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Abstract
Background Despite technological advances in the

tracking of surgical motions, automatic evaluation of lap-

aroscopic skills remains remote. A new method is proposed
that combines multiple discrete motion analysis metrics.

This new method is compared with previously proposed

metric combination methods and shown to provide greater
ability for classifying novice and expert surgeons.

Methods For this study, 30 participants (four experts and

26 novices) performed 696 trials of three training tasks:
peg transfer, pass rope, and cap needle. Instrument motions

were recorded and reduced to four metrics. Three methods

of combining metrics into a prediction of surgical compe-
tency (summed-ratios, z-score normalization, and support

vector machine [SVM]) were compared. The comparison

was based on the area under the receiver operating char-
acteristic curve (AUC) and the predictive accuracy with a

previously unseen validation data set.

Results For all three tasks, the SVM method was superior
in terms of both AUC and predictive accuracy with the

validation set. The SVM method resulted in AUCs of
0.968, 0.952, and 0.970 for the three tasks compared

respectively with 0.958, 0.899, and 0.884 for the next best
method (weighted z-normalization). The SVM method

correctly predicted 93.7, 91.3, and 90.0% of the subjects’

competencies, whereas the weighted z-normalization
respectively predicted 86.6, 79.3, and 75.7% accurately

(p\ 0.002).

Conclusions The findings show that an SVM-based
analysis provides more accurate predictions of competency

at laparoscopic training tasks than previous analysis tech-

niques. An SVM approach to competency evaluation
should be considered for computerized laparoscopic per-

formance evaluation systems.
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Minimally invasive surgery (MIS) provides significant

benefits to patients including shorter hospital stays, smaller

scars, and faster healing. However, MIS procedures can be
significantly more complex than their open procedure

counterparts, and MIS thus requires longer training and
additional experience.

Educational programs, such as the Fundamentals of

Laparoscopic Surgery from the Society of American Gas-
trointestinal and Endoscopic Surgeons (SAGES) and the

American College of Surgeons (ACS) are a significant step

toward improved consistency and objectivity in surgical
education, but many feel that further improvements in both

quality and reduced training time are possible (see Ag-

garwal et al. [1] for a summary).
In recent years, technological advances in motion data

acquisition for laparoscopic training such as virtual reality
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(VR)-based [2, 3], optical (LapVR; Immersion Medical,

55 W. Watkins Mill Road, Gaithersburg, MD, USA), and
magnetic [4] tracking systems have provided surgeons and

their residents with copious data. Thus, although substantial

kinematic data are available to judge the competency of a
surgeon’s performance, distilling useful automated feed-

back from this information remains difficult.

To meet this challenge, motion analysis systems gen-
erally reduce the full kinematic record to a small number of

scalar metrics such as the time taken to complete the

assigned task or the length of the path taken by the
instrument tip over the course of a task. Studies have

shown that principled combinations of metrics can provide

a more powerful discriminator of competent versus non-
competent motions than a single metric [5, 6].

This report proposes a new approach for combining

metrics based on the supervised machine-learning tech-
nique of support vector machines (SVMs) [7]. These SVMs

provide a principled and automatic way to discover com-

plex relationships between motion-derived metrics and the
surgeon’s level of prior training. The intuition that lapa-

roscopic surgery is sufficiently difficult to render individual

performance metrics nonlinearly interdependent provides
the motivation to examine SVM-based approaches.

Methods

To evaluate the proposed technique, motion data were

acquired using standard laparoscopic instruments in a

training situation. These motion data were compiled into
four scalar metrics, described in the Task Metrics section.

The proposed SVM-based approach to combining these

metrics (described in Combinations of Metrics section) was
compared directly with the strongest previously reported

methods: the summed ratios method [5] and the z-score
normalization method [6]. Each of the three approaches
was evaluated regarding its ability to predict the surgeon’s

prior level of experience based solely on these metrics

computed from the motion data (see the Evaluating Clas-
sification Performance section).

Subjects

This study enrolled 30 individual participants, 4 of whom

were practicing laparoscopic surgeons. The remaining 26
participants were medical school students and residents

with no prior training in laparoscopic surgery. Each par-

ticipant performed up to 10 trials on each of three evalu-
ation tasks, for a total of 696 task performances across the

two populations. Some participants conducted fewer than

30 trials because of time constraints.

