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Stylistic Motion Decomposition
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Abstract

We propose a novel method for interactive editing of motion data based on motion decomposition. Our method
employs Independent Component Analysis to decompose motion data into meaningful components that capture
different aspects of that motion. The user interactively identifies suitable components and manipulates them based
on a proposed set of operations. In particular, the user can transfer components from one motion to another in
order to create new and novel motions that retain desirable aspects of the style and expressiveness of the original
motion. For example, a clumsy walking motion can be decomposed so as to separate the clumsy nature of the
motion from the underlying walking pattern. The clumsy component can then be applied to a running motion,
which will then yield a clumsy-looking running motion. Our approach is simple, efficient and intuitive since the
components are themselves motion data. We demonstrate that the proposed method can serve as an effective tool
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for interactive motion analysis and editing.

Categories and Subject Descriptors (according to ACM CCS): 1.3.7 [Computer Graphics]: Three-Dimensional

Graphics and Realism

1. Introduction

Motion capture data is commonly used to animate interac-
tive characters. It produces realistic and high quality syn-
thetic motion. However, producing variations of the data to
satisfy new situations and constraints is not intuitive, and of-
ten results in unnatural motion.

A great amount of research work aims to provide the an-
imators with tools to manipulate motion data. The proposed
techniques range from simple key-framing and signal pro-
cessing to different forms of space time optimization and sta-
tistical modeling. Such techniques are often computationally
expensive or not intuitive for animators that are not techni-
cally oriented. In any case, most of these techniques either
adjust motion based on a set of constraints or they abstract
recorded motion through statistical modeling. There are few
techniques that allow the animator to edit directly the style
of a motion in intuitive ways. This is the focus of our work.

Inspired by [CFP03], we introduce a novel method for de-
composing motion into various components which can rep-
resent the style and expressiveness of a motion without the
need to key-frame animation or to analyze frequency bands.
The resulting components can, in turn, be applied to other
motions through a variety of editing operation, generating
new motions that retain the basic content of the original
motion while adding the style of the component motion.
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Thus, motion capture data representing a person walking in
a sneaky manner can be decomposed so as to extract the
sneakiness of the motion. This sneakiness component can
then be applied to a normal walk in order to create a sneaky-
looking walk. Conversely, our method allows the reciprocal
application of style to the above example. The characteristics
of a walking motion can be extracted as separate component
and in turn added to a sneaky motion, yielding a walk-like
sneaking motion. In addition, the amount of the style com-
ponent can be interpolated so as to create a continuum of
different motions between the original motion and the new
stylized motion. Thus, the original walk from the example
above could be combined with a sneaky component in or-
der to create a motion that is halfway between sneaking and
walking. Thus, we can create transitions between the origi-
nal motion and the new, stylized motion.

Motion decomposition is performed automatically
through Independent Component Analysis (ICA). A user
then interactively selects one or more of the resulting
components that best represent the style of the desired
motion. These components can be combined together with
a variety of visual editing functions to better represent the
expressiveness and nuances of the motion. The chosen
style components are then applied to the original motion
yielding a new, stylized motion. Unlike previous methods
for stylizing motions, our method is completely visual and
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Figure 1: Walking and the same walking motion with a
sneaky style (top). Sneaking and the same sneaking motion
with a walking style, which results in a tiptoeing motion (bot-
tom).

requires no knowledge of key framing, frequency bands
or statistical analysis. Furthermore, since the components
themselves are motion data, they can be subject to all the
available techniques for manipulating motion data, for
example retargeting. Our approach is the basis of a simple
and intuitive interactive tool for analyzing and editing
motion data.

The remainder of the paper is organized as follows. Sec-
tion 2 provides an overview of related work and background
information. Section 3 describes our motion decomposition
method. Section 4 explains how we interactively edit mo-
tions. Section 5 presents our results and the limitations of
our approach. Lastly, Section 6 concludes the paper and dis-
cusses future work.

