Any camera point that is within
the photon’s kernel width is updated by computing a
portion of the sum from Equation 2, and finally the re-
sult is added to the pixel associated with that camera
point.

Algorithmically, reverse photon mapping places the
logarithmic dependency on the set of camera points,
rather than the photons. This is beneficial when the
number of camera samples is much greater than the num-
ber of photons. In typical scenes, it is common to trace
1-3 orders of magnitude more camera rays than pho-
tons. For more algorithmic analysis and a sense of the
data structures we use to represent photons and camera
points, see the original work by Havran et al. [12].

Our key observation. Note that there are no param-
eters outside of the summation in Equation 2. Reverse
photon mapping does not have to collect k neighbors be-
fore processing portions of the sum. Instead, each por-
tion of the sum can be computed independently and ap-
plied directly to the appropriate pixels in any order, as
shown in Figure 2. With sample-point estimation, there

are typically 50-100 〈photon, camera point〉 pairs to com-
pute for every camera point, and therefore there is 50-100
times more parallelism to exploit than is possible with
the kNN balloon estimator.

3.2 Varying the Kernel Width

One important concern about using the sample-point es-
timator is how to determine a good kernel width, de-
noted as h(xi) in Equation 2. It has been shown that a
constant value for h(xi) is only good when there is an
extremely dense set of samples, otherwise, it is better
to vary h(xi) based on the density itself [33]. This is a
chicken-and-egg problem, because the density is what we
want to compute in the first place. Thus, it is common
to take an initial coarse estimate of density to determine
an appropriate kernel width.

Havran et al. [12] calculate h(xi) by building a sec-
ond KD-tree over the set of photons. The density can
be approximated by knowing the leaf node’s bounding
box as well as the number of photons contained in the
leaf. We use the same technique in this paper, though
it has some bandwidth overhead. It is generally agreed
in density estimation literature that the quality of the
final estimate is relatively unaffected by the quality of
the initial coarse estimate [3], [28], so it is possible to
find faster ways to compute an initial coarse estimate
in future work. Note that building the second KD-tree
also sorts the photons coherently, which is a critical issue
discussed in Section 5.2 below.

4 The Photon Pipeline

In Section 3 we observed that sample-point estimation
exposes fine-grain data parallelism in reverse photon map-
ping. In this section, we describe how our architecture
implements the gathering phase of reverse photon map-
ping to benefit from this parallelism. The gathering al-
gorithm is divided into three explicit stages: the KD-tree
build, KD-tree traversal, and shader stages. Section 4.1
gives an overview of the architecture, and then the fol-
lowing three sections discuss each of the three stages.
Performance is discussed in Section 5.

4.1 Architecture Overview

The conceptual layout of reverse photon mapping can
be seen in Figure 3. There are two ray tracing units:
one to trace camera rays, and one to trace photons. The
camera points are sent to the KD-tree build stage, where
we build the KD-tree over these point samples. Next,
photons are traversed through the KD-tree in the tree

traversal stage. The purpose of this traversal is for each
photon to find nearby camera points that it affects. This
search generates shader operations that are scheduled
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Fig. 3 Conceptual overview.

Fig. 4 Overview of the hardware design.

to the shader stage. The shader stage essentially imple-
ments Equation 2, and applies the result directly to the
appropriate pixels. Finally, if desired, an image postpro-

cess stage can apply tone-mapping or other image-space
effects for display.

The computations within each stage are predictable
and feed-forward, and can be easily pipelined. The KD-
tree build only needs to calculate a spatial midpoint for
each node, and then bin all data items to the left or
right of this split plane. The tree traversal unit takes
one photon and traverses it through one node of the
tree; this requires only one subtraction and one compar-
ison. The shader stage is more involved than the pre-
vious stages, but it is entirely feed-forward and can be
pipelined. The simplicity of the stages is possible because
the conditional branching between functions in software
is replaced by conditional scheduling of operations be-
tween stages.

