
The Art of Deception: Adaptive Precision Reduction for Area Efficient Physics
Acceleration

Thomas Y. Yeh† Petros Faloutsos† Milos Ercegovac† Sanjay J. Patel‡ Glenn Reinman†
†Computer Science Department, UCLA, {tomyeh, pfal, milos, reinman}@cs.ucla.edu

‡AGEIA Technologies, sjp@ageia.com

Abstract

Physics-based animation has enormous potential to im-
prove the realism of interactive entertainment through dy-
namic, immersive content creation. Despite the massively
parallel nature of physics simulation, fully exploiting this
parallelism to reach interactive frame rates will require
significant area to place the large number of cores. For-
tunately, interactive entertainment requires believability
rather than accuracy. Recent work shows that real-time
physics has a remarkable tolerance for reduced precision
of the significand in floating-point (FP) operations. In
this paper, we describe an architecture with a hierarchi-
cal floating-point unit (FPU) that leverages dynamic preci-
sion reduction to enable efficient FPU sharing among mul-
tiple cores. This sharing reduces the area required by these
cores, thereby allowing more cores to be packed into a given
area and exploiting more parallelism.

1 Introduction and Motivation

Physics-based animation (PBA) is becoming one of the
most important elements of interactive entertainment appli-
cations, such as computer games, largely because of the au-
tomation and realism that it offers. The immersive nature
of interactive entertainment relies on rapid, dynamic con-
tent creation and realistic visual effects. However, the bene-
fits of PBA come at a considerable computational cost, and
the demands of interactive entertainment require soft perfor-
mance bounds of 30-60 frames per second. Fortunately, the
physical simulation of complex scenes is massively paral-
lel in nature. Exploiting this parallelism is an active area of
research both in terms of software techniques and hardware
accelerators. Commercial physics-specific solutions [3, 13]
and modern processors [14] already take advantage of the
parallel nature of PBA with varying levels of success.

With such massive parallelism, chip multiprocessor [22]
(CMP) designs with large numbers of simple cores, such as
ParallAX [32], can achieve desirable frame rates. In these

designs, the more cores that can be packed into a single
piece of silicon, the more parallelism that can be exploited.
However, physics simulation uses extensive floating-point
(FP) calculation, and could require dedicated floating-point
unit (FPU) resources at each simple core. If these resources
could be effectively shared across multiple cores, the area
savings would result in greater core density and therefore
greater exploitation of parallelism. However, contention for
shared FP resources can impact performance depending on
the degree of sharing.

Fortunately, PBA offers more than just massive paral-
lelism to architects as a means of achieving high perfor-
mance. In particular it can be error tolerant – interac-
tive entertainment requires perceptually believable results
rather than numerically correct results. The user must be
able to suspend disbelief and become immersed in the vir-
tual world, but human perceptual tolerance to small errors
is quite high [7, 23]. While the amount of error tolerance in
PBA varies with the individual phase of the simulation and
the scenario being modeled, prior work [34] has demon-
strated that bounding the difference in total energy during a
simulation can reliably ensure believability. We propose to
leverage this observation to dynamically tune the precision
of FP operations in PBA to provide just enough precision
to approximately conserve simulation energy, and therefore
ensure believability.

Our paper makes the following contributions:

• We propose dynamic FP precision tuning in PBA to
leverage perceptual error tolerance.

• We identify and leverage three main benefits of preci-
sion reduction:

1. Increased Number of Trivial Operations: Pre-
cision reduction enables new conditions and in-
creased chances that a FP computation will not
require the use of an FPU – such operations are
trivial (e.g., adding shifted out operand, multipli-
cation by one).



2. Value Locality: Precision reduction improves the
locality that exists (a) among similar objects in
similar scenarios and (b) across iterations during
the relaxation of constraints.

3. Reduced Precision FPU: Smaller, faster, and less
power hungry FPUs can be used to replace full
precision FPUs. However, the varying precision
requirement necessitates occasional access to full
precision FPUs.

• We propose and investigate the hierarchical sharing
of FPU resources among simple cores in PBA. The
L1 FPU designs leverage the benefits of precision re-
duction to execute FP operations locally, and the full-
precision L2 FPUs are shared among multiple cores
for area reduction. Area savings from FPU sharing can
translate directly to performance by adding more sim-
ple cores. Per phase performance is increased by up to
55% while per phase energy is simultaneously reduced
by up to 50% when compared to a baseline without
FPU sharing.

The rest of the paper is organized as follows. Section 2
presents background information on real-time physics sim-
ulation and reviews the most related work to this study.
Section 3 details our methodology. Section 4 discusses dy-
namic precision tuning and techniques to exploit perceptual
error tolerance. Section 5 details our hierarchical FPU ar-
chitecture which leverages precision reduction for effective
sharing of FPU resources. We conclude with Section 6.

2 Background and Related Work

The most relevant work falls into three categories: real-
time physics, conjoined cores, and FP optimization.

2.1 Real-Time Physics for Interactive En-
tertainment

Physics simulation requires the numerical solution of a
discrete approximation of the differential equations of mo-
tion of all objects in a scene. Articulations between objects,
and contact configurations are most often solved with con-
straint based approaches such as [6, 20, 13].

Physics Acceleration. ParallAX [32] is a heteroge-
neous architecture for physics acceleration that combines
a smaller set of more powerful cores, for simulation re-
gions with limited or coarse-grain parallelism, with a much
larger set of simple cores, for regions with massive par-
allelism. [15] characterizes physics-based simulation for
computer animation and visual special effects used for mo-
tion pictures. Simulations with a 64-core chip multipro-
cessor (CMP) show very high on-die and main memory

bandwidth requirements, and most modules have little inter-
thread communication.