2. Related Work

Motion capture systems and recorded data are becoming
readily available. Applying recorded motion to virtual char-
acters produces high quality motion efficiently and easily.
However, for interactive characters, it not practical or even
possible to capture the entire range of motions that the char-

acters might need to perform. Most applications usually have
a finite database of motion segments, based on which they
have to synthesize longer motions. Such approaches have
two main challenges. Given some form of control parame-
ters, for example a motion path, they must synthesize appro-
priate motions by assembling suitable motion segments from
the database. Often, the available motion segments cannot be
used as they are and have to be edited in some way. For ex-
ample, we may want to produce a walking motion with style
that does not exist in the database.

A number of successful techniques have been proposed
that assemble motion segments from a database into longer
motions with different levels of control. The focus of these
algorithms [AFO03, LWS02, LCR*02, KGP02] is efficient
searching of the motion database for motion segments that
satisfy the control parameters, for example a user-defined
path or annotations, and a range of physical constraints.
Note, that [LWS02] use Linear Dynamic System (LDS) to
abstract the motion database and provide a search algorithm
that works in the LDS space.

Motion editing, which is the focus of our work, is a chal-
lenging problem that has received a lot of attention. Earlier
work exploits mostly ideas from signal processing. [BW95]
apply signal processing operations to provide stylistic varia-
tions of the original motion. [UAT95] use Fourier decompo-
sition to change the style of human gaits. [ABC96] extracts
emotion by analyzing neutral and non-neutral motions. Us-
ing a small number of key-frames [WP95] warps motion to
satisfy new constraints. [Gle01] also proposes an interesting
warping technique. The goals of our method are very sim-
ilar to those outlined in [UAT95] and [ABC96]. However,
our decomposition based on motion components is more in-
tuitive than a frequency-based one. In addition, we are not
limited to extracting emotion from two similar motions as
in [ABC96]. We extract style components from dissimilar
motions as well.

[RCB98] borrow the verb-adverb paradigm from speech
to annotate motions into basic, verbs, and modifications, ad-
verbs. Interpolation between motions yields a convex set of
variations. However, it is not clear if the method can scale
to large databases. Although [Gle98, SLGYO01] mainly solve
the problem of motion retargeting, applying motions to char-
acters with different body proportions effectively changes
some aspects of the original motion.

More recently, [BHOO, THOO] use Hidden Markov Mod-
els to capture the style of recorded motions. However, be-
cause the motion primitives are related to the hidden states
of the models they cannot be edited explicitly. [PB02] create
statistically similar variations of an original motion using a
multi-level sampling technique. The animator can key-frame
a subset of the DOF of a character and automatically provide
key frames for the remaining DOFs.

Dynamic approaches to motion editing and synthesis
[WKS8S8, PW99, FP03, KB96, LP02, HIS03] aim mainly to
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ensure that the resulting motion is realistic and satisfies
given physical constraints. Editing the style of the mo-
tion can be tedious or time consuming. The same ap-
plies for approaches based on dynamic control as such
[HWBO95, LvdPF96, FvTO01] and hybrid methods [ZH02].

Within the domain of statistical modeling, of particular re-
lation to our work are the techniques that provide editing pa-
rameters through motion decomposition. [CDB02] propose
a factorization method that separates visual speech into style
and content components. Our work is inspired from [CFP03]
who use Independent Component Analysis to capture the
emotional content of visual speech for editing purposes. Cao
et al. extracts facial emotion components by automatically
examining the regions of the face that they affect. In con-
trast, we allow the user to interactively choose aspects of the
motion that represent style or emotion from any part of the
body. The idea of using Independent Component Analysis
for editing and synthesizing human walking has been pro-
posed in [MHO2]. However, the length of the paper and its
exposition does not allow us to evaluate its results.

Unlike physics-based and hybrid approaches our work is
focused on style editing, rather than satisfying given phys-
ical constraints. Our main objective is to extract the style
of recorded motion and apply it to different motions. Our
work falls within the realm of statistical modeling and in
particular motion decomposition. Statistical models such as
LDS, Hidden Markov models and Bayesian networks are ei-
ther difficult to edit or not intuitive to work with. In contrast,
our proposed technique decomposes the motion into compo-
nents that, unlike frequency bands and complex mathemati-
cal models, are themselves motion data. They are therefore
a familiar model for animators and they can be subject to all
available motion capture manipulation techniques. Our inter-
active editing tool allows the user to interactively examine,
edit and apply these components to other motions.