Evaluation tasks

The surgical tasks recorded for this study were based on a
set of previously validated laparoscopic training tasks [8–

11]. The participant used a grasper instrument (Ethicon

Endo-Surgery, Inc., 4545 Creek Road, Cincinnati, OH,
USA) in the left hand and a needle driver (Karl Storz

Endoscopy-America, Inc., 600 Corporate Pointe, Culver

City, CA, USA) in the right hand, operating in a standard
training box. Visual feedback was provided by a video

camera at a resolution of 640 9 480 and a refresh rate of

30 Hz.
Using this setup, the participants were asked to perform

10 iterations each of three tasks (peg transfer, pass rope,

and cap needle) in fixed order. The peg-transfer task
required the participant to transfer a small ring made of

rubber from a 1-in. peg to an identical peg several inches

away by picking up the rubber piece with the instrument in
the right hand, transferring it in midair to the instrument in

the left hand, and then placing it on the peg. The participant

then was required to transfer the rubber ring back to the
original peg by reversing the order of the steps.

The pass-rope task required the participant to run a 10-

in. cotton ‘‘rope’’ using a hand-to-hand technique. The
rope was marked at 1-in. intervals indicating allowable

grasp points. To evaluate each hand separately, the rope

was first run toward the dominant hand and then toward the
nondominant hand.

The cap-needle task required the participants to pick up

a needle with their dominant hand and a needle cap with
their other hand. Next, they fully inserted the needle into

the cap without allowing either to touch the training box

floor, and then placed the capped needle in a fixed position.

Motion-tracking system

Both of the laparoscopic instruments were modified to

contain two electromagnetic sensors (Ascension Technol-

ogy Corp., 107 Catamount Drive, Milton, VT, USA)
capable of instantaneously reporting the location of the

instruments. Placement of the sensors within the instru-

ments is shown in Fig. 1. The sensors were sufficiently
small (diameter, 1.3 mm) and lightweight (0.2 g, 11.8 g

with cable) that the functionality of the instruments was not

impaired. Each of the four sensors reported spatial position
and orientation at 10 Hz with a linear accuracy of

approximately 0.5 mm and an orientation accuracy of 0.28.
The position of the instrument’s distal tip was calculated

from the sensor information and recorded. The recorded

motion of the instrument tip then was analyzed to generate
the four metrics of task performance described in the next

section.
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Task metrics

Four task-independent metrics {tc, l,V ce} were gathered at
each trial for each task. The first three metrics were kine-

matically derived from the motion data. The final metric,

control effort, was estimated by analytical calculation of
the forces applied to the instrument. All the metrics were

scalar quantities computed by finite sums.
Each metric was appropriate to the simple training tasks

observed and expected to have utility in measuring lapa-

roscopic performance due to prior reports specific to lap-
aroscopic surgery (time to completion and path length [12],

control effort [6]), or extension from mentor-based skills

assessments (volume [13]).
Time to completion (tc) was the total time, measured in

seconds, required by the participant to complete the

assigned task and return the instrument tips to the starting
positions. Path length (l) was the total linear distance

measured in millimeters traveled by the distal tip of the

instrument. Volume (V) was computed as the volume of the
minimal axis-aligned bounding box that contained all

samples of the distal sensor’s position. Control effort (ce)
was a dynamic metric estimating the sum of forces rather
than changes in position. This was possible because the

tracking system recorded the orientation of the instruments

as well as the position as a function of time.
This information provided accelerations, which, coupled

with the measured inertial properties of the instrument,

could be used to calculate forces. The calculation assumed
the trocar was fixed in space, acting as an ideal, frictionless

fulcrum. The masses of the peg from the peg-transfer task

and the rope from the pass-rope task were assumed to be
negligible. To estimate the control effort, the net force

applied by the surgeon to the instrument was summed over

the entire time to completion (tc) of the task.