Figure 4 depicts a more detailed layout of the ar-
chitecture. This demonstrates how data flows through
the architecture. The ray tracing unit generates cam-
era points, and writes them to memory. The KD-tree
build unit reads and writes these camera points numer-
ous times, spatially sorting them as part of the tree build
process. Once the tree is built, the camera points reside
in off-chip memory until they are used by the shader
stage. The tree traversal stage can store the entire KD-
tree in cache, so it only needs to manage a queue of
photons scheduled to traverse the tree. The tree traver-
sal unit then schedules a shader operation whenever a

photon finds a nearby camera-point. For each shader
operation, the shader stage tries to read the photon
and camera point from cache, faulting to main mem-
ory when necessary. Note that caches can be designed
to have a predictable latency, and delay pipelines can
tolerate this latency of accessing cache without slowing
down throughput. Also note that we can load-balance
between the tree traversal and shader stages; this allows
us to consider the tradeoff between a larger KD-tree that
optimizes the number of required shader operations and
a simpler KD-tree that results in performing more shader
operations.

The data required for each photon and camera point
is mostly the same as described in [12]. However, we
choose a layout that separates “hot” and “cold” data.
Most of the pipeline only needs to deal with the hot
data: the 3D point location (12 bytes) of the photons
or camera points, along with a 4 byte reference that
refers to the remaining data. The remaining cold data
is only needed in the shader stage. Cold data for camera
points includes: compressed surface normal, compressed
incident direction, any relevant BRDF parameters, the
pixel location that the camera point belongs to, and the
fraction of red, green, and blue contributions that this
camera point has to the final image. Similarly, the cold
data for photons includes: an incident direction, inten-
sity and color information (we use three floating-point
numbers for red, green, and blue), and the coarse esti-
mate of h(xi) for variable kernel width.

4.2 The KD-tree Build Stage

There are two fundamental aspects to building a node of
a KD-tree. First, we must find an appropriate split axis
and position for each node of the tree. Second, we must
spatially organize the data as we build each node. We
use the sliding-midpoint rule, as described by Havran
et al. [12]. To compute the split-plane for a given node,
first we compute the spatial midpoint along the longest
axis of the node’s bounding box. Next, each data item
(camera point or photon) is binned to the left or right
of this midpoint. Finally, if one side does not have any
points, the midpoint “slides” towards the location of the
nearest data item.

To build the entire tree, this process repeats for every
node starting from the root, until there are few enough
data items in a node to define it as a leaf node. Based on
the observations in Havran et al. [12], we store at most 30
points per leaf node. However, unlike their tree, we store
one data point in each inner node as well. This allows
us to schedule shader operations as the tree is being
traversed, instead of waiting for all photons to reach the
bottom of the tree.

It should be clear from this description that building
a KD-tree requires very little computational throughput.
Each node simply computes a spatial midpoint, com-
pares each data item to the midpoint, and writes it to
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Fig. 5 Conceptual implementation of a single Tree Traver-
sal Unit. One photon is traversed through one node of the
KD-tree. The photon is re-scheduled to traverse one or both
children nodes. If it is scheduled to both, then it also sched-
ules a shader operation with the camera point in the current
node, because this camera point may be within the photon’s
kernel width.

the left or right child. The major limitation in the per-
formance of KD-tree is bandwidth requirement: for ev-
ery floating-point comparison, the tree must read and
write 16 bytes. In our previous work [29], we used a
build method that streams all points from off-chip mem-
ory, compares each point to the spatial midpoint, and
streams it back to memory. This approach typically re-
quires tens of gigabytes of off-chip communication.

We revise this approach to use a conventional, re-
cursive KD-tree build. Because it is recursive, once we
reach a sub-tree that is small enough, all data points fit
onto cache, and the sub-tree can be built with very little
bandwidth cost. Results in Section 5.2 show that the re-
cursive KD-tree build using a 1 MB cache can reduce the
required bandwidth by more than half compared to our
initial method which required the entire raw bandwidth.

The implementation of the KD-tree build is a straight-
forward controller that decides which node to build next.
The controller maintains a stack to keep track of the re-
cursive build. A typical sliding-midpoint KD-tree is 30-
40 layers deep, so conservatively a compact stack of 100
pointers will suffice. As part of building one node, there
are two basic states: bin and node-compute. In the bin

state, we assume the spatial midpoint is given and tra-
verse through all the data items once, binning them to
the left or right of the midpoint. In the node-compute

state, we apply the sliding midpoint rule, finalize data
references for this node, and compute the spatial mid-
point for each child node.

