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Abstract. We present a system for automatically evolving neural net-
works as physics-based locomotion controllers for humanoid characters.
Our approach provides two key features: (a) the topology of the neural
network controller gradually grows in size to allow increasingly complex
behavior, and (b) the evolutionary process requires only the physical
properties of the character model and a simple fitness function. No a pri-
ori knowledge of the appropriate cycles or patterns of motion is needed.

1 Introduction

Natural character motion is closely tied to the character’s physical makeup and
environment. As interactive entertainment rapidly adopts physical simulation as
a core aspect, the problem of physical control for characters comes to the fore.

There are three main hurdles to the adoption of physical controllers in real-
time systems. First, controllers, even for seemingly simple motions, have proven
surprisingly difficult and time-consuming to engineer by-hand. Second, real-time
environments allow for limited computational resources, and finally, of prime
consideration for animation and games, the resulting motion should appear fluid
and natural.

This work takes a significant step toward a long-standing goal in the graphics
literature: “An ideal automated synthesis system would be able to design an
efficient locomotion controller given only the mechanical structure of the creature
(including actuators) and no other a priori information” [I]. By forgoing acquired
real-world data (e.g., motion capture), our method becomes applicable to a much
wider variety of characters. Acquiring motion data from animals at extreme
scales, such as an ant or an elephant, is problematic and expensive. Further,
imaginary characters, although quite common to game settings, are generally
unavailable for motion capture sessions. We evaluate the method described in
this paper using human-like characters because we believe human motion is
generally held to the highest standard of quality of motion, and because bipedal
locomotion is among the more difficult gaits to control.

Our approach creates controllers for physically simulated characters in a bi-
ologically inspired manner: by evolving networks of connected neurons. The re-
sulting controllers are consistent with physical laws and provide fluid motion.
Changes to the characters’ size and shape results in changes to the motion trajec-
tories. A sequence of frames from an animation of five morphologically distinct
characters is shown in figure[ll The animation begins with all characters standing
upright, feet together, and shows each character initiating a walk cycle.
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Fig. 1. Five human-sized characters with uniquely evolved walking controllers

2 Related Work

Controller design for physics-based articulated systems has been approached
from a variety of perspectives. Several researchers have engineered controllers
manually to perform a variety of ballistic or high-energy motions (such as run-
ning, vaulting and diving) [2,[3L4]. Since low-energy motions, like walking, are
poorly constrained by ballistics or energy minimization alone, controllers can
rely on potentially unnatural or contrived higher-level constraints [5], or on gen-
eralizations from motion captured data [6]. Alternatively, the control problem
can be simplified at the expense of realism in the physical simulation [7].

Our evolutionary approach is, at the core, an optimization problem. The
space-time constraint approach also frames the problem of physically valid con-
trol in terms of search— minimizing a function of the energy expended by the
virtual character [89]. This approach has been quite successful for finding motion
paths in high-energy or ballistic domains, such as jumping or diving, however,
low-energy motions with many physically correct solutions tend to be difficult
to optimize and often yield unnatural motion.

More relevant to our approach are several attempts to produce locomotion
cont rollers through stochastic optimization and genetic algorithms. Two early
approaches were [10] and [I1]. Sims referred to his control networks as “neural”,
but used a variety of functions favorable to cyclical output, such as sinusoids,
in a manner more similar to genetic programming [12] than neuroevolution.
However, as with our approach, evolving the topology of the control system was
a key element in obtaining the complex behavior seen in Sims’ virtual creatures.
Gritz [13] also used genetic programming to create controllers, though with a
focus on providing keyframe-like control of the resulting motion.

Laszlo [14] addressed the more constrained and difficult problem of bipedal
walking. Their approach was to use limit-cycle control to reduce the problem
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to a search of parameters that would stabilize a walk cycle. This approach
yielded stable and controllable walks for two different character models, one
humanoid and one non-humanoid. However, the resulting motion was clearly
robotic.