2.1. Independent Component Analysis

Independent Component Analysis is an unsupervised learn-
ing technique [HKOO1] that separates a set of observed ran-
dom variables into a linear mixture of hidden random vari-
ables that are statistically independent. We call these new
random variables independent components. [CFP03] pro-
vides an excellent description of ICA and a comparison
with the more well-known decomposition method, Principal
Component Analysis. In this work, we follow their notation.

The mathematics of ICA are straightforward. Given a set

of n random variables x1,...,x, each of them can be written
as a linear mixture of n latent or hidden variables u;,...,u,,
such that

n
xj =Y ajiti,
i=1
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or in matrix notation
x =Au. (€))]

A number of ICA algorithms exist to estimate the mixing
matrix A. Estimating A is sufficient, because if the matrix
is known, inverting Equation 1 yields the independent com-
ponents u = Wx. We use the publicly available Matlab[Mat]
implementation of the FastiICA [HGSH98] algorithm.

Applying ICA involves a two stage pre-processing. First,
the data is centered around its statistical mean E[x]. Then the
centered data is decomposed into a set of uncorrelated vari-
ables, typically using Principal Components Analysis. The
complete model is as follows:

x=E{x} + PAu, @)

where E{x} is the expectation of x and P is the n x m PCA
matrix.

The number of principal components determines the num-
ber of independent components. We can decide to keep
m < n independent components, effectively reducing the di-
mension of our data.

3. Motion Decomposition

We can specify motion capture data in terms of points or us-
ing joint angles. Point representation specifies the location
of the markers in Euclidean space for each captured frame.
Hierarchical angle representation models the character as a
set of hierarchical joints. Data is typically represented by a
set of Euler angles and offsets from the parent joints. The re-
sults of the ICA decomposition vary according to the format
of the motion capture data.

3.1. ICA Performance With Different Representations

The ICA algorithm works on a matrix whose rows represent
the individual frames of a motion, and whose columns rep-
resent the different channels or degrees of freedom of the
motion. Thus, the ICA decomposition can be performed on
either the 1) three-dimensional point representation of the
motion, the 2) Euler angles representing the rotation of the
joints , or the 3) quaternions that represent the rotation of the
joints. Similarly, a transformation matrix could be derived
from the Euler angles and, in turn, submitted to the ICA de-
composer.

However, since the ICA algorithm results in a linear de-
composition of the input data, it will produce visually un-
intuitive results when the input consists of a series of Euler
angles. This is likely related to the problem of gimbal lock,
where a linear combination of Euler angles does not always
result in a smooth interpolation of the desired angle. Thus,
the synthesized component motion shows sporadic twists
and turns that greatly disrupt the appearance of the motion.
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This makes Euler angles a poor choice for the ICA decom-
position. Quaternions can be used by submitting the four val-
ues of a quaternion to the ICA decomposer. The motions de-
composed from quaternions do not suffer from the extreme
rotations that we see with the Euler angles. However, the
quaternion representation results in subtle rotations that dif-
fer slightly from the original motion, since the process of lin-
ear combination does not properly separate the quaternion in
a meaningful way, either. The results of quaternion decom-
position are more visually intuitive than those of Euler angle
decomposition. [Gra98] provides an excellent discussion on
different rotation parameterizations.

The three-dimensional point representation, since it does
not involve rotations, does not suffer from the same problem
as the rotational representations indicated above. Since the
input to the ICA decomposer consists of points in Euclidean
space, the ICA decomposition and motion synthesis gives
visually meaningful results. Euclidean space can be linearly
interpolated without strange side effects. The synthesized
motion does, however, result in slight changes in the length
of our animated character’s limbs, since the point representa-
tion does not preserve the distance between joints. This prob-
lem is caused by the ICA decomposition which also does not
preserve bone lengths. In addition, editing the independent
components can result in exaggerated motions that violate
bone length constraints. By replacing one component u; of
motion m; with component #; of motion m,, we potentially
alter the implicit fixed distances between joints.