4.3 The Tree Traversal Stage

The fundamental operation performed by a single tree

traversal unit (TTU) is to traverse one photon through
one node of the KD-tree. Figure 5 shows that this oper-
ation is extremely simple. The TTU compares the pho-
ton’s position to the split-plane of the node, and the
TTU responds to three possible cases: (a) If the dis-
tance from the photon to the split-plane is less than
the photon’s kernel width, then the TTU schedules a
〈photon, camera-point〉 shader operation, and schedules

the photon to traverse both children nodes (two separate
traversal operations). (b) If the photon is strictly to the
left of the split-plane, the TTU schedules the photon to
traverse its left child. (c) If the photon is to the right,
the TTU schedules the photon to traverse its right child.

Initially, each photon is scheduled to traverse the
root node of the KD-tree, and the queue is processed in-
order. Note that this is a “breadth-first” tree traversal
– every photon traverses one layer of the KD-tree be-
fore going on to the next layer. The major benefit of the
breadth-first approach is good data coherence. Because
all photons will traverse one layer at a time, each layer
of the KD-tree only needs to be loaded once and stored
in cache. Even more importantly, similar shader opera-
tions are scheduled close together with our breadth-first
technique. As a result, the ordering of shader operations
is more coherent, thus saving bandwidth. Experimental
data for cache behavior is discussed in Section 5.2.

The disadvantage of this scheduling approach is that
we must manage a queue of traversal operations. This
queue becomes too large to store on-chip, and therefore
it will require some off-chip memory resources. Our simu-
lations show that the bandwidth overhead is reasonable,
so the benefits of our breadth-first scheduling approach
seem to outweigh this problem.

4.4 The Shader Stage

The shader stage takes one photon and one camera point,
computes the partial sum inside of the summation in
Equation 2, and accumulates this partial sum directly
to the image. The conceptual implementation is shown
in Figure 6. There are two brief checks to make sure
that the photon actually updates the camera ray. First,
to ensure that the photon is on the correct side of the
surface, this stage computes a dot product between the
photon and shading normal. This assumes that the nor-
mal was already on the same side as the camera ray’s in-
cident direction; otherwise this check requires one more
dot product between the camera ray direction and the
shading normal. Second, the shader stage computes the
squared distance between the photon and camera point,
and makes sure it is less than the squared search radius
(which is also the kernel width). If these two conditions
are met, then the actual shading computation, described
by Equation 2, is performed. This involves computing
the kernel function K(), the BRDF f(), and the recipro-
cal of the kernel width. These factors scale the photon’s
color, and the entire result is finally scaled by how much
the camera point contributes to the final image.

This computation is somewhat more complex than
the previous stages, but it is still easy to see how it can
be pipelined, requiring typical floating point multipliers,
adders, and comparators. One floating-point division is
needed to compute the reciprocal of the kernel width,
denoted as P.h, but it can be computed well ahead of



8 Shawn Singh, Petros Faloutsos

Fig. 6 Conceptual implementation of a single Shader Unit.
This implements one portion of the sum described in Equa-
tion 2. It also verifies that the photon is on the correct side of
the surface (the dot product) and that the distance between
the photon and camera point is less than the kernel width
before actually updating the appropriate pixel.

time or even cached while the same photon contributes
to multiple camera points. Elaborate BRDFs and ker-
nels may require costly square roots, exponentials, and
divisions, but simpler versions do not. In the future, ar-
bitrary BRDFs and kernels could be implemented as
programmable shaders - either using an instruction set,
or by using finer-grain programmable logic such as an
FPGA. Also, we can vary the number of shader units
for each TTU to load-balance the pipeline. Note that a
〈photon, camera-point〉 shading operation is analogous
to shading a pixel in the traditional graphics pipeline.

5 Experimental Analysis

We have shown in the previous sections that the compu-
tations in each stage are predictable and easy to pipeline.
This places the burden of performance on bandwidth. To
demonstrate the feasibility of our architecture, we have
simulated the cache behavior and bandwidth require-
ments for each stage. Our results indicate that the re-
quired bandwidth is possible even with today’s memory
speeds.