More recently, evolved neural networks have become a central approach to
control problems in the nascent field of evolutionary robotics [15]. For exam-
ple, [I6L[17] use fixed-topology neural networks without sensory inputs to evolve
biomimetic “central pattern generators” (CPG). The evolved artificial CPG’s
generate open-loop patterns that drive joint angles of a bipedal model to show
very “natural motion” through a walk cycle. In these works, continuous-time neu-
rons are arranged and connected in a human-designed, fixed topology designed
to produce cyclical patterns suitable for a locomotion controller. The connection
weights and neural parameters are evolved to generate walking motions. The
design of the fixed topologies used in [I7] were based on recent findings in neu-
robiology [18]. However, in the absence of guiding biological knowledge, choosing
the best fixed topology for a given problem is difficult, sometimes requiring “ex-
pert experience and a tedious trial-and-error process” [19].

In contrast, our approach builds on recent advances in the evolution of the
neural topology [20], in addition to evolving the connection weights. This both
relieves the controller designer of the task of choosing the proper topology, and
drastically expands the range of possible behaviors. This is an important advance
in the pursuit of a generic controller-creator.

3 Overview of Our Approach

We propose an evolutionary approach that produces neural networks that are
used to control physically simulated, humanoid characters. In the context of
evolutionary processes, it is useful to appropriate analogous terms from biology.
A genome in our system is information transmitted from parent to offspring, and
is implemented as a weighted, directed graph. This graph is used to construct a
neural network. The mapping of a genome to a neural network is the encoding
scheme. We employ a simple, direct encoding: genome nodes become neurons
and edges become interneuron connections.

A collection of such genomes makes up the population that undergoes an evo-
lutionary process. Each genome is evaluated, and the best-performing genomes
are then either duplicated with slight modification (mutation) or combined with
other successful genomes to produce new genomes (cross-over). The genomes
resulting from reproduction form the population of the next generation. This
process is analogous to biological evolution and, over the course of many evaluate-
select-reproduce generations, genomes better suited to performing the evaluation
task are likely to emerge.

To perform the generational selection, each genome is evaluated by how well
its generated neural network performs as the controller of a virtual character.
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4 Artificial Neural Networks

Artificial neural networks(ANN’s) are composed of (a) neurons with a single
scalar internal state y, referred to as the neuron’s activation level, and (b)
weighted, directed connections between the neurons. The structure of the con-
nections is known as the network’s topology. Though simple, the ANN model is
able to exhibit complex behavior due to the non-linear manner in which each
neuron aggregates the inputs from its incoming connections.

Each neuron is updated once per cycle by linearly combining its incoming
connections’ activations and applying the activation function, o(z), to that sum
to determine its activation level for the next cycle (as in Equation [).

N
1
Yi =0 ijiyj ) o(z) = m (1)
Jj=1
where o is the sigmoid function and wj; the weight of the connection from the
jth neuron to the ith.

To achieve state and time dependent behavior, an artificial neural network
must rely on cycles in its topology, in a manner analogous to cross-linked XOR
gates forming an electronic flip-flop. Note that in the sigmoidal neurons used
here, such cycles are the only way an ANN can store state internally. To manage
complex timing-based behavior, as is needed for a motion controller, an ANN
generally requires a complex topology of interneuron connections.

5 Neuroevolution

Evolving a fixed-topology neural network involves mapping the scalar connec-
tion weights to a one-dimensional vector. If the topology of the network is
fixed, then the correspondence between position in the vector and the neural
connection can be fixed. Then the evolutionary algorithm need only manipu-
late a fixed-length vector of scalars. To our knowledge, this general approach
has been used by all evolved neural network motion controllers for 3D bipeds
(e.g., [T6L1721,221[23,24]).

Although this traditional approach has the advantage of simplicity, using a
fixed topology neural network categorically limits the type of behavior that can
be exhibited (e.g., a network lacking recurrent connections cannot maintain
memory). In contrast, by allowing the network to evolve its structure as well
as the connection weights, the space of possible solutions is unrestrained. Our
approach evolves neural topology using a version of the NEAT (NeuroEvolution
of Augmenting Topologies) algorithm, described in detail in [25].

Unfortunately, evolving neural topology is not a panacea. Direct encoding
from genetic representation to neural network topology may have scalability
problems as the size of the graph grows [26]. Several indirect encodings (i.e.,
a genetic representation that requires some procedure to produce the neural
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topology) have been proposed, such as cellular encoding [27], to alleviate these
scalability concerns, though they are not without problems [28]. In the absence of
either biological analogue to or accepted practice of an indirect encoding scheme,
our approach uses direct encoding.