We used the point representation for most of our exper-
iments. Since we are concerned only with kinematic an-
imation and the visual quality of the final animation, we
are not concerned with slight changes in the lengths of the
bones of our character. Although, the change of limb length
impacts foot plants and also create occasional foot skating
or violation of floor constraints, bone lengths can be eas-
ily made globally consistent among frames. In addition, An
inverse kinematics solver can be used to satisfy foot plant
constraints. Note that altering bone lengths has been used
on kinematic motion for the purpose of correcting foot skat-
ing [KSGO3].

4. Interactive Editing

Our editing system allows the user to sequence two motions
together and identify the independent components that best
represent the style differences between them. Once the style
components are found the motions are split again and the
individual style components can be subject to a number of
editing operations. Figure 2 summarizes our interactive mo-
tion editing approach. The remainder of this section explains
the steps depicted in the figure and enumerated here:

1. Motion Combination. Two motions are combined to-
gether.

2. Component Generation. The combined motion is decom-
posed into components.

et o 1

Fdist o 2

DA o et

Figure 2: Overview of the ICA-based interactive editing sys-
tem.

3. Style Selection. The user selects components of interest
to them.

4. Component Merging. The user combines components to-
gether to better represent the desired characteristics of
motion.

5. Component Editing. Components may be edited with
standard motion editing tools.

6. Transferring Style. The selected components are trans-
ferred in order to create a newly synthesized motion.

7. Post Processing. The newly synthesized motion under-
goes a motion clean-up phase.

Note that interface to the system is entirely visual. The
user chooses and transfers components by observing a visual
representation of those components, and not a frequency-
based one.

4.1. Motion Combination

Given two motions, x, and x;, motion x,, is produced by
joining the frames of x, and x;. Thus, x,;, will have f =
f1+ f> frames, where f; is the number of frames for motion
x;. It is essential to combine the motions together in order for
the ICA algorithm to find synchronized differences between
the two motions.

(© The Eurographics Association and Blackwell Publishing 2010.
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4.2. Component Generation

Once x,, is formed, the user selects the number of com-
ponents k in which to decompose x,;, as well as a repre-
sentation for the decomposition. The representation can be
points, quaternions or Euler angles, see Section 3. Apply-
ing the ICA algorithm results into k£ independent components
uéb..u’;h for the combined motion x,p,. It is usually sufficient
to keep enough components to cover 95% of the variance in
the data. However, experimenting with arbitrary numbers of
components often produce interesting results. We typically
experiment with 3-5 components.

Note that the global translation should be removed from
the motion before we apply ICA. This is explained in more
detail under the Post Processing section, below.

Each component u(llb is used to reconstruct part of the orig-
inal motion as follows:

X = E{xg} +PA(ul e)),i=1,...k 3)

and the result is displayed in a separate window, shown in
the middle of Figure2.

Combining these motion reconstructs an approximation,
m;b of the original motion, m,;,, which is shown at the bot-
tom right of the screen captured window in Figure 2.

4.3. Style Selection

The user visually analyzes the reconstructed motions, mflb,
and identifies potentially interesting stylistic components.
Good candidates for selection are components that capture
the posture, cadence and nuances of the original motion,
while maintaining its defining aspects. In Figure 2, the user
identifies the middle component on the top row as a potential
style component.

For example, during one of our experiments we apply this
approach to a joint running+walking motion and we are able
to extract a single component that captures the forward lean
and raising of the elbows during the running motion. The
same component captures the upright stance and dropped
arms during the walking motion.

The user can experiment with different decompositions
of the same motions by either choosing a different number
of components or by rerunning the decomposition algorithm
with a different initial guess.

We can now define a set of operations that we can apply
to the independent components that helps us alter the style
of a motion.