5.1 Simulation Method

For the KD-tree build unit, we simulate a 1 MB direct-
mapped cache with 64-byte cache lines. Each cache line
can store four 16-byte points, where each point contains
12 bytes for the 3D location and a 4 byte reference to the
rest of the photon or camera point data. Whenever the
requested data is not in cache, one cache line is flushed
from the cache causing a 64-byte write operation, and
the appropriate cache line is read from memory causing
a 64-byte read operation. Note that we build two KD-
trees: one tree to organize camera points for easy search,

and the other tree to reorder the photons and to com-
pute each photon’s kernel width. The overhead of both
is included in our simulations.

For the tree traversal stage, each KD-tree layer can
be stored in a large cache, so we assume this does not
count towards the bandwidth requirement. We do, how-
ever, manage a large queue of tree traversal operations;
each operation in the queue consists of the photon’s 3D
point location and a reference to the tree node that will
be traversed. Recall from Section 4.3 that the queue is
processed in-order. This means that if one photon is
scheduled to traverse many KD-nodes, these operations
will all be consecutively queued. Therefore, we simulate
a compact queue representation, containing one photon
followed by a list of KD-nodes that it should traverse.
This approach uses less than half the bandwidth of a
straightforward queue.

For the shader stage, we simulate another 1 MB direct-
mapped cache with 64-byte cache lines. Whenever there
is a cache miss, the cache loads 64 bytes from off-chip
memory. Unlike the KD-tree build, this cache does not
have to write-back the old cache line, because the shader
stage is read-only. Both photon data and camera point
data use this cache; 3 photons fit in one cache line, while
2 camera points fit in one cache line.

We compute a conservative estimate the computa-
tional throughput in the following way. Both the KD-tree
build and tree traversal stages require very little compu-
tation, so we round up to 10 floating-point operations for
each build and traversal operation. The shader stage, as
seen in Figure 6, requires at least 30 floating-point oper-
ations, however, to account for potentially complicated
kernel and BRDF reflection functions, we round up to
100 floating-point operations. The purpose of this con-
servative estimate is to show that the requirements of
high-performance photon mapping are within the abili-
ties of existing graphics hardware.

5.2 Simulation Results

Table 1 gives an overview of our simulation results, and
Figure 7 shows the scenes used for simulation. The re-
quired compute power and required bandwidth are fea-
sible, even with today’s hardware technology. For com-
parison, [9] showed that today’s graphics hardware can
provide more than 40 GB/s sustained bandwidth and 20
billion floating-point operations per second (GFLOPS)
for scientific applications. Furthermore, last year’s GPUs
claim a peak theoretical computational throughput of
200-250 GFLOPS, while this year’s newer architectures
claim more than 300 GFLOPS [1]. With this in mind,
these results indicate that our architecture would be ca-
pable of several frames per second at small resolution
such as 300 × 300.

There is a strong trend of increasing parallelism on
a single piece of hardware, and so we are less concerned
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Fig. 7 Scenes used for simulating our architecture. These images show only indirect lighting. All images were rendered at
300× 300, however, the results presented in Section 5.2 are generally dependent on the number of camera points rather than
image resolution. As shown here, the Cornell Box uses 15 million camera points (approx. 160 samples per pixel. The Sponza
scene uses 10 million camera points (approx. 115 samples per pixel) and Sibenik scenes both use 23 million camera points (256
samples per pixel).

# Camera # Total Estimated Required
Scene Points Shader GFLOPS Bandwidth

(millions) Ops

Cornell 3.7 M 69 M 7.8 1.02
Box 7.5 M 120 M 13.9 2.13

15 M 220 M 25.6 4.68

5.7 M 230 M 25.1 2.33
Sponza 11.5 M 430 M 46.5 5.14

23 M 812 M 88.4 12.03

5.9 M 208 M 22.9 2.57
Sibenik 11.8 M 376 M 41.4 5.17

23.6 M 704 M 78.1 11.57

Table 1 Computational and bandwidth requirements for
our architecture to render one frame per second. The
conservative estimate of floating-point operations per sec-
ond (FLOPS) is explained in Section 5.1. For comparison,
note that current graphics hardware has a peak theoretical
throughput of approximately 200 GFLOPS [1] and a sus-
tainable bandwidth of 40 GB/s [9]. Because of the current
hardware trend of increasing multi-core parallelism without
a proportional increase in bandwidth, we focus on how to
reduce bandwidth for future scalability.

with the availability of raw FLOPS speed in future hard-
ware. On the other hand, bandwidth is not likely to scale
as much as computational throughput. For this reason,
we focus the rest of our analysis on cache behavior and
bandwidth requirements to show that our architecture is
feasible. The reader is also referred to Section 4 above,
which discusses the techniques we use to achieve better
cache behavior and reduced bandwidth.