Combinations of metrics

In general, it was hypothesized that single metrics alone

provided insufficient means to categorize the skill level

with which a particular task was performed. In this section,
we describe three methods that combine multiple metrics to

label the subject with a single binary class, either ‘‘com-

petent’’ (C ?) or ‘‘noncompetent’’ (C -). The prior level
of training of each participant (i.e., surgeon or resident)

was recorded and determined whether the participant was
‘‘expert’’ or ‘‘novice.’’ Each of these three methods aimed

to label experts automatically as competent (C ?) and

novices as noncompetent (C -) by examining only the
motion metrics. The probability of a test reporting com-

petency (C ?) for an expert (E) was P C þ jEð Þ and known

as the sensitivity (Sn) of the test. Conversely, the specificity
of a test was the probability of reporting a novice as non-

competent: Sp ¼ P C & jNð Þ.
The first two methods described later, summed ratios

and z-score normalization, were derived from the literature

and extended where needed. Both of these methods cal-

culated an aggregate score (s), which then was compared
with a cutoff score (sc) such that competency was indicated

by s[sc. The third method was based on SVMs and did not

require determination of a cutoff score.

Summed ratios

The summed ratios method [5] computes an aggregate score

for an individual by summing normalized metrics. A metric
is normalized by dividing the subject’s metric (m) by the

maximum score [maxE(m)] obtained by an expert for that

metric and associated task. All metrics are equally weighted:

s ¼
X

m2 tc;l;V;cef g

m

maxE mð Þ

The combined scores are classified into ‘‘competent’’ or

‘‘noncompetent’’ using a cutoff score that maximizes the
product of sensitivity and specificity with equal weight:

sc ¼ argmaxs Sp' Snð Þ.

Z-score normalization

The z-score normalization method [6] calculates the

aggregate score (s) as the weighted average of z-scores
obtained from metric values (m) using the mean [l(mE)]
and standard deviation (rE) of the expert data:

s ¼
X

m2 tc;l;V;cef g
am

m& l mEð Þ
rE

! "
;

where am is a scalar weight for metric m. We extend the

treatment of Stylopoulos et al. [6] to find optimal values for
the weights. This is done by considering the scalar weights

as a single four-dimensional weight vector a~ð Þ. A series of

Fig. 1 The Ascension
microBird magnetic sensor (left)
and two photographs of the
sensor’s installation into the
Ethicon instrument
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candidate weight vectors is generated with a per compo-

nent step size of 0.1, and each is normalized, then evalu-

ated as described in the Evaluating Classification
Performance section. The weight vector with the best

average performance is retained.

SVMs

In this section, we introduce a newmethod for classifying an
individual’s motion data based on SVMs. These SVMs offer

a powerful method for automatically generating nonlinear
functions from a set of labeled examples. One common use,

and the one used in this study, is to generate functions that

output a single binary datum, in this study, the competency
with which a task is performed. More formally, for each

individual in the training data, a vector is constructed con-

taining a dimension for each explanatory variable.
In this study, each of the metrics was used as an

explanatory dimension. A label, z 2 E;Nf g, was appended
to store whether the measured motion was recorded from
an expert or a novice to form the training vector

x ¼ tc; l;V ; ce; zð Þ. Once the training process was com-

pleted, a new unlabeled vector of metrics x0ð Þ was given a
label by determining the region where it fell

x0 7! Cþ;C&f g. This label was a prediction of whether the

subject was competent or noncompetent.
The SVM is trained by an iterative process of finding

support vectors that divide the space of explanatory vari-

ables (in this case, the individual metrics) into expert and
novice regions. Such support vectors are simply hyper-

planes that separate training data points of different labels

so that most expert points are on one side of the hyperplane
and most novice points on the other side. Support vectors

are chosen to maximize this separation of categories and to

maximize the distance from the training points to the
hyperplane itself. In this way, a small number of support

vectors can efficiently partition the entire space of

explanatory variables into separate regions, with each
region related to one of the labels (i.e., E or N).

If the data are related in a linear manner, simpler

methods, such as the z-score normalization described ear-
lier, are sufficient. However, SVMs are able to handle

nonlinear relationships between explanatory variables by

using kernel functions [K(x,y)]. The kernel defines the
distance function (i.e., the inner product) between two

vectors of explanatory variables. A nonlinear kernel allows

the linear separating hyperplanes to distinguish nonlinear
relationships between the explanatory variables. The kernel

can be understood intuitively as deforming the space con-

taining the training points. When successful, this defor-
mation permits the linear separating hyperplanes to account

effectively for nonlinear relationships between the

explanatory variables.

The implementation reported in this study uses libSVM

[14], a freely available and open-source implementation of
SVMs. Before training and classification, the input vector

(x,z) is scaled linearly so that all elements are in [0,1], and

the radial-basis function K x; yð Þ ¼ ec x&ykk 2 is used as the
kernel. The SVM training process uses a weighting factor

C to scale the importance of errors in classifying the

training data. The process of determining values for C and
c is described in the next section.