4.4. Component Merging

Our ICA decomposition produces a set of independent com-
ponents which can be linearly combined to form the origi-
nal data. It is therefore straightforward to linearly mix com-
ponents together and produce combined components. Merg-
ing components allows the animator to create a smaller set
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of components that may be more representative or easier to
work with. More importantly merged components may pro-
vide a more suitable basis for aligning motions, which is of-
ten a necessary step for more complex operations.

Mathematically, merging two components «! and u? re-
sults in a combined motion u'? as follows:

X2 = E{x} +PA(u'e +u%e?), 4)

where ¢ is a vector in the canonical basis of A that corre-
sponds to the ith-component.

4.5. Component Editing

One of the most important features of our method is that
the proposed decomposition produces components that are
themselves motion data. We can therefore edit any of these
components using published methods that work with mo-
tion data. For example, we can simply scale a component
or apply more complex techniques such as motion warp-
ing [WP95] and motion retargeting [Gle98].

4.6. Transferring style

Perhaps the most interesting operation we can perform us-
ing our decomposition approach is to transfer style between
motions.

Once a style component u;, has been selected, it is split
into two segments that represent the style components of the
original two motions, nz;, and mj,. We can then align (time-
warp) either x, to x; or vice versa depending on which mo-
tion’s timing we wish to preserve. We align the motions by
applying dynamic time warping [SK83] on one of the de-
grees of freedom (DOFs) of the character. The user interac-
tively selects the appropriate DOF based on her knowledge
of the motion and the desired effect. For example, if the re-
sulting motion needs to preserve foot contacts, a good choice
is the hip swing degree of freedom. The user can experiment
with different degrees of freedom and select the one that pro-
duces the desired result.

Once the motions are aligned, the user can generate new
motions by replacing uj, with uj. Following the notation
of [CFPO03] transferring a style component from one motion
to another can be mathematically expressed as follows:

x=E{x}+PA(ug + ((u} — u})" e"), (5)

where ¢° is a unit vector in the canonical basis of A that cor-
responds to the selected style component.

4.7. Post Processing

The global translation DOF are removed before the ICA de-
composition since the decomposition has no intrinsic knowl-
edge of the correlation between foot plants and changes in
position. Our tests show that ICA decomposition with the
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global translation DOF results in a distracting amount of foot
skating. Once the final motion has been generated, the global
translation from x,, which was removed before applying the
decomposition, is re-added to the motion. This process of
recombining the original global translation along with time
warping preserves the foot plants in the newly synthesized
motion. The global translation for the base motion, and not
the style motion, is added to the synthesized motion.

If the data represents marker positions instead of joint
angles, the limb lengths of the character may lengthen or
shorten between frames. To correct this, the system auto-
matically employs a filter to restore the correct limb lengths
according to the original data by preserving joint angles. In
addition, low-pass filtering is automatically done to elimi-
nate high-frequency motions. High-frequency motion is typ-
ically caused by the time-warping technique as a result of
matching a high-speed motion, such as running, with a low-
speed one, such as a very slow walk. Component transfers in
the opposite direction, from a low-speed motion to a high-
speed motion, result in stiff movements, such as limbs that
remain in the same place for an unnaturally long amount of
time.

5. Results

Our system is able to decompose motion capture data regard-
less of the hierarchical structure of the character. We use two
different skeleton hierarchies for our examples; a thirty-one
joint, sixty-two DOF skeleton and a twenty-six joint, eighty-
four DOF skeleton. All motions are displayed in real-time
and decomposed with the ICA algorithm in less than 5 sec-
onds. For most of our experiments we use five independent
components. Once a style component is selected, the motion
reconstruction takes less than two seconds.

5.1. Walking and Sneaking

In this example we transfer style between a walking motion
and a sneaking motion. Joining motions and decomposing
them into five independent components allowed use to suc-
cessfully identify an interesting style component. This com-
ponent models the difference between the hunched posture
of the sneaking motion and the upright stance of the walking
motion. Applying this component to both original motions
produces two new stylized variations. Figure 1(left) shows
a sneaky walk, while Figure 1(right) a walk-like sneak. The
latter motion appears to be the motion of a character tiptoe-
ing in order to keep quiet, without the characteristic hunched
posture of a sneaky motion.