Cache behavior. Table 2 shows cache behavior of the
shader stage for various scenes. Our simulations use a
simple direct-mapped cache, but in practice it is common
to use a set-associative cache which usually performs
better than a direct-mapped cache. The first point to no-
tice is that reordering computations drastically improves

cache behavior. This confirms previous results demon-
strated by [31] and [12]. The method we use to reorder
computations is from Havran et al. [12]. They build a
second KD-tree over the photons to spatially sort the
photons. While the KD-tree itself is not used, the sorted
order of photons results in more coherent operations in
the shader stage.

We also benefit from our novel breadth-first tree traver-
sal, described in Section 4.3. At first it may seem that
this improvement is minor, consistently improving cache
behavior by only a few percent. However, once the cache
hit rate is already in the 90% range, this few percent
becomes significant. For example, in the Sibenik Cathe-
dral scene with 11.8 million camera points, improving
the cache hit rate from 95.2% to 97.9% translates to
reducing the off-chip bandwidth by more than half.

Another interesting issue is the cache behavior of
fixed-width versus adaptive-width kernel estimators. In-
tuitively it would seem that adaptive kernel estimators
can reduce bandwidth by virtue of producing the same
image quality with fewer samples. However, the cache
behavior shows that this tradeoff is more intricate. For
a good basis of comparison, we simulated both fixed-
width and adaptive estimators to produce approximately
the same number of total shader operations. The re-
sulting cache behavior of the adaptive kernel is notably
worse than a fixed kernel, resulting in more bandwidth.
It would be interesting to explore this tradeoff more for-
mally when trying to maximize performance.

Bandwidth requirement. A profile of the required
bandwidth for the fixed-width kernel estimator is shown
in Table 3. This shows that the largest cost of band-
width comes from having to build a KD-tree in every
frame. While this is surprisingly tractable, it is certainly
necessary to reduce this portion of bandwidth for better
scalability. Some possibilities to reduce this bandwidth
are described in Section 6 below.
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# Camera Fixed-width Fixed-width Adaptive
Scene Points Unordered Reordered Reordered

(millions) D.F. B.F. D.F. B.F. D.F. B.F.

3.7 M .660 .758 .968 .969 .949 .963
Cornell Box 7.5 M .677 .754 .964 .971 .937 .962

15 M .690 .752 .955 .970 .920 .956

5.7 M .691 .787 .939 .976 .890 .962
Sponza 11.5 M .697 .773 .894 .966 .837 .941

23 M .702 .766 .842 .943 .791 .907

5.9 M .690 .782 .967 .978 .885 .940
Sibenik 11.8 M .699 .773 .952 .979 .861 .931

23.6 M .705 .769 .923 .974 .829 .915

Table 2 Cache behavior of the shader stage. This table compares depth-first (D.F.) traversal versus breadth-first (B.F)
traversal, unordered photons versus reordered photons, and a fixed-width kernel versus an adaptive kernel. Cache behavior is
likely to improve even more when an associative cache is used. See Section 5.2 for more discussion.

Scene # Camera Points # Photons Raw Bandwidth Shader Cache Off-chip Bandwidth Total
(millions) (thousands) Profile Hit Rate Profile Bandwidth