Error Tolerance for Physics. Barzel et al. [7] is credited
with the introduction of the plausible simulation concept,
and [23] is a 2004 state of the art survey report on the field
of perceptual adaptive techniques proposed in the graph-
ics community. Chapter 4 of [27] compares three physics
engines by conducting tests on friction, gyroscopic forces,
bounce, constraints, accuracy, scalability, stability, and en-
ergy conservation. All tests show significant differences
between the three engines, producing different simulation
results with the same initial conditions. Even without any
error-injection, there is no single correct simulation for real-
time physics simulation in games as the algorithms are op-
timized for speed rather than accuracy. Yeh et al. [34] went
beyond simple, manually created scenarios used in previous
studies to examine complex, physics-engine driven scenar-
ios typical for games. The study provides a methodology
to measure believability. After looking at gap and penetra-
tion errors, linear and angular velocity, and the angle of de-
flection for all objects in each scenario, they found that the
difference in total energy was a reliable predictor of believ-
ability. In other words their results show that approximate
energy conservation guarantees believability.

2.2 Conjoined Cores

Kumar et. al [18] proposed having two adjacent cores
in a CMP share a single floating-point unit (FPU), cross-
bar port, instruction cache, and data cache for area savings.
They looked at a simple policy where the cores take turns
using the shared resources every other cycle, and a more in-
telligent policy where either core can use a resource in any
cycle, but the arbitration priority among the cores switches
from cycle to cycle for fairness. Recent work [28] has ex-
tended this idea to share other core structures among more
than two cores. Sun’s Niagara [16] shares a single FPU
among eight cores. The cores access the FPU via a shared
bus – the latency seen for an individual FP operation is 40
cycles [29]. In this paper, we will use conjoin to describe
FPU sharing.

2.3 Floating-Point Optimization

The IEEE standard single precision FP representation
has a single sign bit (S), eight exponent bits (E), and 23
mantissa bits (M). These are packed in a 32-bit register to
represent numbers of the form (−1)S2E−127(1.M). Preci-
sion reduction, as used in this study, refers to the removal
of less significant bits from the mantissa using a selected
rounding mode.

Not all FP operations need a functional unit to execute
– for certain input operands, FP instructions can be made



trivial. For example, adding any number to zero is a trivial
operation: the result is simply the original number. Early
studies of trivial instructions [25, 26] focused on FP bench-
marks (SPEC 92 and Perfect Club) using a set of 8 triv-
ial computations: multiplication (by 0, 1, and -1), division
(X/Y with X = 0,Y,-Y, and square root (of 0 and 1). Most
trivial operations were FP multiplies, and the percentage of
trivial operations per program ranged from near zero to 7%.
They only saw performance improvements in the range of
2-4% for a processor configuration similar to modern cores.

More recent work [35] expands the range of trivializable
operations to 26 types and categorize these as bypassable or
simplifiable. For SPEC 95/2000 and MediaBench bench-
mark suites, 13% and 6% of total dynamic instructions are
trivial which enables an 8% average performance improve-
ment. [5] studies the energy benefits of bypassing trivial
operations. Bypassing trivial operations results in average
energy and energy-delay improvement of 5% and 12% re-
spectively.

Prior work uses trivialization as a filter for memoization
and do not consider the effects of precision reduction. We
are the first to leverage trivialization to improve resource
sharing, and we propose new conditions which work with
dynamic precision tuning to increase the effectiveness of
trivialization.

A closely related technique to bypassing trivial opera-
tions is memoization or value reuse [25, 10]. Memoization
uses an on-chip table that dynamically caches the opcode,
input operands, and result of previously executed instruc-
tions. For each instruction, the opcode and input operands
are checked for a match in the table. If there is a match, the
cached result is reused instead of executing the instruction.
Fuzzy reuse [4] leverages the error tolerance of multimedia
to remove the lower significant bits of FP mantissas for the
input operand match. Full precision results are still stored.

Prior work uses reuse to break data dependencies, re-
duce instruction latency, and conserve energy – but we are
the first study to our knowledge to leverage memoization to
improve resource sharing.

Another technique related to both trivialization and
memoization is value prediction. Last value prediction [19]
reduces instruction latency and breaks data dependencies.
Yeh et al. [33] proposed fuzzy value prediction where a
certain amount of error can be tolerated without recovery.
However, value prediction requires speculative execution to
be effective. Therefore, these techniques will likely not be
cost effective for the simple, in-order fine-grain cores we
are targeting in this paper. We refer to [32] for details on
performance-area tradeoff of more complex cores vs the
simple ones.

3 Methodology

Physics Simulator. Our physics engine is a heavily mod-
ified implementation of the publicly available Open Dy-
namics Engine (ODE) version 0.7 [1]. ODE follows a
constraint-based approach for modeling articulated figures,
similar to [6, 20], and it is designed for efficiency rather
than accuracy. Our implementation supports more com-
plex physical functions, including cloth simulation, pre-
fractured objects, and explosions. We have parallelized it
using POSIX threads and a work-queue model with persis-
tent worker threads. POSIX threads minimize thread over-
head, while persistent threads eliminate thread creation and
destruction costs.

LCP Solver

Figure 1. Physics engine flow. All phases
are serialized with respect to each other. Un-
shaded stages can exploit parallelism.

Our simulator can be described by the data-flow of com-
putational phases shown in Figure 1. In this study, we fo-
cus on the highly parallel phases of physics computation,
Narrow-phase and Linear Complementary Problem (LCP)
solver, for which prior work [34] has proposed a perceptual
error tolerance evaluation methodology.