5.1 Mutation

Mutations to the directed-graph genotype are of two kinds: structural and non-
structural. The latter alter the weight of a connection or a parameter of a neuron
(see Section H)). Small alterations (uz = 0, 02 = 0.1) are most likely, though
occasionally entirely new values are chosen (at random uniformly in the range
(—0.1,0.1)) as replacements. In an effort to bias mutational changes toward
newer structures, parameters that are relatively new features in the genome are
more likely to be replaced than older ones.

Two types of structural mutation are allowed: splitting an existing edge into
two edges and a node, and adding a directed edge between two previously un-
connected nodes, or between a node and itself. All structural mutations increase
the size of the genome, so any given genetic linage is monotonically increasing.

5.2 Crossover Using Historical Markers

The NEAT algorithm labels each node and edge in a genome with a unique
historical marker. During reproduction, these markers are preserved and passed
to the offspring. During sexual reproduction, these historical markers are used
to determine genetic homology. The guiding assumption is that genes with the
same historical origin (and therefore the same historical markers) will perform
the same function in the phenotype. Although this is, in essence, an ad hoc
approach whose assumption can, and may often, fail, it has been shown to be the
best known neuro-evolutionary method for simple benchmark control problems
such as double-pole balancing and predator-prey simulations [29].

5.3 Speciation to Protect Innovation

In addition to enabling a more productive cross-over operation, NEAT-style
historical markers can also be used to estimate the chance of mating success
between individuals. A distance metric § = % + cWgroups the individuals of a
population into species, allowing sexual reproduction within a species contain-
ing similar individuals. In this expression, GG is the number of genes without a
corresponding historical marker in the genes of the other parent. The constant
c is a normalization factor based on the magnitude of connection weights. N is
the number of genes in the larger genome, and k is a term allowing a scaling
of the effect of normalization based on the number of genes N. Such speciation
greatly improves the likelihood that the next generation will be viable.

Note that previous implementations of the NEAT algorithm have used k = 0,
while our implementation uses k£ = 1. The effect of £ = 1 is to measure genomic
distance by the ratio of differing genes to the total number of genes, in contrast
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with £ = 0, which considers the absolute number. Comparing the ratio, rather
than absolute number better supports genomic distance calculations for large
networks.

New structural innovations will likely differ significantly (as measured by §)
from existing genomes, meriting classification in a new species. Individuals only
compete directly with other members of their own species, providing protection
to new innovations until they have time to optimize their structure. This process
is further assisted by giving new species an artificial fitness bonus of 20% for their
first few generations.

6 Neural Networks for Control

Artificial neural networks (ANN’s) have two attributes that suggest their appli-
cability to dynamic controllers. First, for even large feedback-based tasks, neural
networks require little memory and can be efficiently evaluated. Second, neural
networks produce output behaviors that tend to be smooth and natural. For an-
imation applications (as opposed to, e.g., robotics), the quality of the resulting
motion is of great importance. Many approaches to physical animation control
that originated in robotics have yielded stable motion, but have lacked fluidity
and naturalness. Although admittedly difficult to quantify, evolved neural net-
works tend to yield smooth, natural-looking motion, especially in comparison
with techniques based on discrete state-spaces.

7 Anthropomorphic Character Model

Our evolutionary system is not provided with any information specifying the
particular gait to use. This approach improves generality, but means the char-
acter morphology plays an significant role in the quality and kind of resulting
locomotive gait. Since we are interested in controllers that provide human-like
motion, we use character models whose physical parameters mimic human mor-
phology. In addition, the generality of the approach is an important measure of
success. To test the generality of our method in finding human-style gaits, we use
a sample of humanoid character models from the normal human range of height,
weight and bi-iliac (hip) breadth (BIB) covering the 5" to 95" percentile of
each men and women, which encompasses the variation of slightly less than 95%
of the total population.