3.7 M 100k 2.20/0.33/4.12 .969 0.76/0.13/0.13 1.02
Cornell Box 7.5 M 100k 4.59/0.45/7.20 .971 1.75/0.18/0.20 2.13

15 M 100k 9.64/0.65/13.12 .970 4.03/0.26/0.39 4.68

5.7 M 200k 4.17/0.85/13.86 .976 1.65/0.34/0.34 2.33
Sponza 11.5 M 200k 8.65/1.27/25.60 .966 3.76/0.51/0.87 5.14

23 M 200k 18.00/2.04/48.42 .943 8.44/0.82/2.77 12.03

5.9 M 200k 4.57/0.89/12.43 .978 1.94/0.36/0.27 2.57
Sibenik 11.8 M 200k 9.30/1.26/22.44 .979 4.20/0.50/0.47 5.17

23.6 M 200k 19.77/1.95/41.95 .974 9.71/0.78/1.08 11.57

Table 3 Fixed-width kernel bandwidth profile. This table shows the bandwidth requirements to render one frame per second
using the fixed-width kernel estimator, breadth-first tree traversal, and reordered photons. The three numbers for bandwidth
correspond to the Build/Traversal/Shader stages of the architecture, in gigabytes per second. These results are for the scenes
shown in Figure 7. At 300× 300, 23 million camera points is equivalent to about 256 samples per pixel, and at 500× 500, it
is equivalent to about 100 samples per pixel. For comparison, recall that current graphics hardware can sustain a bandwidth
of 40 GBytes per second [9].

Scene # Camera Points # Photons Raw Bandwidth Shader Cache Off-chip Bandwidth Total
(millions) (thousands) Profile Hit Rate Profile Bandwidth

3.7 M 100k 2.20/0.33/3.91 .963 0.76/0.13/0.15 1.04
Cornell Box 7.5 M 100k 4.59/0.43/6.86 .962 1.75/0.17/0.26 2.18

15 M 100k 9.64/0.63/12.56 .956 4.03/0.25/0.56 4.84

5.7 M 200k 4.17/0.83/13.69 .962 1.65/0.33/0.52 2.50
Sponza 11.5 M 200k 8.65/1.25/25.57 .941 3.76/0.50/1.50 5.76

23 M 200k 18.00/2.03/48.75 .907 8.44/0.81/4.55 13.80

5.9 M 200k 4.57/0.867/12.31 .940 1.94/0.35/0.74 3.03
Sibenik 11.8 M 200k 9.30/1.24/22.65 .931 4.20/0.50/1.57 6.27

23.6 M 200k 19.77/1.94/42.94 .915 9.71/0.78/3.63 14.12

Table 4 Adaptive kernel bandwidth profile. Compared to the fixed-width kernel estimator in Table 4, the adaptive kernel
estimator requires more bandwidth, particularly in the shader stage. This table shows the bandwidth requirements to render
one frame per second using the adaptive kernel estimator, breadth-first tree traversal, and reordered photons. The three
numbers for bandwidth correspond to the Build/Traversal/Shader stages of the architecture, in gigabytes per second. These
results are for the scenes shown in Figure 7. For comparison, recall that current graphics hardware can sustain a bandwidth
of 40 GBytes per second [9].
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The bandwidth required for the tree traversal is low,
because it is approximately logarithmically dependent
on the number of camera points. The performance of the
tree traversal and shader stages was somewhat sensitive
to the kernel widths used. In our simulations we chose
a kernel width that produced approximately the same
number of shader operations as a k nearest neighbor
search where k ≈ 15 for the Cornell Box scene, k ≈ 30 for
the Sibenik Cathedral scene, and k ≈ 35 for the Sponza
Atrium scene. Bandwidth is roughly linearly dependent
on the number of shader operations, and the number of
shader operations is linearly dependent on the number
of photons as well as the number of camera points. The
number of shader operations is quadratically dependent
on the kernel width, but in practice good images could
be rendered with slightly smaller kernels, such as the
images in Figure 7.

Similarly, a profile of bandwidth for the adaptive ker-
nel estimator is shown in Table 4. Note that the KD-tree
build cost is the same, because the adaptive kernel does
not affect how the tree is built. As mentioned before,
cache behavior is worse, resulting in about a 1-2 GB/s
bandwidth increase in worst case. For this extra band-
width cost, it is not clear whether we can achieve better
image quality by increasing the number of fixed-width
kernel samples instead. Obviously, the adaptive kernel
estimator will be more robust in very complex scenes or
darker portions of the image where photons are sparse.
For the specific images in Figure 7, there was no subjec-
tive difference between the image quality using a fixed-
width kernel estimator and the image quality using an
adaptive kernel estimator.

