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Abstract—In this paper, we study and characterize the topology
of the Internet at the autonomous system (AS) level. First, we show
that the topology can be described efficiently with power laws. The
elegance and simplicity of the power laws provide a novel perspec-
tive into the seemingly uncontrolled Internet structure. Second, we
show that power laws have appeared consistently over the last five
years. We also observe that the power laws hold even in the most re-
cent and more complete topology with correlation coefficient above
99 % for the degree-based power law. In addition, we study the evo-
lution of the power-law exponents over the five-year interval and
observe a variation for the degree-based power law of less than
10% . Third, we provide relationships between the exponents and
other topological metrics.

Index Terms—Network modeling, power laws.

I. INTRODUCTION

N THIS paper, we study the topology of the Internet and we
I identify several power laws. Furthermore, we discuss mul-
tiple benefits from understanding the topology of the Internet.
Our work is motivated by questions such as the following:
“What does the Internet look like?,” “Are there any topological
properties that do not change in time?,” “How will it look
a year from now?,” and “How can I generate Internet-like
graphs for my simulations?”

Modeling the Internet topology is an important open problem
despite the attention it has attracted recently. Paxson and Floyd
consider this problem as a major reason why we do not know
how to simulate the Internet [21]. An accurate topological model
can have significant impact on network research. First, we can
design more efficient protocols that take advantage of its topo-
logical properties. Second, we can create more accurate artificial
models for simulation purposes. Third, we can derive estimates
for topological parameters (e.g., the average number of neigh-
bors within A hops) that are useful for the analysis of protocols
and for speculations of the Internet topology in the future.

In this paper, we propose the use of power laws to describe
the topology of the Internet at the autonomous system (AS) or
interdomain level. Power laws are expressions of the form y o
z®, where a is a constant, z and y are the measures of interest,
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and o stands for “proportional to.” Conceptually, our work has
three main thrusts: 1) defining and identifying the power laws;
2) studying their evolution; and 3) relating power-law exponents
and other graph metrics. Our work can be summarized in the
following points.

First, we identify several power laws that describe the distri-
bution of topological metrics such as node degree. We also show
that the three power laws are tightly related theoretically. In ad-
dition, we introduce a graph metric to quantify the density of a
graph and propose a power-law approximation of that metric.

Second, we study the evolution of the power laws between
November 1997 and February 2002. The power laws hold for
1253 instances, with good linear fits in log—log plots; the cor-
relation coefficient of the fit is at least 96% and typically above
98%. We note that their existence is persistent, and they hold
even in the most recent and more complete topology [10].

Third, we present new and known relationships between
power-law exponents and other graph metrics. We list mecha-
nisms that create power laws and discuss their plausibility and
their efficiency in creating graphs for practical purposes.

Our Work in Perspective: Power laws are a first step in un-
derstanding the Internet topology. The evidence of their exis-
tence is too strong to be dismissed as coincidence. We monitor
and analyze the Internet over a period of five years, during which
the size of the network quadrupled. The contributing sources for
the data collection changed significantly in number and location
[41]. Additionally, we analyzed the more recent and complete
topology [10]. These observations exclude by and large the pos-
sibility of the power laws being the result of coincidence. There-
fore, the power laws appear as a necessary though not sufficient
condition for a topology to be realistic. There may be more topo-
logical properties of the Internet topology that are not captured
by our power laws [45], [54].

The rest of this paper is structured as follows. In Section I, we
present some definitions and previous work on measurements
and models for the Internet. In Section III, we present our In-
ternet instances and provide useful measurements. In Section IV,
we present our three observed power laws and our power-law
approximation. In Section V, we present the time evolution of
the exponent of the power laws that we presented in the previous
section. In Section VI, we present the models used to generate
power-law graphs. In Section VII, we conclude this paper and
discuss future directions.

II. BACKGROUND AND PREVIOUS WORK

The Internet can be decomposed into subnetworks that
are under separate administrative authorities. These subnet-
works are called domains or autonomous systems. This way,
the topology of the Internet can be studied at two different
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TABLE 1
DEFINITIONS AND SYMBOLS

Definition

An undirected graph.

Number of nodes in a graph.

Number of edges in a graph.

The diameter of the graph.

Degree of node v.