5.2. Running and Sneaking

Here we combine a running motion with the previous sneak-
ing motion. We find a similar component that captures the
hunched posture of the sneak, as in the previous example,
and apply it to the run. The sneaky run is shown in Figure 3.

Figure 3: Running (left) and a sneak-like run (right).

Figure 4: Running (left) and running with a walking style -
jogging (right).

5.3. Running and Walking

For this example we combine a running and a walking mo-
tion. A style component is found that captures the shrugged
shoulders, the raised elbows and the bending of the knees of
the running motion. The same component captured the up-
right stance and relaxed arms of the walking motion. By ap-
plying the walking style to the run, our resulting motion re-
sembles a jogging motion, Figure 4, while our run-like walk
resembles a power walk, Figure 5.

5.4. Motion Interpolation

The original and stylized motion retain very similar charac-
teristics, including global translation and general movement
speed. The alignment between these two motions eliminates
problems such as foot-skating and phase differences when
interpolating two different motions. Thus, the stylized mo-
tion can be linearly interpolated with the original motion in
order to produce a continuum of motions that contain vary-
ing amount of style. Figure 6 shows an interpolation between
the sneak and the walk-like sneak (tiptoeing).

(© The Eurographics Association and Blackwell Publishing 2010.
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Figure 5: Walking (left) and walking with a running style -
power-walking (right).

Figure 6: Interpolating between a sneak and a walk-like
sneak.

5.5. Discussion

The human body is a highly non-linear control system. It
is therefore counter-intuitive that linear methods such as
LDS [LWS02] and ICA prove to be effective tools for mo-
tion modeling and editing. It seems that as the human body
repeats and learns common motions, such as gaits, it op-
timizes and simplifies its control strategies. Thus, the ob-
served dynamics of such motions can often be approximated
with combinations of linear models.

Although, our method produced some surprising results
with its ability to capture the difference in style of a range of
motions, it has several limitations.

Our experiments show that our method is more effective
with cyclic motions than with acyclic motions. This is prob-
ably due to the fact that aligning cyclic motions is more intu-
itive than aligning arbitrary motions. However, our decom-
position method is often able to separate one-time events,
such as gestures, from the cyclic aspects of a motion.

The FastICA [HKOO1] algorithm that we currently use
does not always converge to the globally optimal decom-
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position. However, to our knowledge it is one of the most
efficient algorithms, which is crucial for interactive editing.

We would also like to clarify that, in this work, we assume
that motion data is already segmented into suitable pieces of
singular motion. Automatic data segmentation is out of the
scope of this paper.

Motion editing is a difficult problem. We believe that our
method solves another piece of the puzzle by providing a
style modeling and editing tool which can be used stan-
dalone or in conjunction with other methods.

6. Conclusion

We have presented a novel method for interactive motion
editing. Our method, based on Independent Component
Analysis, provides a meaningful decomposition of the orig-
inal motion into reusable components. An important feature
of our decomposition is that the resulting components are
themselves motion data. Therefore, they are a familiar model
for animators and can be subject to the growing number of
techniques that work with motion data.

Based on the proposed decomposition we have defined
a set of editing operations that can change the style of an
original motion. Of special interest is the ability of our ap-
proach to extract stylistic aspects from one motion and apply
it to another. At the same time, we can edit the components
themselves to reduce or exaggerate their effect on the mo-
tion. Using our interactive editing tool we are able to per-
form efficiently a series of examples that demonstrate the
effectiveness of the method.

We have just beginning to explore the possibilities offered
by the ICA-based motion decomposition. We believe that it
can be equally effective in a range of applications, such as
motion segmentation, automatic motion annotation and mo-
tion recognition. We plan to investigate such avenues in the
future.
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Figure 7: A walking motion (left) is given a sneak-like style (2nd to left). The original sneaking motion (right) is stylized with
an upright, walking style (2nd to right). Frames from top to bottom.
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