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Abstract
We present a new method for editing speech related facial motions. Our method uses an unsupervised learning
technique, Independent Component Analysis (ICA), to extract a set of meaningful parameters without any anno-
tation of the data. With ICA, we are able to solve a blind source separation problem and describe the original
data as a linear combination of two sources. One source captures content (speech) and the other captures style
(emotion). By manipulating the independent components we can edit the motions in intuitive ways.

Categories and Subject Descriptors(according to ACM CCS): I.3.7 [Computer Graphics]: Animation, I.5.1 [Pattern
Recognition]: Statistical

1. Introduction

In this paper we address the problem of editing recorded
facial motion. Editing motion capture data is an important
problem, since without the ability to edit recorded motion
we can only replay the recorded data.

Producing high quality facial animation is one of the most
challenging problems in computer animation. Hundreds of
individual muscles contribute to the generation of complex
facial expressions and speech. The dynamics of these mus-
cles are not well understood and no system to date can sim-
ulate realistic faces in real-time. Using motion capture is an
attractive alternative. Current motion capture technology can
record accurately the motions of a subject’s face. These mo-
tions can then be mapped onto a face model to produce re-
alistic animations. It is however impossible to record all the
motions a face can do. Thus, the motion capture sessions
should be carefully planned to meet the needs of the produc-
tion. A different approach is to record a representative set of
motions and use machine learning techniques to estimate a
generative statistical model. The goal is then to find and fit a
model that is able to resynthesize the recorded data. Finding
an appropriate model that can reproduce the subtleties of the
recorded motion can be a very difficult task. In addition, the
parameters of the model might not be appropriate for manip-
ulating or editing the data. Fitting statistical models gener-
ally involves minimizing an error function regardless of the
semantics of the data or what the model’s parameters really

represent. Interpretation of the data is generally best done by
a human observer that can annotate the data and specify its
semantics. A function can then be learnt that expresses the
correlation between the annotations, the input, and the mo-
tions, the output. We can use this function to manipulate the
data. However, when the size of the data becomes large, hu-
man intervention and annotation is impractical. Our method
addressed this issue.

In this paper we propose an unsupervised learning tech-
nique, based onIndependent Component Analysis(ICA),
that splits the recorded motions into linear mixtures of sta-
tistically independent sources. These sources, called inde-
pendent components, offer a compact representation of the
data with clear semantics. The lack of structure or model
underlying the recorded data makes it really hard to edit. In
contrast, the decomposition we propose provides a meaning-
ful parameterization of the original data that is suitable for
editing. The technique is automatic and does not require an-
notating the data.

The remainder of the paper is organized as follows. Sec-
tion 2 reviews related research. Section 3 introduces ICA and
describes its application to recorded facial motion. Section 4
explains how we determine the semantics of the resulting
decomposition. Section 5 describes editing operations using
the ICA representation of the motion. Section 6 presents our
experimental results. Lastly, Section 7 summarizes our ap-
proach and proposes future directions.
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2. Related work

Two bodies of research are germane to our study: face mo-
tion synthesis and motion analysis. We briefly describe pre-
vious work in these two fields and position our approach.

2.1. Face motion synthesis

The motions of the human face can be simulated using a
physically based model. Physics-based approaches use sim-
ulated muscle models to deform a three-dimensional face
mesh. Despite their computational expense they has been
shown to be quite effective16, 26.

Most speech animation systems exploit the fact that
speech can be reliably segmented into units (e.g. phonemes).
The voice track is manually21 or automatically17, 6 seg-
mented into phonemic representations which are then
mapped to lips shapes. Of particular importance here is the
problem ofco-articulation. Co-articulation means that the
mouth shape used to produce a particular phoneme depends
not only on the current phoneme but also on the phoneme
before and after the current one.Hidden Markov Mod-
els (HMM) have been used extensively to represent tran-
sitions between phonemic representations with proper co-
articulation.

The synthesis of speech animation requires a library of
lips shapes that can be matched with speech units. This li-
brary can be designed in several ways. One option is to cre-
ate manually each shape. For realistic animation it however
preferable to record these shapes using video or motion cap-
ture data.Video Rewrite6 is a representative example of such
techniques. It constructs a large database of audiovisual ba-
sis units, based on triphones. Given a novel input utterance,
the corresponding facial motion is constructed by concate-
nating the appropriate triphones from the database. In or-
der to be useful the method requires a large database of tri-
phones, which leads to a scaling problem. To eliminate the
need for large example databases, a statistical face motion
can be estimated from the data.Voice Puppetry4 develops a
mapping from voice to face by learning a model of a face’s
observed dynamics. The model takes into account the po-
sition and the velocity of facial features and learns a prob-
ability distribution over the different facial configurations.
Ezzat et al12 develop aMultidimensional Morphable Model
for the voice to face mapping focusing on lip-syncing. Head
and upper face motion is dealt with in an ad hoc fashion.