Average degree of the nodes of a graph:
d=2E/N

Symbol

a(flo| 1 2 Q

granularities. At the router level, we represent each router
by a node [43]. At the inter-domain level, each domain
is represented by a single node [22] and each edge is an
inter-domain interconnection. The study of the topology at both
levels is equally important. The Internet community develops
and employs different protocols inside a domain and between
domains. An intra-domain protocol is limited within a domain,
while an inter-domain protocol runs between domains treating
each domain as one entity. Here, we focus on the autonomous
system level and represent the topology of the Internet by an
undirected graph.

Network Analysis Before Power Laws: Before 1999, the met-
rics that were used to evaluate network models were mainly the
node degree and the distances between nodes. Given a graph,
the degree of a node is defined as the number of edges incident
to the node (see Table I). The distance between two nodes is
the number of edges along the shortest path between the two
nodes. Most studies report minimum, maximum, and average
values and plot the degree and distance distribution. We denote
the number of nodes of a graph by N, the number of edges
by E, and the diameter of the graph by 6. Using these metrics,
Govindan and Reddy [22] study the growth of the inter-domain
topology of the Internet between 1994 and 1995. The graph is
sparse, with 75% of the nodes having degrees less than or equal
to two. Pansiot and Grad [43] study the topology of the Internet
in 1995 at the router level. The distances they report are approx-
imately two times larger compared with those of Govindan and
Reddy.

For graph generation purposes, Waxman introduced a pop-
ular network model [55]. The link creation probabilities depend
upon the Euclidean distance between the nodes. This model
was successful in representing small early networks such as the
ARPANET. As the size and the complexity of the network in-
creased more detailed models were needed [8], [16]. Zegura et
al. [60] reviewed these generation methods using a more expan-
sive set of metrics, including some that are driven by uses, like
multicast routing. Based on the limitations they found, they in-
troduced a comprehensive model that includes several previous
models.

Power Laws—A Ubiquitous Presence: Pareto was among the
first to introduce power laws in 1896 [44]. He used power laws
to describe the distribution of income where there are few very
rich people, but most of the people have a low income. Another
classical law, the Zipf law [61], was introduced in 1949, for the
frequencies of the English words and the population of cities.
Power laws have been found in numerous diverse fields span-

ning geological, natural, sociological, and biological systems.
Some interesting examples of power-law distributions are the
movie actor collaboration network [7], the human respiratory
system [34], automobile networks [19], the size and location
of earthquakes, stock-price fluctuations [6], the web of human
sexual contacts [17], biological cellular networks [25], and the
scientific citation network [50]. More details about the historical
aspects of power laws can be found in Mitzenmacher [38] and
an extensive presentation of power laws in many diverse fields
in [3].

Network Analysis Using Power Laws: More recently, power
laws have been observed in communication networks. First,
power laws have been observed in network traffic [13], [30],
[46], [56]. In addition, the topology of the World Wide Web
[4], [28] can be described by power laws. Furthermore, power
laws describe the topology of peer-to-peer networks [39] and
properties of multicast trees [12], [47], [37], [S7]. Among these
properties, the Chuang—Sirbu law states that the size of the
multicast tree follows a power law with respect to the number
of group members with exponent 0.8.

Our initial work [20] on power laws has generated signifi-
cant follow-up work. Various researchers verified our observa-
tions with different datasets [23], [24], [33]. In addition, signif-
icant work has been devoted in understanding the origin [36],
and generating power-law topologies [26], [35], [36], [42], [54],
[58]. We discuss these approaches for generating power laws in
Section VI. More recently, several works have focused on de-
scribing the topology in a qualitative way [31], [32], [52], [53].

III. OUR INTERNET INSTANCES

In this section, we present the Internet instances we study in
this work. We use topologies from two sources. First, we use the
Oregon route views project [41]. The information is collected
by a route server from BGP! [49] routing tables of multiple ge-
ographically distributed BGP routers. This is the only archival
repository we could find in order to study the evolution of the
topology. However, the Oregon data does not identify all pos-
sible links between ASs [10]. For this reason, we use a second
data set from 2001 [10], which is the superset of Oregon and
several other routing repositories. This data is currently consid-
ered as the most comprehensive AS topology, although it is al-
most certainly not complete. Unfortunately, there is a limited
number of these instances, which span only nine weeks, starting
from March 2001, and thus, it does not lend itself to an evolu-
tion study.