Narrow-phase. This is the second step of collision de-
tection that determines the contact points between each pair
of colliding objects. Each pair’s computational load de-
pends on the geometric properties of the objects involved.
This phase exhibits massive fine-grain parallelism since
object-pairs are independent of each other.

LCP. Rigid body simulation involves the solving of
forces within each group of interconnected objects (island).
For each island, given the applied forces and torques, the
engine computes the resulting accelerations and integrates
them to compute the new position and velocity of each ob-
ject. Each island is independent, and the LCP solver for
each island contains loosely coupled iterations of work.

We leveraged the latest PhysicsBench suite [32, 2] for
this study – a set of eight physical scenarios that span differ-
ent physical actions and situations, covering a wide range of
game genres, and exercising a large part of ODE. The sim-
ulation time-step is 0.01 seconds and 3 steps are executed
per frame to ensure stability and prevent fast objects from
passing through other objects. We use 20 solver iterations
as recommended by [1].



Architectural Simulator. We have modified SESC [24],
a cycle accurate architectural simulator, to model the Paral-
lAX [32] architecture. We extend SESC for per phase pre-
cision reduction tuning using different rounding modes. All
floating-point add, subtract, and multiply operations are ex-
ecuted with the specified precision in both the functional
and timing components of SESC. Precision reduction is
modeled by rounding both operands, executing the opera-
tion, and then rounding the result.

4 Precision Reduction

The perceptual error tolerance associated with interac-
tive entertainment applications reduces the required floating
point precision in PBA. Exploring and exploiting this obser-
vation is a key contribution of our paper and the subject of
this section.

4.1 Error Tolerance of FP Operations

Real-time physics for interactive entertainment must be
believable, but may sacrifice some accuracy. As discussed
in section 2.1, the total energy in the simulation is one way
of measuring the amount of tolerable error. By using the
law of energy conservation, the application can compute
the energy difference between successive simulation steps
to determine whether the simulation is diverging towards
instability. It should be noted that this energy conservation
takes into account externally injected energy by the player
or the game scenario. This energy difference can be com-
pared against empirically-derived thresholds to ensure be-
lievability. We added the dynamic monitoring of simulation
energy to the physics engine. This additional code is added
to the end of the simulation loop after integration. As each
object is moved to the new position, its energy can be cal-
culated and stored. The accumulation of energies can be
decoupled from the simulation loop calculation and is per-
formance insensitive. With one 32-bit floating point energy
value per object, this does not present a huge bandwidth bot-
tleneck. The overhead for computing energy in ODE scales
linearly with the number of objects and particles. Our code
to compute energy for each object requires 67 instructions,
and each particle requires roughly 27 instructions. For the
most complicated benchmark in PhysicsBench, Mix, this
overhead translates to less than 0.3% increase in dynamic
instruction count.

4.1.1 Minimum Required Precision

One way to leverage the error tolerance of real-time physics
is to reduce the amount of precision used in floating-point
(FP) operations. The minimum required number of man-
tissa bits before the error becomes discernable varies de-

LCP Narrowphase
Benchmark RN J T RN J T
Breakable 8 17 13 17 10 (21) 23

Continuous 4 4 4 9 9 (9) 9
Deformable 3 4 8 9 9 (9) 9
Everything 10 10 23 18 10 (17) 19
Explosions 11 13 9 21 14 (14) 13
Highspeed 3 3 8 9 9 (9) 9
Periodic 13 14 23 22 21 (23) 23
Ragdoll 5 5 9 9 9 (21) 9

Table 1. Minimum number of mantissa bits for
believable results (RN = Round-to-nearest, J
= Jamming, and T = Truncation).

pending on the particular phase of physics simulation and
the particular physics scenario being modeled. Table 1
demonstrates this variety across all simulated PhysBench
scenarios and across the two different fine-grain phases
of ODE. These results are based on 30 frames of simula-
tion following the methodology proposed in [34], and each
phase is evaluated independently of the other. We evalu-
ate three different rounding modes for reducing precision:
round-to-nearest, jamming, and truncation. Denormal han-
dling remains unchanged.

Round-to-nearest and truncation (round-to-zero) are
IEEE FP standard rounding modes. There is a significant
difference between the minimum required precision of these
two rounding modes. While round-to-nearest produces the
best result, it requires significant latency and area to round
both operands of each FP operation before execution. On
the other hand, truncation’s negative bias in error injection
results in much higher requirements.

To obtain the benefits of both, we look towards jamming,
a rounding technique originally proposed by Burks et al. [8]
and used by Fang et al. [11]. Jamming performs a bit-level
OR of the least significant bit (LSB) and three subsequent
guard bits (GBs). The result is placed in the LSB. If LSB
is one then the GBs are ignored. If the LSB is zero, then
any one in the GBs will result in rounding the LSB to one.
This allows for very simple and fast logic, and the mean of
injected error is 0 with no biasing.

Table 1 presents results on the minimum level of preci-
sion that is tolerable when either LCP or Narrowphase is
considered alone (i.e. only one phase is precision reduced).
We use jamming for rounding in the rest of this work.

While independently exploring the precision at each
phase gives some intuition for the acceptable levels of pre-
cision required, we will be adaptively tuning the precision
of each phase simultaneously, and therefore the error in-
jected in one phase will impact the precision tolerance of the
other phase. Since 31% and 13% of dynamics instructions



on average are FP for LCP and narrow-phase respectively,
we fix LCP’s required precision at the minimum found dur-
ing independent exploration and evaluate the new level of
precision required for narrow-phase. Dynamically preci-
sion tuning results for narrow-phase are shown in paren-
thesis. For some benchmarks, narrow-phase’s precision re-
quirement is higher when considering precision reduction
for both phases.