While the previous techniques can generate high quality
motion they generally do not provide the animator with in-
tuitive control over the emotional state of the talking face.
They focus on the mapping of the audio and visual speech
signal and effects such as co-articulation. In contrast our
work develops an unsupervised learning approach that learns
two separate mappings, one between the phonemic content
of the audio signal and the motion of the face and another

between the audio signal and the emotional content of the
speech.

2.2. Motion analysis

Motion capture allows the recording a high fidelity motions
from live actors. This technique spurred a wealth of research
efforts in motion analysis.

Chuang et al7 present an interesting attempt to separate
visual speech into content and style (emotion). Their method
based on factorization13, 24 produces a bilinear model that
extracts emotion and content from input video sequences.
However, their approach normalizes the signals losing im-
portant temporal information and it is tailored to video data.
It is not clear whether it would transfer to 3D.

The pattern recognition community has performed a sig-
nificant amount of work on facial expression analysis. Ex-
pressions are typically based on tracking the motion of
particular facial elements such as the eyes, the rigid body
motion of the face, or transient features such as wrinkles
10, 9, 11, 8, 3, 18, 2. These systems are quite effective for recog-
nition, however, it is not clear how they can be used to syn-
thesize or edit facial motion.

Learning the style and the content from recorded vari-
ations of a motion has been also investigated in the area
of full body animation. Pullen et al22 propose a technique
that decomposes motion into different frequency bands. The
low frequency components represent the basic motion while
the higher frequency ones capture the style of the motion.
Combining the basic signals with different higher frequency
bands results into stylistic variations of the basic motions.
Brand et al5 train Hidden Markov Modelsto capture the
style variations of example dance data. The resulting style
models can be applied to novel dance sequences. Unuma et
al 25 decompose example motion into high and low frequen-
cies using Fourier analysis. Manipulating the resulting coef-
ficients provides an intuitive way to alter the original motion.

Our work employsIndependent Component Analysisto
extract style and content models from a large set of recorded
facial motions. The resulting independent components are
the basis for an intuitive visual speech editing tool. Mori et
al 19 proposes a motion editing and synthesis technique for
human walking based onIndependent Component Analysis.
However, the paper is too short to allow us to evaluate the
results.

3. Facial motion decomposition

In this section we present an overview ofIndependent Com-
ponent Analysis. We then discuss our decomposition tech-
nique and the way we determine the semantics of the result-
ing independent components.
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3.1. Independent Component Analysis

Independent Component Analysisis an unsupervised learn-
ing technique14. It assumes that a set of observed ran-
dom variables can be expressed as linear combinations of
independent latent variables. In a way it deconvolves the
recorded signals into a set of statistically independent ran-
dom variables. It is often associated with the "Blind Source
Separation" problem. One instance of this problem can be
found in audio processing: imagine that the sound in a room
comes from two sources, the voice of a speaker and the hum-
ming of an air conditioning system. Solving the blind source
separation problem in this context would involve recording
the sound in the room (from 2 different locations) and pro-
cessing it statistically so that the two original sources can
be separated. This audio separation problem is a very diffi-
cult one. ICA can successfully separate the two sources by
exploiting their statistical independence.

Let us examine the mathematics of ICA. Assume that we
observen random variablesx1, . . . ,xn each of them being a
linear mixture ofn latent or hidden variablesu1, . . . ,un, such
that

x j =
n

∑
i=1

a ji ui ,

or in matrix notation

x = Au. (1)

Equation 1 represents a generative model: it describes how
the recorded datax is generated by the sourcesu. The
sourcesui , which are called the independent components,
cannot be observed directly. The matrix of coefficientsA,
called mixing matrix, is also unknown. ICA provides a
framework to estimate bothA and u. In practice, estimat-
ing A is sufficient, since if the matrix is known, its inverse,
W, can be applied to obtain the independent components:

u = Wx.

To estimate the matrixA, ICA takes advantage of the
fact that the components are statistically independent. The
key to estimating the ICA model is non-gaussianity. Accord-
ing to the Central Limit Theorem the sum of two indepen-
dent random variables usually has a distribution closer to a
gaussian distribution. The idea then is to iteratively extract
random variables from the recorded data that are as non-
gaussian as possible. How non-gaussianity is measured is
beyond the scope of this paper. Different metrics have been
used, leading to a variety of implementations. For more de-
tails see15, 14. In our experiments we use a publicly available
implementation called FastICA1.