Evaluating classification performance

To compare the three methods of combining metrics
described in the Combinations of Metrics section, we

consider two approaches. The first is based on receiver

operating characteristic (ROC) curve analysis and the
second on validation against previously unseen data.

ROC analysis

The first approach relies on the ROC curve. The ROC

curve is plotted as 1 minus the specificity versus the sen-
sitivity. It provides an intuitive way to compare methods

that accept the trade-off inherent in any binary classifier

between being too sensitive and being too selective. The
methods are compared quantitatively by the total area

under their receiver operator characteristic curves (AUCs)

using trapezoidal integration. Intuitively, the AUC esti-
mates the probability that an expert chosen at random will

score better than a randomly selected novice. Higher AUCs

are more useful distinguishers, with an AUC of 1.0 being
ideal and 0.5 no better than pure chance. The AUC is a

common means of comparing diagnostic tests. Hanley and

McNeil [15] show that the AUC is equivalent to the non-
parametric Wilcoxon–Mann–Whitney statistic.

The second approach to comparing the three methods is

to measure the accuracy of classification with a previously
unseen data set. This validation process simulates the

conditions of an online evaluation system deployed, for

example, as a training assist to provide online, objective
feedback. This approach is described in the next section.

Validation comparison

The motion data from each task are analyzed separately.

The combined score for each trial is computed using one of
the three methods of combination described previously.

The following procedure is repeated 100 times for each

method–task pair:

1. Segment data. The aggregate scores for each trial are

randomly divided into two sets. Three-fourths of the
scores are placed in a training set and the remaining
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one-fourth in a validation set. Trials are drawn with

uniform probability but adjusted as needed to preserve

the approximate ratio of expert-to-novice trials in the
generated sets.

2. Determine method parameters using only the training
set.

a. For the summed ratios, 500 candidate cutoff scores

are tested across the full range of composite

scores. The cutoff with the largest product of
sensitivity and specificity is saved as the

delineator.

b. For the z-score normalization method, both a
weight vector and its corresponding cutoff score

must be determined. To find the best weight

vector, each unique unit vector with elements in
[0,1] and spaced by 0.1 is examined. For each of

these candidate weight vectors, 500 candidate

cutoff scores are tested over the range [- 2,2]
(encompassing approximately 95% of the

observed variance in composite scores). The

combination of weight vector and cutoff score
that produces the largest product of sensitivity and

specificity is saved as the delineator.

c. For the SVM method, C and c are found using an
exponential grid search across C ¼ 217; 215; . . .;
2&3 and c ¼ 2&17; 2&15; . . .; 23. Each (C,c) pair is

evaluated by performing fivefold cross-validation
using only the training set data. The support

vectors producing the highest accuracy rate are

used for the classifier.

3. Evaluate against the validation set. The validation set

then is classified using the parameters determined in
training (i.e., cutoff score, weight vector and cutoff

score, or support vectors). The resulting accuracy,

specificity, and sensitivity of classification are com-
puted over the validation set.

The significance of the validation set accuracy is cal-

culated using Welch’s t-test [16], and a threshold of 0.05 is
considered significant.

Results

Individual metrics

Table 1 summarizes the values calculated for each indi-

vidual metric for each task: peg transfer (n = 285: 31
expert and 254 novice), pass rope (n = 212: 29 expert and

183 novice), cap needle (n = 199: 30 expert and 169

novice). All four individual metrics were computed for
each subject’s attempt at each task. Table 1 provides the

mean and standard deviation of the collected metrics for

the different populations (i.e., novices, experts, and all

participants).
Figure 2 presents histograms for the data summarized in

Table 1. Each combination of task and metric is shown as

two superimposed histograms. The two histograms are
derived from disjoint distributions: one for the expert

performances and one for the novice performances. The

vertical axis measures the number of performances in each
bin, with metrics in the range indicated on the horizontal

axis. The vertical dotted line in each graph indicates the

score that optimally separates the novice and expert pop-
ulations. This separating score is determined by maximiz-

ing the product of specification and sensitivity for the entire

sample.
The histograms illustrate that for each metric–task pair

studied, the optimal separating line fails to divide cleanly

novice from expert. Although the distributions are quali-
tatively different, the significant overlap reduces the use-

fulness of the metric for distinguishing novice from expert.