The Oregon dataset contains 1253 daily instances. These in-
stances span an interval of 1600 days, more than five years, from
November 8, 1997, to February 28, 2002. Note that we filter the
data to remove incomplete data files because they do not cor-
rectly represent the topology. We identify and remove the in-
stances that have less than 50% of the nodes found in the pre-
vious instance. For example, we removed the reported topology
on August 29, 1999, which has 103 nodes, since the files on
the previous and next days have more than 5600 nodes. Among
the 1253 instances, we selected the instance of May 26, 2001,

IBGP stands for the Border Gateway Protocol, and is the inter-domain routing
protocol.
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Fig. 1. Growth of the Internet: the number of domains versus time between

the end of 1997 and the start of 2002.

to demonstrate the power laws, so that we can compare the re-
sults we have with the more complete topology. For the rest of
this paper, we will refer to the instance from Oregon as Oregon,
and the instance which represents the more complete topology
as Multi.

Note that the remaining 1252 instances also follow the power
laws. Furthermore, the size of the topology in the five-year pe-
riod quadrupled (see Fig. 1). The change is significant, and it en-
sures that our instances reflect different snapshots of an evolving
network.

IV. POWER LAWS OF THE INTERNET

In this section, we observe three power laws of the Internet
topology. We propose and measure graph properties, which
demonstrate a regularity that is unlikely to be a coincidence.
The exponents of the power laws can be used to characterize
graphs. In addition, we introduce a graph metric that is tailored
to the needs of the complexity analysis of protocols. The metric
reflects the density or the connectivity of nodes, and we offer a
rough approximation of its value through a power law. Finally,
using our observations and metrics, we identify a number of
interesting relationships between important graph parameters.

The goal of our work is to find metrics that quantify topo-
logical properties and describe concisely skewed data distribu-
tions. Previous metrics, such as the average degree, fail to do so.
First, metrics that are based on minimum, maximum, and av-
erage values are not good descriptors of skewed distributions;
they miss a lot of information, probably including the “inter-
esting” part that we would want to capture. Second, the plots of
the previous metrics are difficult to quantify, and this makes the
comparison of graphs difficult.

To express our power laws, we introduce several graph met-
rics, given in Table II. We define D, to be the complementary
cumulative distribution function (CCDF) of a degree d, which is
the percentage of nodes that have degree greater than the degree
d.If we sort the nodes in decreasing degree sequence, we define
rank r, to be the index of the node in the sequence, while ties in
sorting are broken arbitrarily. We define the number of pairs of
nodes P(h) to be the total number of pairs of nodes within less
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TABLE 11
NOVEL DEFINITIONS AND THEIR SYMBOLS

Symbol | Definition

Dy

The Complementary Cumulative Dis-
tribution Function or CCDF, of a de-
gree, is the percentage of nodes that
have degree greater than the degree d.

Ty The rank of a node, v, is its index in
the order of decreasing degree.

P(h) | The number of pairs of nodes is the to-
tal number of pairs of nodes within less
or equal to h hops, including self-pairs,

and counting all other pairs twice.

NN(h) | The average number of nodes in a

neighborhood of h hops.

A The eigenvalue of an NzN matrix A:
X : X € RV\{0} and AX = \X.

1 The order of \; in the sorted sequence
A1 2> A2... > An of the eigenvalues of
a matrix.

than or equal to h hops, including self-pairs, and counting all
other pairs twice. The use of this metric will become apparent
later. We also define N N (k) to be the average number of nodes
in a neighborhood of A hops. Finally, we recall the definition
of the eigenvalues of a graph, which are the eigenvalues of its
adjacency matrix.

We use linear regression to fit a line in a set of two-dimen-
sional points [48]. The technique is based on the least-square
errors method. The validity of the approximation is indicated
by the correlation coefficient which is a number between —1.0
and 1.0. For the rest of this paper, we use the absolute value of
the correlation coefficient (ACC). An ACC value of 1.0 indi-
cates perfect linear correlation, i.e., the data points are exactly
on a line.

A. Rank Exponent R

In this section, we study the degrees of the nodes. We sort
the nodes in decreasing order of degree d,, and plot the (r,, d,)
pairs in log—log scale. The plots are shown in Fig. 2. The mea-
sured data is represented by points, while the solid line repre-
sents the least-squares approximation.

A striking observation is that the plots are approximated well
by linear regression. The correlation coefficient is 0.97 for the
Oregon and 0.978 for the Multi topology. This leads us to the
following power law and definition.