4.2 Dynamic Adaptation of Floating
Point Precision

The wide range of desirable precision even across phases
of physics simulation would be difficult to capture with a
static technique. Furthermore, there could be unforseen,
pathological situations where the simulation diverges to-
ward instability even when adhering to a statically prede-
termined threshold.

Given these factors, it makes intuitive sense to dynami-
cally adapt the minimum required precision during execu-
tion. We propose a hardware/software co-design solution.
At development time, the programmer either chooses a de-
fault value or statically profiles the application using the
methodology described in [34]. This error tolerance data
can be used to select the minimum precisions for different
sections of computation based on the developer’s design.

At run-time, the application communicates the minimum
required precision of the current instruction region to the
hardware. The communication between software and hard-
ware is done by setting a control register to indicate the
minimum required mantissa width. The value in this reg-
ister corresponds to the current minimum precision of the
executing thread.

Based on dynamic information, the precision is tuned to
prevent severe degradation in simulation quality. Leverag-
ing the results from [34], we select the energy difference be-
tween successive steps as the dynamic information for tun-
ing. Based on statically determined thresholds of percent
energy difference, the application monitors its own simu-
lation quality. We use a threshold of 10% energy differ-
ence based on the results from [34] and our observation of
the energy data. When the threshold is violated, the appli-
cation throttles up the significand precision (to full preci-
sion) to prevent simulation blow-up. As noted earlier, this
energy difference takes externally injected energy into ac-
count. Therefore, the total energy across successive frames
may be drastically different without triggering precision ad-
justment. After the simulation stabilizes, the precision is
incrementally reduced after every simulation step until it
reaches the minimum value stored in the control register.

There can also be cases where the simulation blows up
without warning. In such extreme cases, functional correct-
ness is maintained by re-executing the previous simulation

step at full precision. We leave the full study on software
algorithms for controlling re-execution to future work.

Our simulations with the selected precisions do not result
in simulation energy divergence. This is a fail-safe mecha-
nism to capture unforeseen scenarios.

4.3 Opportunities Enabled by Dynamic
Precision Reduction

Our reliable, dynamic adaptation of precision enables
significant optimizations which we propose in this section.

4.3.1 Trivial FP Operations

Real-time physics simulation must be flexible enough to
handle a wide variety of scenarios, and therefore for differ-
ent inputs it may have comparisons or computations that are
trivial. One example would be a wall composed of stacked
bricks – if a projectile hits one part of this wall, bricks dis-
tant from the source of impact may not see any effect until
time progresses. Such trivial operations provide an interest-
ing opportunity to avoid expensive computation, and preci-
sion reduction greatly helps to increase the number of these
types of operations. In this section, we will focus on trivial
FP add, subtract, and multiply operations. FP addition and
multiplication account for 30% of the total dynamic instruc-
tion count for the LCP phase of real-time physics, illustrat-
ing the criticality of these operations.

FP Operation Representation Trivial when
Add X + Y X=0 or Y=0

Subtract X - Y X=0 or Y=0
Multiply X * Y X=0 or ±1, or Y=0 or ±1
Divide X / Y X=0 or Y=±1

Table 2. Conventional trivial cases

Conditions for Increased Trivialization
Small mass difference between objects

Zero linear and angular velocities before collision
Small size difference between objects

Simple object shapes
Use of ground and gravity

Higher amount of articulation (human vs box)

Table 3. Factors increasing trivialization

Conventional trivialization logic for these operations in-
volves detecting operands that are zero, one, or negative
one, as illustrated in table 2. We propose three extensions
to conventional trivialization of FP operations:

1. Add/Subtract: If the magnitude of exponent difference
between the operands is greater than the number of



valid mantissa bits plus one, then the operation be-
comes trivial: the result will simply be the larger of the
two operands. This is effectively addition/subtraction
by zero. The addition of one take into account the im-
plicit one of FP representation. Full precision of the
non-trivial operand can be used to minimize injected
error.

2. Multiply: If the reduced mantissa bits of one operand
are all zeroes (i.e. the mantissa is 1.0) then the result-
ing mantissa will simply be the other operand. Full
precision of the other operand can be used to minimize
injected error. The exponent and sign logic are still ex-
ecuted. This is the general case of multiplication by
1 × 2E or -1 × 2E for any exponent E.

3. Divide: If the full mantissa bits of the divisor are all
zeroes (i.e. the mantissa is 1.0) then the resulting man-
tissa will simply be the dividend. Full precision of the
dividend is used to minimize injected error. The ex-
ponent and sign logic are still executed. This is the
general case of division by 1 × 2E or -1 × 2E for any
exponent E. Divide could also examine the reduced
divisor. Because the prior work on perceptual error
tolerance [34] only evaluated the precision reduction
of FP add, subtract, and multiply, we do not enable
trivialization of reduced divisors in this study.

Based on the area for a 64-bit floating-point unit (FPU)
in [10], we generate conservative estimates on the cost of
trivialization. For the newly proposed trivialization con-
ditions, a 8-bit adder is required for the exponent calcula-
tion. The area of a parallel prefix adder is O(m × logm ×
K), where m is the number of bits. Assuming that the
technology-dependent factor K is independent of precision,
a 64-bit adder is about 16 times the area of an 8-bit adder.
In this paper, we use the conservative estimate of an area
ratio of 16.

4.3.2 Trivialization Details

Trivial operations are a result of both the nature of physi-
cal simulation and its numerical implementation. For ex-
ample, some objects come to rest or move in straight lines,
objects rarely rotate continuously, and some objects move
slowly, so many delta-quantities (e.g. changes in position)
are close to zero within a time-step. Numerically speaking,
rotational motion involves trigonometric quantities, such as
cosines and sines, whose trivial values are 1, 0,−1. In addi-
tion, many computations involve normalized direction vec-
tors which often align with one of the standard unit vectors.