3.2. Preprocessing

Before we can apply ICA our data has to go through a pre-
processing phase that consists of two steps,centeringand
whitening.

Centeringshifts the data towards its mean so that the re-
sulting random variables have zero mean.Whiteningtrans-
forms the centered set of observed variables into a set of un-
correlated variables.Principal Component Analysis(PCA)
can be used to perform this transformation. After preprocess-
ing the model of Equation 1 takes the form

x = E{x}+PAu, (2)

whereE{x} is the expectation ofx andP is ann by m ma-
trix obtained by applying PCA to the centered data.m is the
number of principal components we keep. MatrixP will not
be square(m< n) if we decide to only retain a subset of the
principal components. This reduction in dimension reduces
the number of independent components to the same number
as well.

3.3. PCA vs ICA

PCA and ICA are related statistical techniques. They both
provide a linear decomposition of sampled data. The fun-
damental difference is that PCA assumes the latent variables
are uncorrelated whereas ICA assumes they are independent.
Independent random variables are also uncorrelated but not
vice versa. The goal of PCA is to find a sequence of uncor-
related random variables (components) where each variable
covers as much of the variance of the data as possible. The
resulting sequence is ordered by decreasing variance cover-
age. For this reason, PCA is often an effective compression
technique: by keeping the first few components most of the
variance in the data can be covered. The independent com-
ponents produced by ICA provide a separation mechanism
between sources that are assumed independent rather than a
compression mechanism.

3.4. Application to facial motion

Applying ICA to recorded facial motion is straightforward.
The motion is represented as a set of time seriesxi(t), that
captures the euclidian coordinates of the motion capture
markers in time. Each of these time series can be thought
of as samples of random variablesxi . Then we can directly
apply ICA decomposition on this set of variables,xi , using
Equation 2.

This decomposition results into a set of independent com-
ponents that have intuitive interpretation. In the next section
we present how we determine the meaning of the indepen-
dent components.

4. Interpretation of the independent components

Our work decomposes speech related motions into a set of
sources that can be clearly interpreted and manipulated for
editing purposes. In particular, we separate the data into style
and content components. In our case we equate style with
expressiveness or emotion and contents with the part of the
motion responsible for the formation of speech.
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Figure 1: These graphs illustrate the classification of independent components. Each graph illustrates a category of motion:
(a) for emotions, (b) for speech, (c) for eyebrows, and (d) for eyelids. The horizontal axis represents the index of independent
components. The vertical axis shows the distance metrics that we described in Section 4.

4.1. Number of independent components

Before applying ICA on the data, we have to determine the
number of components we need to extract. There is no clear
rule to help us make this decision. In practice the whiten-
ing preprocessing step (Section 3) reduces the dimension of
the data and determines the number of independent compo-
nents. We experimentally determine how many components
to keep so that we preserve the subtleties of the motion.
For most of the experiments, keeping enough components
to cover95%−98%of the variance proved to be sufficient.

In what follows we describe how we associate specific
meaning to the independent components.

4.2. Emotion

We recorded the motion of an actor’s face while he was ut-
tering a set of sentences multiple times, each time expressing
a different emotion. Let us denote as(xi ,yi), p pairs of mo-
tions that corresponds to the same sentence but two differ-
ent emotions. Applying ICA to each pair of motions in our
dataset, results into pairs of corresponding independent com-
ponent sets,(ui ,vi). We would expect that the independent
components related to emotion differ significantly between
two speech motions that have the same content but differ-
ent emotion. In contrast, if an independent component is not
related to emotion, its value in time for two corresponding
motions should be the same except some timing differences.
In order to verify this property, we align each pair of cor-
responding motions using aDynamic Time-Warping(DTW)
algorithm23. Let us denote(u′i ,v′i) the independent compo-
nents of two aligned motions after time warping. We com-
pute their difference using the Root Mean Square (RMS) er-
ror as follows:

demotion, j = (
1

∑qi
(

p

∑
i=1

(
qi

∑
k=1

(u′ij (tk)−v′ij (tk))2))
1
2 ,

whereqi is the number of aligned time samples for pairi.
The distancedemotion, j is designed such that it should be
large if componentj is related to emotion.