Power Law 1 (Rank Exponent): Given a graph, the degree
d, of a node v is proportional to the rank of the node 7, to the
power of a constant R:

R
dy x 1,

Definition 1: Let us sort the nodes of a graph in decreasing
order of degree. We define the rank exponent R to be the slope

of the plot of the degrees of the nodes versus the rank of the
nodes in log—log scale.
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Fig. 2. Rank plot. Log-log plot of the degree d, versus the rank r, in the
sequence of decreasing degree. (a) Oregon. (b) Multi.

Intuitively, Power Law 1 reflects a principle of the way do-
mains connect; the linearity observed in 1253 graph instances is
unlikely to be a coincidence.

Extended Discussion—Applications: We can estimate the
proportionality constant for Power Law 1 if we require that the
minimum degree of the graph is m (dy = m). This way, we
can refine the power law as follows.

Lemma 1: In a graph where Power Law 1 holds, the degree
d, of a node v is a function of the rank of the node r, and the
rank exponent R as follows:

m R

dv:WTU.

Proof: We can estimate the proportionality constant C' for
Power Law 1 if we require that the degree of the Nth node is
m,dy = m

dy =CN® =
C =m/NR®. (D

We combine Power Law 2 with (1) and conclude the proof. ®

Finally, using lemma 1, we relate the number of edges with
the number of nodes and the rank exponent.

Lemma 2: In a graph where Power Law 1 holds, the number
of edges E of a graph can be estimated as a function of the
number of nodes N and the rank exponent R as follows:

1 1
E= 1-— N.
s (1w

Proof: The sum of all the degrees for all the ranks is equal
to two times the number of edges, since we count each edge
twice

N
2B =Y d, =
ry=1
N N
2E =Y (ro/N)®=(1/N)R > 1} =
ry=1 r,=1
IR S
~2ZV_R . Ty d'f‘v. (2)

In the last step above, we approximate the summation with
an integral. Calculating the integral concludes the proof. [ |

Note that Lemma 2 can give us the number of edges as a
function of the number of nodes for a given rank exponent. For
an additional discussion on estimates using this formula, see
[20].

B. Degree Exponent D

In this section, we study the distribution of the degree of the
nodes. We plot the D, versus the degree d in log—log scale in
Fig. 3. The major observation is that the plots are approximately
linear. The correlation coefficient is 0.996 for the Oregon and
0.991 for the Multi topology. As in the previous power law,
the slope of the exponent is different, something which is ex-
pected since the Multi topology has many more links. Note that
in [10] it is argued that this power law does not hold for the Multi
topology, without trying to approximate it using linear regres-
sion. Their conclusion is arguable, since we have a correlation
coefficient of 0.991. Again, as in the last power law, we checked
to see if the power law holds for all the instances we had. We
found that the power law holds for all the instances, and the cor-
relation coefficient was always higher than 0.99. This leads us
to the following power law and definition.

Power Law 2 (Degree Exponent): Given a graph, the
CCDF D, of a degree d is proportional to the degree to the
power of a constant D:

Dd 0.8 dD.

Definition 2: We define the degree exponent D to be the
slope of the plot of the cumulative degree of the degrees versus
the degrees in log—log scale.

The intuition behind this power law is that the distribution of
the degree of Internet nodes is not arbitrary. The qualitative ob-
servation is that degrees range over several orders of magnitude
in a scale-invariant way. As a result, there is a nontrivial prob-
ability of finding nodes with very high degree. Our power law
manages to quantify this observation with the degree exponent.
This way, we can test the realism of a graph with a simple nu-
merical comparison. If a graph does not follow Power Law 2,
or if its degree exponent is considerably different from the real
exponents, it probably does not represent a realistic topology.

Comment: Note that the degree power law that we present
here is different than the one presented in our earlier work [20].
They both refer to the same distribution; their difference is that
the previous power law uses the probability distribution func-
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Fig. 3. Log-log plot of Dy versus the degree for the Oregon and Multi

topologies. (a) Oregon. (b) Multi.

tion,2 while the power law here uses the cumulative distribu-
tion function. As a result, the exponents of the different power
laws differ approximately by one. Theoretically, the difference
should be exactly one, since the cumulative distribution can be
obtained by integrating the probability distribution. In practice,
we see that the difference is not equal to one, due to approxi-
mations like the use of curve-fitting to find the slope. The cu-
mulative distribution is preferable since it can be estimated in a
statistically robust way.