Body segment sizes and weights are scaled linearly according to the three mea-
sures (height, weight and BIB) obtained from anthropometric data aggregated
from over 30,000 individuals [30]. The relative proportions of segment sizes and
weights are shown in Table 2

7.1 Sensors

The controller is provided a set of eleven sensory inputs. Proprioceptive sensors
from each actuated joint angle are provided, as well as haptic sensors for each
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foot that register —1 when the foot is touching the ground plane, and +1 at any
other time. The X and Z components (ranging from —1 to +1) of the torso’s
normalized up-vector are also given.

7.2 Actuation

The controller specifies, at each control time-step, the target angle the joint
will be driven toward. The corresponding actuator applies torque to drive the
joint to the desired angle 6,;. The output signal of the controller ranges within
[0,1], of which the central 0.8 range is linearly scaled to the full range of the
joint, leaving 0.1 units at each extreme clamped to 0.0 and 1.0, respectively. The
applied torque 7 is computed from the total moment of inertia at the joint I
using a proportional-derivative (PD) controller as

7 = I(ky(0 — 04) — kab). (2)

Table 1. The allowed ranges for each joint of Table 2. The distribution of
the agent. The Control column indicates if the the physical proportions of the
joint’s target angle is set by the controller. If agent’s body. The mass pro-
not, the joint applies torque to center itself in portion of bilaterally repeated
its range. segments shows the summed

mass proportion of both sides.

Range |Neural Control
Joint, axis High Low|Walk Balance Body Segment Height Mass
Spine, transverse —75 5 | Yes No Trunk 31.2% 51.6%
Spine, coronal -1 15 | No No Waist 6.2% 10.3%
Spine, sagittal -7 J& | No No Thigh (2) 31.0% 19.3%
Hip, transverse 0 0| No No Shank (2) 25.3% 9.3%
Hip, coronal —i5 31 | Yes  Yes Foot (2) 6.2% 9.3%
Hip, sagittal —1 1¢ | Yes Yes
Knee 0 3% Yes Yes
Ankle, transverse —75; 75 | No No
Ankle, coronal -15 15 | No Yes
Ankle, sagittal -7 7 | No Yes

7.3 Bilateral Symmetry

The character models used are bilaterally symmetric both in their body shape
and in their neural controllers. Using simple, fixed-topology reactive neural con-
trollers, [21] demonstrated that two identical, uncoupled networks could be used,
instead of one monolithic neural network, to decrease the size of the evolution-
ary search space. Our system uses a similar approach by building two identical
neural networks from a single evolved system.
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Human locomotion is approximately bilaterally symmetric (although asym-
metry has been shown to be important to human perception of motion as realis-
tic [31]). Tt is reasonable then to use the same controller duplicated to each side
of the agent. This approach was suggested for future work in [I6] and [22] used
simple, fixed-topology reactive neural controllers to demonstrate that two iden-
tical, uncoupled networks could successfully decrease the size of the evolutionary
search space compared to evolving a single, monolithic controller.

In this work, we evolve a single controller genome, which is then used to build
two initially identical neural networks, one for each side. The outputs of each
network drive their side’s actuated joints, with the central waist joint taken as
the average of the two corresponding output nodes’ activations. The inputs of
each network are likewise set from per-side information.

Each controller is given two bias nodes, one has a constant activation of +1,
while the other has an activation of +1 for the right controller and —1 for the left.
This per-side bias (along with asymmetric sensory input) allows for asymmetrical
behavior. In addition, two haptic foot-contact sensors yield +1 for the same-side
foot, and —1 for the opposite foot.

8 Implementation

Evolutionary runs use a population of 512 individual genomes, which are clus-
tered into thirty species based on the genetic similarity metric § (see Section
(3). Each generation, every genome is evaluated by creating two neural net-
works, each set to control one side of the character.

These neural networks are supplied with sensory data and updated once ev-
ery 0.07 s of simulated time. This delay was chosen to be within the observed
range of spinal reflex response times in humans [32]. Additionally, in the con-
text of animation, Zordan [33] described similar response delays as subjectively
believable.