Figure 1(a) shows a plot of thedemotion, j values of 6 in-

dependent components estimated from32pairs of sentences
of FrustratedandHappymotions. This data totals11883
frames or 99 seconds. A clear peak can be observed for the
third component. This strongly indicates that this compo-
nent is related to emotional variations. The other compo-
nents participate to a lesser degree to the emotional content
of the motions. This shows that speech motion cannot be
strictly separated into statistically independent components.
Our approach is albeit a successful approximation. As fur-
ther proof, in Figure 2 we plot the evolution of the differ-
ent components over time for a set of five pairs of motions.
On the timeline, we alternateFrustratedandHappymotions.
The behavior of the third component appears very much re-
lated to changes in emotions (illustrated with different gray
levels).

4.3. Content

We define content as the part of the motion associated with
the formation of speech independent of expressiveness. For
this case we only consider the motion of the markers in the
mouth area (12markers in our dataset).

Let us define a distance metric between two motions that
have been reconstructed using two subsets of independent
components,A andB.

dmouth(xA,xB) = (
1
q

q

∑
k=1

(
1
r

r

∑
l=1

(xl
A(tk)−xl

B(tk))2))
1
2 , (3)

wherexA andxB are the motions reconstructed using com-
ponent subsetA andB respectively,q is the number of time
samples of both motions,r is the number of the markers con-
sidered for the mouth region (12markers).

Reconstructing the motion of the mouth markers using all
the independent components producesxall . In general this is
different from the captured motion because of the compres-
sion done in the preprocessing step (Section 3). In order to
evaluate how much independent componenti contributes to
the mouth motion we compute the following metric

dmouth,i = dmouth(xE∪{i},xall )−dmouth(xE,xall ), (4)
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Figure 2: These graphs present the evolution in time of five independent components corresponding to five pairs of Frustrated
and Happy motions. The timeline alters between Frustrated (light) and Happy (dark) motions. Notice how the third component
oscillates between extreme values when the emotion changes.

whereE is the subset of independent components responsi-
ble for emotion andxE is the marker motion reconstructed
from subsetE.

In Equation 4dmouth,i quantifies the influence of indepen-
dent componenti on the motion of the mouth. The larger
in absolute value this number is, the more influence com-
ponenti has over the mouth motion. Figure 1(b) shows the
value ofdemotion,i for six independent components. Notice
how largedmouth,1, dmouth,4, anddmouth,5 are compared to the
rest of the components. We can visually verify that the mo-
tion x{1}∪{4}∪{5} reconstructed using components1, 4 and5
captures most of the speech motion.

4.4. Blinking and non-emotional eyebrow motions

Our experiments show that some independent components
cannot be associated with emotion or content. We have ex-
perimentally determined that we can further classify such
components into two groups: one for blinking motion and
the other for non-emotional eyebrow motion. The later refers
to eyebrow motion that reflects stress and emphasis in the
speech rather than the emotional state of the speaker.

In order to identify the components related to these two
types of motion we use the same method employed for
finding content related components. We definedeyebrowand
deyelidsaccording to Equation 3 while considering only the
markers on the eyebrows and the eyelids respectively. We
use these two metrics to definedeyebrow,i anddeyelids,i from
Equation 4 for the eyebrows and the eyelids respectively.

Figure 1(c) shows the value of the distance metric
deyebrow,i for six independent components. Notice how much
largerdeyebrow,2 is compared to the distance metric of the rest
of the components. Clearly component 2 captures most of
the eyebrow motion. Similarly, Figure 1(d) shows the value
of the distance metricdeyelids,i for each of the six compo-
nents. In this case,deyelids,6 dominates the rest of the com-
ponents. We conclude that component 6 captures most of the
eyelid motion.

5. Editing

Based on the proposed decomposition we have built a fa-
cial motion editing tool that allows the user to interactively
change the apparent emotional content of visual speech.

We have implemented multiple operations in ICA space
to change the emotion expressed in a recorded motion. We
use the ICA representation to resynthesize the motion after
editing the parameters of the model. The ICA model can be
written (see Section 3):

x = E{x}+PAu. (5)

There are three parameters that can be manipulated: the
meanE{x}, the mixing matrixPA, and the independent
componentsu. The independent components contribute to
the motion as an offset around the mean. Our experiments
showed that changing the mean often results in unnatural
motion or violation of physical constraints such as lip in-
tersection. However, modifying the mixing matrix and/or
the independent components yields interesting editing op-
erations.