Relationship of the Rank and Degree Power Laws: Both the
rank and the degree power laws characterize the degree distri-
bution from different angles. It can be shown that the exponents
of the two power laws are related [11], [29], [61]. More specif-
ically, in a perfect power-law distribution, the slope of the rank
power law is equal to R = 1/D. For the Multi topology, the rank
slope is 0.89. Using the above formula and the degree slope, we
find the rank slope to be equal to 0.81. This discrepancy can
be attributed to measurement imperfections and inaccuracies.
In this regard, we think that it is useful to report both exponents
when characterizing a topology.

C. Eigen Exponent £

In this section, we identify properties of the eigenvalues of
our Internet graphs. Recall that the eigenvalues of a graph are

2The actual law stated that the frequency f,; of a degree d is proportional to
the degree to the power of a constant D where the frequency f, of a degree is
the number of nodes with degree d.
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the eigenvalues of its adjacency matrix. We plot the eigenvalue
A; versus ¢ in log—log scale for the first 100 eigenvalues. Re-
call that 7 is the order of ); in the decreasing sequence of eigen-
values. The result is shown in Fig. 4. The eigenvalues are shown
as points in the figures, and the solid lines are approximations
using a least-squares fit. Similar observations with equally high
correlation coefficients were observed for all the other instances.
We observe that the plots are practically linear with a correla-
tion coefficient of 0.996 for both plots. The eigen exponent is
—0.477 for the Oregon and —0.447 for the Multi topology.

It is rather unlikely that such a canonical form of the eigen-
values is purely coincidental, and we therefore conjecture that
it constitutes the following empirical power law of the Internet
topology.

Power Law 3 (Eigen Exponent): Given a graph, the eigen-
values \; are proportional to the order ¢ to the power of a con-
stant £:

)\i X ig.

Definition 3: We define the eigen exponent £ to be the slope
of the plot of the sorted eigenvalues versus their order in log—log
scale.

Eigenvalues are fundamental graph metrics. There is a rich
literature that proves that the eigenvalues of a graph are closely
related to many basic topological properties such as the diam-
eter, the number of edges, the number of spanning trees, the
number of connected components, and the number of walks of a
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certain length between vertices, as we can see in [14]. All of the
above suggests that the eigenvalues intimately relate to topolog-
ical properties of graphs. However, it is not trivial to explore the
nature and the implications of this power law.

Relationship of the Degree and the FEigenvalue Power
Laws: A surprising relationship exists between the two ex-
ponents: the eigenvalue exponent is approximately half of the
degree exponent. In more detail, Mihail ef al. [40] show that if
the degrees dy, ..., d, of a graph follow a power law, then the
nonincreasing sequence of the largest eigenvalues A; has the
following one-to-one correspondence: \; = +/d;. It is worth
noting that this is an asymptotic limit of the eigenvalues. If we
take the logarithm of the previous equation, it follows that the
two exponents differ by a factor of two. In practice, the expo-
nents obey adequately the mathematical relationship, although
the match is naturally not perfect. For example, the degree
exponent for the Oregon topology is 1.12 and the eigenvalue
exponent 0.47, which yields a ratio of 0.52 instead of 0.5.

D. Hop-Plot Exponent H

In this section, we quantify the connectivity and distances
between the Internet nodes in a novel way. We choose to study
the size of the neighborhood within some distance, instead of
the distance itself. Namely, we use the total number of pairs of
nodes P(h) within h hops, which we define as the total number
of pairs of nodes within less than or equal to h hops, including
self-pairs, and counting all other pairs twice.

In Fig. 5, we plot the number of pairs P(h) as a function of
the number of hops h in log—log scale. The data is represented
by points. We want to describe the plot by a line in least-squares
fit, for h < 6, shown as a solid line in the plots. We approxi-
mate the first four hops in the inter-domain graphs. The correla-
tion coefficient is 0.9765 and 0.9784 for the Oregon and Multi
topology, respectively.

Unfortunately, four points is a rather small number to verify
or disprove a linearity hypothesis experimentally. However,
even this rough approximation has several useful applications,
as we show later in this section. It is worth mentioning that
Philips er al. [47] state that the neighborhood growth is expo-
nential and not a power law. In Fig. 6, we plot again the number
of pairs in log-lin for the Multi topology. We approximate the
first four hops and found a correlation coefficient of 0.918,
which is much lower than the previous correlation. From this,
it seems that we can approximate the hop-plot better with a
power law than with an exponential function.

Approximation 1 (Hop-Plot Exponent): The total number
of pairs of nodes P(h) within h hops is proportional to the
number of hops to the power of a constant H:

P(h) < B, h<é.