In LCP, the core computation involves multiplications
of 6-element matrices such as constraint forces, jacobian
matrices, and inverse jacobians. For each matrix, three ele-
ments refer to the linear components of each axis with val-

ues from the normal vector at the contact point. The other
three elements refer to angular components of each axis
computed as the cross-product of the contact normal with
the vector defined by the contact point and the first object’s
point of reference.

Table 3 presents some factors that contribute to trivial
operations, derived from directed tests using two rigid bod-
ies. For example, the collision of objects lacking angular
velocity may have more trivial operations than the collision
of spinning objects.

Based on simulations of the latest PhysicsBench [32]
with object-disabling and round-to-nearest for 200 simula-
tion steps (30 frames), we have compiled the trivialization
hit-rate with full precision using conventional conditions
versus reduced precision with all conditions in Table 4 for
LCP. Precision reduction and the new conditions increase
the effectiveness of trivialization by 62% for adds and 41%
for multiplies on average. This translates to an additional
15% and 13% of total FP adds and FP multiplies being triv-
ializable on average.

Trivial (Add,Mult) Memo (Add,Mult)
Benchmark 23-bit Reduced 23-bit Reduced

Bre 36, 34 48, 41 0, 2 1, 8
Con 49, 43 71, 62 0, 1 8, 38
Def 32, 31 61, 64 0, 2 7, 35
Eve 35, 33 43, 38 0, 3 1, 6
Exp 28, 25 38, 29 0, 7 1, 10
Hig 27, 23 54, 49 0, 8 11, 51
Per 32, 32 34, 34 0, 0 0, 0
Rag 34, 33 52, 53 0, 0 2, 28

Table 4. Percent FP trivialized or memoized
with full and reduced precision for adds and
multiplies.

4.3.3 Locality of FP Operations

While many FP operations in real-time physics are trivializ-
able, a small number of non-trivial dynamic instructions are
repetitious. Using two 256-entry memoization tables, each
with 16-way associativity, we can see that less than 9% of
instructions exhibit good locality. One table is used per op-
eration type as suggested by [10]. This is summarized in
table 4. We use an XOR of the most significant bits in the
mantissas of the operands to index into separate tables for
add and multiply. In [10], the SPEC CPU2000 benchmarks
were shown to have a much higher hit rate of 20-30%, and
even use a smaller table size.

When memoizing precision reduced values, however,
there is certainly the immediate gain from the need to store
fewer bits per entry. But, there is also an increase in cov-
erage – with reduced precision, there are fewer possible



values and combinations to memoize. Values that are very
close will become one value with reduced precision, poten-
tially combining multiple table entries into one. By leverag-
ing reduced precision, we see that the memoization hit rate
for FP multiply increases to the level seen for SPEC bench-
marks. All memoization results are shown in Table 4. Triv-
ializable operations are filtered from accessing the memo-
ization tables.

4.3.4 Lookup Table

Although precision reduction significantly improves the av-
erage hit-rate of FP multiply memoization, the data points
to the fact that the increased hit-rate is due to the reduction
in the range of possible operand values. Table 4 shows that
precision reduction significantly improve the memoization
hit-rates of Continuous, Deformable, Highspeed, and Rag-
doll. All of these require 5 or less mantissa bits. With n-bit
mantissa operands, the number of possible unique opera-
tions is 2n × 2n = 22n. For a 4-bit or 3-bit mantissa, the
256-entry memoization table can store all possible operand
pairs resulting in 100% coverage. For a 5-bit mantissa, this
table can store 25% of all possible combinations. As the
minimum required precision increases to 7-bit and above,
precision reduction fails to improve hit-rates significantly.

This behavior leads us to propose the use of a lookup
table for computing narrow-width FP add and mult opera-
tions. By using a lookup table instead of memoization ta-
bles, area and latency are significantly improved, as shown
by Table 5. Instead of storing information about dynamic
instruction execution, the lookup table can be populated at
boot time. During run-time, no writes to the lookup table
are necessary. The index is 11 bits for the 2K entry table,
and the most significant bit denotes the type of FP opera-
tion (add vs mult). The output of the table is used as the
mantissa of the result.

For FP multiply lookup, the concatenation of the reduced
operands is used to index the table. If the minimum preci-
sion is less than 5 bits, we can still use 5 bits from each
operand to index the table for a more accurate result.

For FP add lookup, the smaller operand is first shifted
based on the exponent difference. This operation only re-
quires a small and fast 5-bit shifter. This means that the
implicit 1 of the smaller operand will be seen. Then, the
concatenation of the larger operand and the shifted operand
is used as the index. In FP add lookup entries, an additional
bit is stored to indicate the need to increment the exponent
by 1 for normalization of a carry out. Since we allocate 8
bits per entry, there is room for such annotation. One corner
case for FP add is when the two operands have the same ex-
ponent. In this case, indexing with the default scheme will
result in aliasing with a smaller operand which has been
shifted. One solution is to first detect this by an exponent

difference of zero, then appropriately handle the most sig-
nificant bit after the leading one. This solution does not
require any changes to the default scheme.

With the lookup table, there is no tag and only a single
rd/wr port is required since the table contents are not modi-
fied during execution – all values are preloaded. The mem-
oization table requires a read and a write port to support the
simultaneous read of an issuing operation and the writing of
result from the FPU calculation. However, despite this, we
give an advantage to the memoization tables by only charg-
ing it for a single rd/wr port in our area/energy estimation,
even though we simulate a table with two ports.