It should be noted also that the separating power of a
single metric varies with the task. For example, control

effort has little ability to distinguish between the two

sample groups for the cap-needle and pass-rope tasks, but it
is quite effective for the peg-transfer task.

Combinations of metrics

The methods for combining metrics are first compared by

AUC. Total AUC measurements for each task and each
method are provided in Table 2. Values closer to 1 indicate

Table 1 Mean ± standard deviation values for each of the individual
metrics applied to each task and for each population subgroup

All Expert Novice

Path length (mm)

Peg transfer 1316.5 ± 719.1 701.8 ± 138.3 1391.5 ± 725.5

Pass rope 2141.1 ± 904.1 1464.8 ± 350.3 2248.3 ± 918.9

Cap needle 1456 3 ± 920.9 907.2 ± 253.1 1553.8 ± 961.8

Time (s)

Peg transfer 45.44 ± 24.54 24.41 ± 5.22 48.01 ± 24.74

Pass rope 92.18 ± 31.62 61.77 ± 9.59 97.00 ± 31.22

Cap needle 50.99 ± 34.93 26.07 ± 8.98 55.41 ± 35.96

Volume (cm3)

Peg transfer 2.559 ± 2.442 1.279 ± 0.392 2.715 ± 2.539

Pass rope 1.634 ± 2.176 0.923 ± 0.842 1.753 ± 2.300

Cap needle 5.025 ± 3.025 4.133 ± 1.350 5.184 ± 3.210

Control effort (m2/s2)

Peg transfer 10.51 ± 16.71 3.58 ± 2.08 11.36 ± 17.50

Pass rope 15.07 ± 12.47 9.62 ± 6.77 15.93 ± 12.95

Cap needle 12.08 ± 12.99 6.63 ± 4.17 13.04 ± 13.78
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(B) Pass rope task.
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(C) Cap needle task.

Fig. 2 Four histograms
comparing the frequency
distributions of observed
metrics for the peg-transfer task
(A), the pass-rope task (B), and
the cap-needle task (C). The
darker regions show the experts’
score distributions, and the
lighter regions show those of the
novices. The dotted vertical line
indicates the optimal separating
score
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better ability to distinguish novice from expert. The three
methods of metric combination are ordered consistently by

AUC over all three tasks. The SVM method outperforms

the weighted z-normalized method, which in turn outper-
forms the summed-ratios method.

The SVM method is consistently the best classifier, as

measured by AUC. The cap-needle task shows the largest
difference, with an area of 0.9704 for the SVM method

compared with 0.884 for the weighted z-normalized

method or 0.7834 for the summed-ratios method. The z-
normalized method has the largest mean AUC using a

mean best-performing weight vector of 0.965, 0.0, 0.033,

or 0.002. The best weight vectors for the peg-transfer and
pass-rope tasks are, respectively, 0.034, 0.865, 0.005, 0.096

and 0.883, 0.086, 0.0, 0.031.

The second approach to comparing the methods for
combination of metrics is by their accuracy in classifying

previously unseen data, which shows the SVM-based

method to be more accurate and to yield a smaller variance.
Table 3 shows the mean accuracy and standard deviation

for each method over the data for each training task. The

accuracies of the SVM predictions are significantly better

than the next best method (weighted z-normalized) for all

three training tasks: peg transfer (p\ 0.001), pass rope
(p = 0.001), and cap needle (p = 0.002).

Figure 3 provides a graphic comparison of the three

methods for combining metrics by showing the ROC
curves for each task. For all three tasks, the SVM method

dominates both alternatives. That is, for each given sensi-

tivity, the SVM method provides equal or higher specific-
ity, resulting in a curve above and to the left of the other

curves. Figure 3 also suggests that as task complexity
increases, from the simplest task (peg transfer) to the most

complex (cap needle), motion analysis metrics become less

useful in distinguishing different competencies. However,
the SVM method shows markedly less performance deg-

radation than either the weighted z-normalized or summed-

ratios methods.

Discussion

Our results show that the accuracy of competency predic-

tion can be dramatically improved (by 7, 12, and 14% for
the tasks examined, Table 3) simply by improving the

analysis of the motion data. Because this finding builds on

a standard motion tracking approach, it is likely robust to
differences in specific technology and platform and thus

widely applicable. To our knowledge, this study provides

the first direct comparison of aggregation techniques
applied to the analysis of laparoscopic motions.