Definition 4: Let us plot the number of pairs of nodes P(h)
within A hops versus the number of hops in log—log scale. For
h < 6, we define the slope of this plot to be the hop-plot expo-
nent 'H.

Extended Discussion—Applications: We can refine Approx-
imation 1 by calculating its proportionality constant. Let us re-
call the definition of the number of pairs P(h). For h = 1, we
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consider each edge twice and we have the self-pairs, therefore,
P(1) = N + 2E. We demand that Approximation 1 satisfies
the previous equation as an initial condition.

Lemma 3: The number of pairs within h hops is

h<é
h>6¢

where ¢ = N + 2F to satisfy initial conditions.
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In networks, we often need to reach a target without knowing
its exact position [9], [51]. In these cases, selecting the extent of
our broadcast or search is an issue.3 On the one hand, a small
broadcast may not reach our target. On the other hand, an ex-
tended broadcast creates too many messages and takes a long
time to complete. Ideally, we want to know how many hops are
required to reach a “sufficiently large” part of the network. In
our hop-plots, a promising solution is the intersection of the two
asymptote lines: the horizontal one at level N2 and the asymp-
tote with slope H. We calculate the intersection point using
Lemma 3, and we define the following.

Definition 5 (Effective Diameter): Given a graph with N
nodes, E edges, and H hop-plot exponent, we define the effec-
tive diameter 6. as

N2 1/H
bes = <N+2E> '

Intuitively, the effective diameter can be understood as fol-
lows. Any two nodes are within 6. hops from each other with
high probability. We verified the above statement experimen-
tally. The effective diameters of our inter-domain graphs was
slightly over four. Rounding the effective diameter to four, ap-
proximately 80% of the pairs of nodes are within this distance.
The ceiling of the effective diameter is five, which covers more
than 95% of the pairs of nodes. The above confirms that the
effective diameter manages to capture the majority of the dis-
tances. Furthermore, it argues indirectly that the hop-plot expo-
nent as a metric seems useful.

An advantage of the effective diameter is that it can be calcu-
lated easily, when we know N and H. Recall that we can cal-
culate the number of edges from Lemma 2. Therefore, given
estimates the hop-plot and rank-plot exponents, we can calcu-
late the effective diameter of future Internet instances of a given
size [20].

Furthermore, we can estimate the average size of the neigh-
borhood N N (k) within k hops using the number of pairs P(h).
Recall that P(h) — N is the number of pairs without the self-
pairs

P(h)

NN(h) = —

—1. 3)
Using (3) and Lemma 3, we can estimate the average neigh-
borhood size.
Lemma 4: The average size of the neighborhood NN (h)
within h hops as a function of the hop-plot exponent H for
h < dis

NN(h)= —h"—1,  h>0

N
where ¢ = N + 2F to satisfy initial conditions.
The average neighborhood is a commonly used parameter in
the performance of network protocols. Our estimate is an im-

3This problem has direct practical importance. The Internet has a built-in
mechanism for limiting the number of hops a packets makes. The time-to-live
field of a packet is a counter that is decreased at each hop until it reaches zero,
at which point the packet is not forwarded further.
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provement over the commonly used estimate that uses the av-
erage degree [51], [59], which we call average-degree estimate

NN'(hy=d(d-1)""".

In Fig. 7, we plot the actual and the two estimates of the av-
erage neighborhood size versus the number of hops using an in-
stance from 1998. The superiority of the hop-plot exponent esti-
mate is apparent compared to the average-degree estimate. The
discrepancy of the average-degree estimate can be explained if
we consider that the estimate does not comply with the real data;
it implicitly assumes that the degree distribution is uniform. In
more detail, it assumes that each node in the periphery of the
neighborhood adds d — 1 new nodes at the next hop. Our data
shows that the degree distribution is highly skewed, which ex-
plains why the use of the hop-plot estimate gives a better ap-
proximation.

The most interesting difference between the two estimates
is qualitative. The average degree based estimate considers the
neighborhood size exponential in the number of hops. Our es-
timate considers the neighborhood as an H-dimensional sphere
with radius equal to the number of hops, which is a novel way
to look at the topology of a network. Our data suggests that the
hop-plot exponent-based estimate gives a closer approximation
compared to the average-degree-based metric.

V. PERSISTENCE OF POWER-LAW EXPONENTS

We examine the evolution of power-law exponents in the
five-year span from November 1997 to February 2002. We want
to stress that the main observation is that the power laws hold
for every instance. The evolution of the slope is a secondary
issue.