All data presented is generated using Cacti 3.0 [30]. For
the memoization tables, we use 64 address bits and 32 data
bits. For the lookup table, we use 11 address bits and 8
data bits – and disregard the contribution of tag area. For
benchmarks requiring precision less than 6 bits, the 2K-
entry lookup table (entries are 1B each) achieves a better
hit-rate than using the two (one for each operation type)
256 entry 16-way memoization tables (entries at 12B each)
we simulate. With the lookup table, the area requirement
is reduced by 77%. We assume a single cycle latency
for lookup. We implement the lookup table in dedicated
scratch-pad memory. When the required precision exceeds
five bits, the lookup table is no longer useful and the mem-
ory can be used for other purposes. Detailed evaluation of
this additional opportunity is left for future work.

Table Type Latency (ns) Energy (nJ) Area (mm
2)

Lookup 0.40 0.03 0.08
Memo 0.88 0.73 0.35

Table 5. Lookup vs memoization table

5 FPU Sharing

Precision reduction, including its effect on trivialization
and the opportunity of arithmetic lookup, provides us with
the opportunity to avoid or simplify work done by the FPU.
In this section, we will exploit this opportunity to facilitate
sharing of a single full-precision floating-point unit (FPU)
among a number of fine-grain (FG) cores in the ParallAX
architecture. The overall goal here is to reduce the area foot-
print of each FG core, enabling us to bring even more cores
to bear for a given silicon budget.

We use simple, in-order shader-class cores with the pa-
rameters shown in Table 6 in this study, and assume a
core area excluding the floating-point unit (FPU) of 2mm2

in 90nm technology. Published data on FPU area ranges
widely within the same technology due to parameters such
as the design flow, target latency, area allocation, and cir-
cuit optimization. To make this exploration more gener-



ally applicable, we explore four FPU designs with vary-
ing area requirements: 1.5mm2, 1.0mm2, 0.75mm2, and
0.375mm2. These area estimates are based respectively on
results from a high-level synthesis tool tuned for generating
area-efficient floating point data-paths, and published data
from [18], [10], and [21].

Processor Pipeline 1-wide, 5-stages, in-order execution
Functional Units 1 int, 1 fp, 1 ld/st
Window/Scheduler 8,4
Branch Predictor 384B YAGS + 4-entry RAS
Local Inst Memory 4KB, 1-cycle
Local Data Memory 4KB, 1-cycle
Technology 90 nm
Clock Frequency 1GHz
FP Latencies fpALU (4) fpMult (4) fpDiv (20)
INT Latencies iALU (1) iMult (6) iDiv (40)

Table 6. Fine-grain shader core design

1 2 4 8

Figure 2. Layout for one, two, four, and eight
cores sharing an FPU.

Trivialization Check
Table Lookup

FP
Reg
Read

Wait for FPALU
And execute FP WB

FP WB

If Triv or Lookup 
hits then kill

If precision > 6
try to send to FPU

Figure 3. Pipeline for FPU sharing.

The layouts for our assumptions on sharing 2, 4, and 8
cores are shown in figure 2. We adopt a simple policy for
arbitration to minimize latency – the cores simply take turns
accessing the FPU on alternating cycles for pipelined oper-
ations. So when a single FPU is shared among N cores,
a given core will get access to the FPU once every N cy-
cles. If the core does not require the FPU in that cycle, the
opportunity to use the FPU is wasted. For long latency non-
pipelined FP operations such as divide, we assume alternat-
ing 3-cycle scheduling windows for each core as described
in [18]. These operations consist of a small percentage of
total FP operations for physics simulation.

Core

FP OutFP In1 FP In2

RegFile

Core

Core

FPU

Lookup Triv

MUX

M
UX

M
UX

JamJam

55

Figure 4. Four cores sharing a single FPU –
each core has a trivialization and memoiza-
tion unit.

For sharing among 2 cores, 4 cores and 8 cores, we as-
sume 0-cycle, 1-cycle, and 2-cycle latency penalties. Based
on mirroring of cores as described in [17, 18], sharing the
FPU among 2 cores can be accomplished with no added
latency. For the 4 core and 8 core sharing, we add conser-
vative latency estimates for the additional wire delay from
each core to the FPU. Using a 2mm×2mm aspect ratio for
the cores, we assume a 2mm wire length for 4-core shar-
ing and a 4mm wire length for 8-core sharing. Based on
the 90nm information for the narrowest wire width in [9],
the one-way added delays are 0.074 ns and 0.296 ns respec-
tively. In section 5.2, we will evaluate the performance sen-
sitivity to added FPU latency.

5.1 Hierarchical FPUs

To attack the overhead of sharing, we propose a hierar-
chical FPU (HFPU) architecture. A small, simple L1 FPU is
placed local to each core for low latency and high through-
put, and the full precision FPUs are shared at the L2 level to
maximize area efficiency and to satisfy high-precision ex-
ecution. This is similar in concept to a cache hierarchy,
but we are sharing execution resources instead of storage
resource. If the required level of precision for a particular
operation exceeds the capability of the L1 FPU, then the op-
eration must be performed in the L2 FPU. While it may be
possible to use software support [12] to execute in the L1
FPU, we do not consider this alternative in this study.

We propose and evaluate the following L1 FPU design
alternatives. All L1 designs contain logic to handle simple
non-arithmetic FP operations. If a given operation exceeds
the capability of the L1 FPU, it will be executed in the L2



FPU. We list the alternatives by increasing complexity of
the L1 FPU design.

1. Conventional Trivialization: The L1 FPU only con-
tains conventional trivialization logic – no precision
reduction.

2. Reduced Precision Trivialization: The L1 FPU uses
our reduced precision trivialization logic. Additional
exponent logic is required.