8.1 Fitness Measure

Evolutionary selection is based on a simple fitness measure f calculated as

f = cqa max(||proj; d||, €) + [, 3)

where d is the vector from the starting position to the hindmost foot, and j is a
fixed unit vector pointing in the direction the animator wishes the character to
walk. Throughout this work, j is fixed to the character’s starting facing direction,
rewarding simple forward walking. ¢4 is a constant scaling factor, and € a fixed
small positive value. f, is proportional to the time spent upright, f, = ct,
where t is the elapsed time for the trial and ¢; is a constant scale factor. We
also experimented with more complex fitness functions for locomotion, however
Equation [3] was the most effective and is used for the results presented.
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Early Termination. The evaluation of an individual controller halts if an
early termination criteria is met. This is a useful way to improve the overall
speed of the evolutionary process, and also provides a powerful means to shape
the resulting behavior by specifying outcomes the animator deems undesirable.

Waist height. If the z-coordinate of the waist segment’s center of mass (CoM)
falls below a minimum height (70% of the waist segment’s starting height),
the simulation is terminated and the genome’s final fitness is that computed
using the state of the previous time-step. By forcing the CoM to maintain
a minimum height, locomotion gaits such as crawling and walking on the
knees (instead of the feet) are prohibited.

Instability. If significant numerical instability or joint divergence is detected,
the simulation is terminated and the genome’s final fitness is set to the
minimal allowed value, e.

Stagnation. A trial is terminated if the fitness fails to improve by e + <7 over
the n seconds of simulated time since the previous improvement. This forces
the system to gain fitness by some means other than time, preventing, for
example, simply balancing in place for the course of the run.

8.2 Support Harness

During the first 100 generations, a virtual harness provides lateral, posterior
and vertical support to the character. A similar harness was described in [17],
though our variation offers no resistance to forward or upward motion. Although
not found to be strictly necessary, a supporting harness was helpful in reducing
the total number of evaluations needed to find a walking controller.

9 Results

Bipedal locomotion is a difficult control problem, partly due to the inherent in-
stability. However, demanding natural-looking motion compounds the difficulty
because, as a system, a walking humanoid is relatively unconstrained by either
physical limitations (i.e., there are many physically feasible forms of moving
forward besides the normal human gait, e.g., hopping, jumping or skipping) or
energy minimization (though the human walk is characteristically low-energy).
Our method explores an aesthetic subset of these possible motions due to two
key factors. First, we use smoothly varying neural networks, and second, we use
human-scale models with human-scale actuators.

Example joint angles for a typical successful walk controller are shown in
Figure 2l This particular individual is of medium female height, weight and
BIB.

9.1 Reliability of Walking Controller Generation

Although evolutionary processes are stochastic by nature, it is desirable that
the system be able to reliably generate quality controllers. Over the entire range
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of human body shapes evaluated at walking, 93% of the runs found controllers
capable of walking upright for more than two meters (28 out of 30 runs). Both
failures were with heavy (95" percentile weight) characters with short stature
(5" percentile height), once for a male character and once for a female. Success-
ful walking controllers were found by simply repeating the runs with the same
parameters. It is worth commenting that humans with such opposite extremes
in body size and weight are likely well outside the normal range.

10 Conclusions

In this work, we have shown that the proposed system can produce walking con-
trollers for a wide range of anthropomorphic bodies. The system is able to do
so without the need for a priori knowledge of the correct neural topology. The
resulting controllers show smooth and believable human-like motion, without
the stiffness and phase artifacts associated with methods based on robotics tech-
niques. The controllers are closed-loop, using proprioceptive, tactile and vestibu-
lar sensors to maintain balance and improve their performance.

However, the evolutionary process is by nature unpredictable, and may not
result in useful controllers for any given character morphology. Also, none of
the evolved controllers were capable of sustained walking— generally walks were
stable for 5-10 meters before toppling. For the neural networks to evolve sufficient
complexity to initiate locomotion and walk for a few meters, they have genome
sizes in the several hundred real parameters. Mutations that only effect the
stability in the circumstances of the final step are likely to be quite rare, leaving
the system fragile and unable to improve. Constraining to or enforcing for stable
cycles in neural output may be possible, but may also introduce unwanted visual
or aesthetic artifacts in the motion.

A promising next step is to build on the task-specific controllers evolved with
our system by composing many together, as described with hand-engineered
controllers in [4].
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