Evolution of Rank Exponent R: In Fig. 8, we examine the
time evolution of the slope of the rank exponent. We plot the
rank exponent versus the day that the instance of the graph was
collected. The rank exponent R power law holds for all the in-
stances over a period of five years. The correlation coefficient
of the law seems to decrease over time, and for the last instance
it is close to 0.9654. This indicates that the rank exponent for
the topologies from Oregon should be treated with care in the
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future. However, we see in Fig. 2 that for the more complete
topology we have a higher correlation coefficient.

Evolution of Degree Slope D: We study the slope of the cu-
mulative degree exponent and its evolution in time. In Fig. 9,
we plot the degree exponent versus time. The degree exponent
power law holds for all the instances with a correlation coeffi-
cient always higher than 0.99. We observe from the graph that
the slope is between —1.12 and —1.22, i.e., a variation of less
than 9%.

Evolution of Eigen Exponent £: In Fig. 10, we plot the time
evolution of the eigen exponent. The power law holds for all the
instances we have measured. As we can see from the graph, the
value of the eigen exponent decreases for the first 150 instances
and then starts to rise again for the rest of the instances. We do
not have an intuitive explanation for this behavior. Note that the
eigenvalues of a graph does not depend on the way the nodes
are enumerated.

Evolution of Hop-Plot Exponent: InFig. 11, we plot the time
evolution of the hop-plot exponent’s slope. The power law holds
for all the instances with a correlation coefficient always higher
than 0.97. We observe that the value of slope increases steadily.
The initial value of the hop-plot exponent is 4.6 and for the latest
instance is 5.7.
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Understanding the Hop-Plot Increase: As we saw, the net-
work size increases significantly, while the distances between
nodes increase very little. In Table III, we list the percentage
of nodes that we can reach as a function of the number of hops
or the neighborhood of a node within h hops. We compare
two graph instances, November 8, 1997, and our last instance,
February 28, 2002. Although the size of the graph quadrupled,
we reach approximately the same percentage of nodes with
the same number of hops. In absolute numbers, the number of
nodes we can reach in six hops increased from approximately
3000 to 13000.

VI. GENERATION OF POWER LAWS

Why would such an uncontrolled* entity like the Internet
follow any statistical regularities? Note that the high correla-
tion coefficients rule out the possibility of pure coincidence.
Intrigued by the previous question, and by the appearance of
power laws in many diverse fields, many scientists have tried to

4The term uncontrolled refers to the fact that the Internet is not governed
by a central authority, and its growth and design is driven by many different
optimization goals, such as financial, business, and performance related.
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TABLE III
SIZE OF THE NEIGHBORHOOD OF A NODE (AS PERCENTAGE OF THE TOTAL)
AS A FUNCTION OF THE HOPS (RADIUS OF NEIGHBORHOOD)

hops 11-08-1997 | 02-28-2002
1 0.08% 0.04%
2 8.86% 8.09%
3 43.40% 46.64%
4 80.99% 84.76%
5 96.70% 97.46%
6 99.65% 99.71%

find the mechanism responsible for the creation of power-law
graphs.

In this section, we will first give a small review of the most
popular models that try to explain the appearance of power laws
in networks. Later, we will briefly describe the status on the
graph generation tools.

Scale-Free Networks: A very elegant growth model has been
proposed by Barabasi and Reka. In their original work [7], their
model states that the scale-free nature roots in two mechanisms,
the addition of new nodes, and their preferential attachment.
Their model grows a graph by adding nodes. The probability of
a new node connecting with node ¢ of degree d; is proportional
to its degree: d;/ Y d;, where > d; is the sum of the degrees
of all current nodes. In a more recent work, the same authors
propose a more general model that includes generation of edges
between existing nodes and rewiring [2], that is, the removal of
one edge and the creation of another between existing nodes. An
extensive review on variations of the original idea that include
more parameters can be found in [3].

There exists a number of real data studies based on the growth
model proposed by Barabasi. In [10], they conclude that this
theoretical model is not supported by the real data. Instead, they
mention that rewiring occurs infrequently, and that new nodes
express a greater preference for nodes with large degree than is
represented by the simple linear preference model. On the other
hand, in [3], [5], and [58], the authors show that the addition of
nodes and edges follows the linear preferential model. This is
controversial and more work is needed to compare the different
approaches used.