3. Lookup Table + Reduced Precision Trivialization: The
L1 FPU has our reduced precision trivialization logic,
exponent logic, and a local 2K-entry lookup table. FP
add and multiply instructions using mantissa precision
of less than six bits make use of the lookup table.
Figure 4 demonstrates a version of this design where
four cores share a single L2 FPU. Each core has an
L1 FPU with trivialization and lookup table hardware.
The pipeline change required for this FPU sharing is
illustrated in figure 3.

4. mini-FPU + Reduced Precision Trivialization: In ad-
dition to our reduced precision trivialization logic, this
L1 FPU has a mini-FPU: an FPU design that uses a 14-
bit mantissa and 8-bit exponents. FP add and multiply
operations with mantissa precision of less than 15 bits
can execute in this mini-FPU. The 14-bit precision is
chosen based on the (benchmark coverage)/(area) ra-
tio derived from Table 1. The intent of this design is to
provide potentially higher coverage at the L1 FPU, but
at a greater area cost.

Required Mechanism Latency (cycles)
Trivialization or Look-up Table 1
mini-FPU 3
Full FPU Arbitration 0-1 for 2-core sharing

0-3 for 4-core sharing
0-7 for 8-core sharing

Interconnect Overhead 0 for 2-core sharing
1 for 4-core sharing
2 for 8-core sharing

Full FPU Latency 4 for fpALU and fpMult
20 for fpDiv

Table 7. Variable FP Latency

5.1.1 Variable FP Latency

All components of HFPU’s variable FP latency are listed in
Table 7. If an operation can be satisfied by trivialization or
look-up table, it takes one cycle to complete. If the mini-
FPU is available and the operation can be satisfied by it, the
operation takes three cycles. If an operation requires the

full FPU, the exact latency is determined by accumulating
the required latencies of arbitration, interconnect overhead,
and full FPU operation.

While the latency for each operation is variable, the la-
tency of a non-trivial operation is known at issue time. This
is accomplished by using a local counter to indicate current
round-robin arbitration overhead. The interconnect over-
head and FPU latencies are fixed.

For the simple in-order, single-issue cores we modeled,
there is no dynamic instruction scheduler. Instructions are
dispatched in program order, so instruction scheduling is
done at compile time. SESC uses the MIPS-ISA, and we
compile with the -mips2 option without targeting a specific
microarchitecture. We do not leverage the fact that FP op
might be single cycle, and the same binary is used for all
simulations. If the operation is satisfied by the trivial or
look-up table logic, then the operation completes in 1 cycle.
If not, the pipeline stalls until the operation is completed.
Since the cores are in-order single-issue cores, the perfor-
mance impact of these stalls is not significant. In the case
of the look-up table, if the required precision can be sat-
isfied by the look-up table, 100% of operations sent to the
look-up table will be satisfied.

For more complex cores with dynamic instruction sched-
ulers, different implementations are possible:

1. Optimistically assumes 1 cycle latency. If the oper-
ation is not satisfied by the trivial or look-up table
logic, the pipeline stalls until the operation is com-
pleted. Once an operation is detected to require the full
FPU, the actual number of required cycles is known.

2. Pessimistically assumes the use of the full FPU.
The required number of cycles is known at begin-
ning of issue. This scheduling policy eliminates
stalls/flushes/replays and retains the energy savings
shown in the paper.

5.2 Results

For our performance simulations, we assume a baseline
ParallAX architecture with 128 simple (fine-grain) cores,
as described in Table 6, connected by a mesh interconnect.
Four different FPU designs with varying area requirements
(1.5 mm2, 1.0 mm2, 0.75 mm2, and 0.375 mm2) are eval-
uated. Area estimates include per core area (2 mm2 each),
per core mesh interconnect routers (0.19 mm2 each) [31],
the full-precision FPUs, and additional logic and structures
for different L1 FPU designs. The details of each configu-
ration are shown in Table 8.

For the 14-bit mantissa mini-FPU, we assume an area re-
quirement of 60% that of the full precision 23-bit mantissa
FPU. This ratio is based on the estimates of both prior work
on reduced precision FPU [11] and results from a high-level



synthesis tool tuned for generating area-efficient floating
point data-paths. All area data is for 90nm technology.

Area Overhead Avg Per Core IPC
Architecture Per Core 4 Cores Per L2-FPU

(mm
2) Narrowphase, LCP

Baseline (Conjoin) — 0.347, 0.293
Conv Triv 0.0023 0.376, 0.319

Reduced Triv 0.0079 0.377, 0.334
Reduced Triv 0.0079 +
Lookup Table 0.080 0.377, 0.357
Reduced Triv 0.0079 +

mini-FPU (14bit) (0.6 × FP Area) 0.382, 0.364

Table 8. Evaluated designs. Conjoin refers
to baseline with FPU sharing. Area overhead
per core = additional area added to the 2 mm2

core.

First, we consider the lower area cost alternatives, and
then we will address the mini-FPU. Figures 5(a) (LCP) and
5(b) (Narrow-phase) demonstrate the aggregate improve-
ment in throughput over the baseline configuration with no
FPU sharing for LCP and narrow-phase respectively. The
four clusters along the x-axis represent the different FPU
area sizes we evaluate, and each cluster has four data points
for each architecture representing sharing a single L2 FPU
among one, two, four, and eight cores.