It is important to note that our method does not rely

merely on linear relationships between metrics, so even if a
given metric is poorly correlated with competent perfor-

mance overall, it may add to the analysis as a whole. The

recent study by Chmarra et al. [17] shows that minimiza-
tion of the path length likely is not characteristic of expert

surgeons. Reporting merely the raw metric data or a linear

combination of such to a student is unlikely to provide the
ideal feedback. It is even possible that presenting overly

simplified metrics, such as path length or time to comple-

tion, directly to the student will encourage the student to
maximize those metrics at the expense of overall

competency.

The characteristics of SVMs as an analysis tool are well
matched to the problem of judging surgical competence

based on motion data. First, because the SVM learns from

example motions, the effectiveness of an SVM-based per-
formance evaluator stems from actual differences in the

motions of experts and novices. This can be contrasted with

attempts to determine artificially the quality or importance
of individual metrics. Second, SVM classifiers are able to

integrate several orders of magnitude more example

motions than used in this study while still providing rapid
responses to new queries [7]. Third, as new metrics are

Table 2 Comparison of area under receiver operating characteristic
(ROC) curves (AUC) for each method of combining individual
metrics

Method Peg transfer Pass rope Cap needle

SVM 0.9682 0.9520 0.9704

Weighted z-normalization 0.9582 0.8994 0.8840

Summed ratios 0.9444 0.8356 0.7834

SVM support vector machine

Table 3 Mean accuracy [l(Acc)] and standard deviation of the
accuracy [r(Acc)] for each task and method pair are calculated for
more than 100 repetitions of classification on a randomly selected
validation set using the mean cutoff score [l(sc)] as the mean score to
divide predicted expert from novice

Method l(Acc) (%) r(Acc) (%) l(sc) (%)

Peg transfer

SVM 93.7 2.6 NA

Weighted z-normalization 86.6 7.0 1.405

Summed ratios 83.2 5.1 3.783

Pass rope

SVM 91.3 4.3 NA

Weighted z-normalization 79.3 9.6 1.071

Summed ratios 72.2 7.3 3.454

Cap needle

SVM 90.0 3.4 NA

Weighted z-normalization 75.7 13.5 0.803

Summed ratios 70.8 6.9 3.658

SVM support vector machine, NA not available
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devised, they can be added trivially to the evaluator to

improve accuracy. To our knowledge, this study is the first

to suggest the use of SVMs in this domain, although they

are becoming a common approach to a variety of difficult

diagnostic problems.
Our analysis considers aggregate kinematic information

and is capable of evaluating only low-level motor skills.

Higher-level surgical skills are not examined, and
approaches based on aggregate metrics are unlikely to

provide any significant insight because their aggregate

nature obfuscates the strategies and intentions of the sur-
geon. However, our findings also show that the simplest

laparoscopic training task (peg transfer) benefits least from
the proposed use of SVMs. Perhaps this is because some of

the novice participants who previously attained a sufficient

level of competency at this task were indistinguishable
from the experts. In effect, a few novices were already

experts at the peg-transfer task.

Such acquisition of rudimentary skills through nonsur-
gical activities, such as video games, has been documented

previously [18]. If this is the case, then the described

approach is likely to be most useful for evaluating tasks of
intermediate complexity: complex enough to require sig-

nificant motor skills yet simple enough not to require high-

level or strategic surgical abilities. Figure 3 suggests that
motion analysis methods in general have difficulty as task

complexity increases. However, the SVM method proves

more robust to increased complexity, suggesting that it may
be useful for even more complex motor skills, such as knot

tying.

A trade-off to the power of the SVM to model nonlinear
relationships between metrics is that the resulting support

vectors can be difficult to understand intuitively. Thus, it

may be difficult to explain to a student precisely why his or
her performance was classified as it was.

In conclusion, the maturation of laparoscopic training

systems is providing a wealth of data tracking of trainees’
movements. New techniques are needed to take full

advantage of the ability these systems have to evaluate

surgical performance. This study demonstrates that
improved analysis of motion data can increase the accuracy

and discriminatory power of existing and future computer-

enhanced training systems.

Open Access This article is distributed under the terms of the
Creative Commons Attribution Noncommercial License which per-
mits any noncommercial use, distribution, and reproduction in any
medium, provided the original author(s) and source are credited.
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