Heuristically Optimized Tradeoffs: In [18], Fabrikant ef al.
propose “a simple and primitive model of Internet growth.” In
their model, the power-law distributions root from the Internet
growth in which two objectives are optimized simultaneously.
The two objectives are: the connection costs (last mile), and the
trasmission delays measured in hops. Their model works as fol-
lows. They use a unit square plane, where nodes arrive and their
place is chosen uniformly at random. Each node attaches itself
on one of the previous nodes. They use two metrics in order
to choose where the node should attach. The first metric is the
Euclidean distance d;; between the new node ¢ and a node j.
This metric captures the “last-mile” costs. The second metric is
a measure of the centrality of a node j, h;, if the new node at-
tached to node j. This shows how close is the node to the center,
and they mention that this captures the operation costs due to
communication delays. Node ¢ chooses to connect with node j
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that minimizes the weighted sum min;«; ad;; + h;, where a is
used to change the relative importance of the two objectives.

Highly Optimized Tolerance: In [27], Carlson and Doyle
propose that power laws are the result of an optimization, either
through natural selection or engineering design, to provide
robust performance despite uncertain environments. Regarding
the Internet, they mention that the survivability built in the
Internet and its protocols could be the cause of the power laws.

Topology Generators: The introduction of power laws [20]
brought a revision of the graph generation models in the net-
working community. The power laws can be used as one ques-
tion in the “qualifying exam” for the realism of a graph. The
early generators failed when tested against power laws, so after
that a number of new generators was proposed [26], [35], [36],
[42], [54], [58].

There are two kinds of graph generation tools. In the first one,
we have the tools that take the power laws as given, and they do
not attempt to emulate the process that leads to a power law [1],
[26], [42]. In the second category [35], [36], [54], [58], we have
generators which try to capture the actual process that governs
the creation of power laws. All of them use variations of the
preferential attachment model, described in [2] and [7].

In the most recent effort [54], Bu and Towsley proposed a new
generator that generates more realistic Internet topologies. Fur-
thermore, they used additional metrics found in small-world net-
works [15]. They showed that previous generators fail in some
of these new criteria. They showed that by deviating from the
linear preferential model by giving higher preferentiality to high
degree nodes, more realistic topologies are generated.

VII. CONCLUSION

In this paper, we propose power laws as a tool to describe
the Internet topology and examine their persistence in time. The
power laws capture concisely the highly skewed distributions
of the graph properties. Finally, we show how these exponents
relate to each other and how they relate to other topological
properties.

We note the persistence of power laws in time. They appear
in more than 1200 daily instances over the span of more than
five years from 1997 to 2002. In this interval, the network un-
derwent significant changes in size (400%) and rate of growth.
The monitoring infrastructure changed and evolved as well. This
suggests that the appearance of power laws is unlikely to be a
coincidence or an artifact. An orthogonal but also striking ob-
servation is that some of the exponents did not change more
than 10%. Furthermore, the power laws seem to hold even in
the most complete topology, which combines multiple sources.
In fact, some of the power laws hold with higher correlation co-
efficients in this data set.

Some additional observations are summarized in the fol-
lowing points.

* Power-law exponents are a more efficient way to describe
the highly skewed graph metrics compared with average
values of real graphs.

* We propose the number of pairs P(h) within h hops as a
metric of the density of the graph and approximate it using
the hop-plot exponent H.
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* We derive formulas that link the exponents of our power
laws with graph metrics such as the number of nodes, the
number of edges, and the average neighborhood size.

» Using power laws, we obtain better intuition, for example,
we can see that the network becomes denser by observing
the hop-plot exponent.

Apart from their theoretical interest, our power laws have
practical applications. First, our power laws can assess the re-
alism of synthetic graphs and enhance the validity of simula-
tions. Second, they can help analyze the average-case behavior
of network protocols. For example, we can estimate the message
complexity of protocols using our estimate for the neighborhood
size. Third, the power laws can help answer “what-if”’ scenarios
such as “What will be the diameter of the Internet, when the
number of nodes doubles?” and “What will be the number of
edges then?”

VIII. FUTURE WORK

The topological power laws presented here form a critical
step toward understanding and modeling the Internet. However,
there are several open questions. First, we would like to ex-
plore further the meaning and the value of the exponents. We
believe that such analysis could reveal interesting interplays
and tradeoffs between the forces that govern the creation of the
topology. Second, the power laws alone may not be sufficient in
describing the topology in all its complexity. For example, we
would like to develop more structural properties that will quan-
tify the topology in a way that is easier to visualize. The goal of
this direction is to develop a simple and intuitive model for the
Internet topology.
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