Translate In Section 4 and Figure 1(a) it was made clear
that a single independent component captures the difference
betweenFrustratedandHappymotions. Moreover this com-
ponent seems to vary between two extreme values as a func-
tion of emotion. A straightforward way of modifying emo-
tion is then to estimate these extreme values and translate the
time series responsible for emotion between them. With this
technique we can change the emotion continuously between
the two emotions present in the training set. Editing can be
expressed as:

x = E{x}+PA(u + αeE),

whereα is a scalar that quantifies the amount of transla-
tion in the emotional component andeE is the vector in the
canonical basis of the ICA mixing matrix that corresponds
to the emotional component.

Copy and ReplaceAnother editing operation is to replace
the emotional component of a motion with the emotional
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component of a different motion without changing the con-
tent (speech related motion) of the original motion. To do
this we replace the time series that corresponds to the emo-
tional componentu1 in ICA space by the emotional compo-
nent of a second motionu2. This manipulation can then be
written as follows:

x = E{x}+PA(u1 +((u2−u1)TeE)eE).

Copy and Add We can also add an emotional component
was is not present in the original motion. Let’s consideru1
andu2 the emotional components of two motions. In order
to add the emotional component of motion1 to motion2 we
perform the following operation:

x = E{x}+(PA)1u1 +(PA)2((uT
2 e2

E)e2
E),

where(PA)1 and(PA)2 are the mixing matrices of the two
motions.e2

E is the vector in the canonical basis of the ICA
mixing matrixA2 that corresponds to the emotional compo-
nent.

Notice that all the editing operations we have described so
far are applied to motions that are already in the training set
used to estimate the ICA model. In order to edit a motionx
that does not belong to the training set, we can project it to
extract the independent components:

u = (PA)+(x−E{xtraining}),
where + indicates the pseudo-inverse of a matrix and
xtraining the expectation of the motions in the training set.
After projection, the motion can be edited in ICA space.

6. Results

Our results show that ICA can be used to decompose speech
related facial motion into meaningful components. In this
section we discuss the results of several experiments. Please
see the supporting video for a clearer demonstration of our
results or http://www.cs.ucla.edu/∼abingcao.

Motion capture and rendering We recorded facial motion
using a Vicon8 optical motion capture system. We used109
markers to sample the face geometry fairly densely. The
sampling rate of the data is 120 frame/sec. To drive a 3D
textured face mesh, the markers are mapped to correspond-
ing mesh points, and the rest of the mesh is deformed using
Radial Basis Functions20.

ICA vs PCA In our experiments the principal components
correlate the speech related mouth motion with intense emo-
tion related eyebrow motion. In contrast, the independent
components are able to separate mouth and eyebrow mo-
tion to a much more meaningful degree. The independent
component that captures the mouth motion contains limited
eyebrow motion. We believe that this is correct since part of
the eyebrow motion is actually related to the content of the

speech, for example when stressing a point. In contrast, in-
tense eyebrow motion is clearly related to emotion and not
to the content of the speech.

Editing The proposed method provides an intuitive decom-
position of facial motion that allows us to edit the apparent
emotion of visual speech. Figure 3 shows 3 rendered frames
from an editing session. Theneutral and sad independent
components are mixed with different percentages. Figure 4
shows a emotion session that change the emotional content
by translating betweenneutral, sadandangry.

7. Conclusion and future work

In this paper we propose an unsupervised learning technique
based onIndependent Component Analysis. With ICA we
extract meaningful parameters from recorded facial motions.
Our method provides a representation of the data that has a
number of important features. First this representation has
much more intuitive semantics than the original data. Each
independent component can be associated with a clear mean-
ing. These components can be edited separately. Second it is
significantly more compact; 6 independent components in-
stead of the original motion data that has327 parameters
(i.e. three euclidian coordinates for each of the109markers).
But perhaps the most intriguing contribution of this paper is
to show that facial motions should lend themselves so eas-
ily to a linear decomposition, despite the complexity of the
associated control system (the brain) and of the mechanisms
responsible for these motions.

We predict that ICA will find its way in the computer
graphics toolbox alongside other statistical techniques such
as PCA or clustering. For future work we plan to analyze
more complex facial motions. In our current experiments we
have restricted our training set to domain limited motions.
Each motion has specific emotional content. This helped us
to interpret the data. We would like to experiment with mo-
tions that have unconstrained emotions. It would be interest-
ing to see if ICA could still extract emotional components
from such data. Another direction we are investigating is
to extend the set of editing operations on the independent
components to a wider repertoire of signal processing tech-
niques.
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Figure 3: Three snapshots of editing visual speech. Each row shows the same speech content but different amount ofneutral
andsademotions.

Figure 4: Translating between three emotions,neutral, sadandangry.
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