6 Discussion and Future Work

We predict that this architecture can fit easily on cus-
tom hardware, with room for large caches and plenty
of parallelism. In such a case, it is likely our architec-
ture will be capable of hundreds of GFLOPS and high
sustainable bandwidth, much like current graphics hard-
ware. As it was simulated, each stage required a 1 MB
cache, resulting in a total 3 MB cache. We predict that
increasing the cache further will greatly improve band-
width requirements, because most memory access is al-
ready coherent. This argument applies to the recursive
KD-tree build stage as well as the shader stage.

In addition to larger caches, in future work we plan
to experiment with optimal ordering methods, such as
Hilbert reordering [31]. This optimal method has been
shown to have orders of magnitude better cache behav-
ior, and we expect that Hilbert reordering could become
an additional stage of our architecture.

Interestingly, our architecture has many similarities
to a sort-middle architecture, which is one approach
to implementing the traditional polygon pipeline with
load-balanced, massive parallelism [23]. In a sense, the

tree traversal is the sorting mechanism that occurs in
between two main stages: tracing rays and performing
shader operations. It would be interesting to explore
whether other types of architectures, such as sort-first,
sort-last, or sort-everywhere, could also apply to photon
mapping.

Limitations and assumptions. While our breadth-
first tree traversal has significantly better cache behav-
ior, it is possible that depth-first traversal requires less
bandwidth in the first place, and this is yet to be ex-
plored. We predict that an optimal traversal technique
may lie somewhere in-between, resulting in an algorithm
similar to the dual-trees method in density estimation
literature [10]. We also assumed that reflection functions
only need a surface normal and the directions associated
with a camera point and a photon. While this is enough
to implement physically realistic lighting, in practice it
is much easier and more flexible to store additional re-
flection parameters in the form of textures. This would
require extra bandwidth that we did not include in our
simulations.

We assumed that the details of the architecture -
controllers, queues, schedulers, and wiring will not be
a bottleneck. To verify this, the architecture should be
described and simulated at the logic-cell level of abstrac-
tion. This level of simulation would give us a better
understanding of latency, throughput, power, and area
requirements of a real hardware implementation. Fur-
thermore, this architecture is fixed-function, not pro-
grammable. This immediately limits its applicability. There
are many practical problems that require density esti-
mation, given a large set of samples (photons) and a
large set of queries (camera points). Allowing the kernel
and BRDF functions to be programmable could be very
powerful, combining the programmability analogous to
existing GPU fragment shaders with a hardware accel-
erated tree build and search.

Most ray tracing based renderers are designed to han-
dle static scenes, and they cannot efficiently handle dy-
namic scenes. It is very likely that addressing both this
problem and the bottleneck of our KD-tree build stage
are very related. Solving one may provide insight on how
to solve the other. Finally, careful and intelligent sam-
pling methods are required to effectively reduce the num-
ber of rays to be traced for a given image quality, and
it is not clear how much overhead is caused by these
high-level decisions.

Finally, it would be very interesting to try our varia-
tion of reverse photon mapping on the GPU. A more gen-
eralized stream-processing paradigm has emerged from
programmable GPUs [1]. This new unified architecture
has overcome some of the prior limitations of GPU pro-
gramming, making it very interesting to experiment with.
Additionally, previous attempts to map photon mapping
to the GPU suffered because fine-grain data parallelism,
which is ideal for a GPU program, was not exposed.
The fine-grain data parallelism exposed in this paper
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may map more easily and effectively to the streaming
paradigm. It would also be informative to try mapping
this algorithm to the programmable ray processing unit
(RPU) [37] as well.

7 Conclusion

In this paper we have presented a novel architecture, the
photon pipeline, that implements reverse photon map-
ping. To make our architecture possible, we first exposed
fine-grain data parallelism that is available in reverse
photon mapping. Data parallelism allows us to consider
a compact, pipelined hardware architecture, similar to
the key factors in the initial success of traditional graph-
ics hardware. We described how our architecture imple-
ments the KD-tree build, KD-tree traversal, and shad-
ing operations that are part of reverse photon mapping,
and we simulated cache behavior and bandwidth require-
ments to show that our architecture is feasible. We con-
clude that real-time photon mapping is certainly possi-
ble, and in future work there are many ways to continue
progressing towards the holy grail of real-time photore-
alism.
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