Note that any area saved by FPU sharing is used to add
more fine-grain cores, taking into account the interconnect
and core area as above. Therefore, two competing trends
will influence performance: (1) an increase in the number
of cores will mean more exploitation of parallelism and (2)
an increase in FPU sharing may mean worse per-core per-
formance due to the overhead of sharing. Since our base-
line has 128 cores, the total area available varies with the
assumed size of the FPU. For the four FPU sizes we evalu-
ate, the total die area is: 472 mm2 for the 1.5 mm2 FPU,
408 mm2 for the 1.0 mm2 FPU, 376 mm2 for the 0.75
mm2 FPU, and 328 mm2 for the 0.375 mm2 FPU. Figure 6
shows the total number of cores available to each configura-
tion in the same die area as that of the appropriate baseline
configuration with 128 cores.

The data across the two phases from figures 5(a) and
5(b) shows two attractive configurations: Reduced Preci-
sion Trivialization is better for Narrow-phase and Lookup
Table + Reduced Precision Trivialization is better for LCP.
As shown by Table 8, the per core IPCs of the two config-
urations for Narrow-phase are the same. The slight degra-
dation with Lookup is due to the lookup table area and the
fact that Narrow-phase always requires more than five bits
of precision – therefore the lookup table is not used. To
choose the better design, we also evaluate the energy and
power impact of these two HFPU designs.

To estimate the total dynamic energy consumed by FP
operations, we leverage the energy data for different sub-
units of the FPU presented in [10]. For configurations with
trivialization, all FP operations are charged the trivialization
logic energy. Non-trivial operations are then charged for
the FPU energy. The lookup table is activated when the
required precision falls below six bits. In these cases, all
FP operations are charged the trivialization plus the lookup
energies. The diamonds (secondary y-axis) of Figure 6(b)
show a clear energy advantage to using the lookup table for
LCP.

While performance is improved by sharing FPUs, in-
creased per-FPU utilization could worsen the existing hot
spot power density problem of FPUs [17]. To gauge the per-
FPU utilization, we show the % of FP operations that are
trivialized by trivialization or table lookup in the bars (pri-
mary y-axis) of Figure 6(b). The HFPU design trivializes
53% of FP operations in the FP intensive phase of LCP. This
suggests that the HFPU can lower per-FPU utilization when
sharing one FPU between two cores as compared to the un-
shared baseline. For sharing among four cores with HFPU,
per-FPU utilization will be similar to that of the prior work
on conjoined CMPs [18] sharing only among two cores.

Next we compare the mini-FPU design to our best
performing low-overhead L1 FPU. Figures 7(a) and 7(b)
demonstrates the improvement in throughput over the 128-
core baseline case for these designs – with figure 6 demon-
strating the number of cores possible with each architec-
ture. The mini-FPU design provides some improvement
over the baseline, but the area overhead of the L1 FPU re-
duces the performance of this approach in comparison with
the Lookup Table + Reduced Precision Trivialization L1
FPU.

Physics requires varying amount of numerical accuracy
across different phases and scenarios – a clear differentiat-
ing factor between the error tolerance of physics and me-
dia processing. In the worst case, full precision is required.
Therefore the mini-FPU cannot replace a full precision FPU
in a physics processor architecture – there must be the abil-
ity to do full-precision FP. This makes the mini-FPU design
inherently more costly, and argues for possibly sharing L1
FPUs among cores as well. We look at the case where the
mini-FPU is shared among either two or four cores. We
limit our exploration to configurations where the L2 FPU is
shared by at least as many cores as the L1 FPU. For the Fig-
ures, mini-FPU refers to no mini-FPU sharing. mini-FPU
2 shared one mini-FPU among 2 cores, and mini-FPU 4
shared one mini-FPU among 4 cores. As before, the x-axis
(Cores per FPU) refers to the degree of L2 FPU sharing.

When looking at the per core throughput in Table 8, the
14-bit mantissa mini-FPU has the highest IPC. This is a re-
sult of a 1-cycle reduction in latency and broad coverage of
benchmarks (14-bit mantissa satisfies 7/8 benchmarks for



-20%

-10%

0%

10%

20%

30%

40%

50%

60%

1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8

Cores per FPU

%
 P

er
fo

rm
an

ce
 Im

pr
ov

em
en

t 

Lookup + Reduced Triv + Conjoin Reduced Triv + Conjoin
Conv Triv + Conjoin Conjoin

1.5 mm2 1.0 mm2 0.75 mm2 0.375 mm2

-20%

-10%

0%

10%

20%

30%

40%

50%

60%

1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8

Cores per FPU

%
 P

er
fo

rm
an

ce
 Im

pr
ov

em
en

t 

Lookup + Reduced Triv + Conjoin Reduced Triv + Conjoin
Conv Triv + Conjoin Conjoin

1.5 mm2 1.0 mm2 0.75 mm2 0.375 mm2

(a) (b)

Figure 5. (a) HFPU LCP performance — (b) HFPU narrow-phase performance

LCP and 4/8 benchmarks for Narrow-phase). However, the
mini-FPU simply cannot pack as many cores into a given
silicon area due to its area overhead (as shown in figure 6),
resulting in a lower overall throughput. The mini-FPU de-
signs only become more attractive for the most aggressive
FPU design (0.375mm2) at the highest level of sharing.

As shown by the performance and energy data, the best
HFPU design we examined when considering both perfor-
mance and energy is to share one full-precision FPU among
4 cores using the Lookup Table + Reduced Precision Triv-
ialization L1 FPU. On average, HFPU improves LCP per-
formance over the baseline by 55%, 40%, 33%, and 20%
for the four FPU designs. On average, HFPU improves
Narrow-phase performance over the baseline by 46%, 32%,
25%, and 13%. Total dynamic energy expended for FP op-
erations is reduced by 50% for LCP and 27% for Narrow-
phase.

There are area and timing overheads when sharing a re-
source like the FPU among multiple cores regardless of the
L1 FPU design – these come from the arbitration logic re-
quired to choose which core will access the shared resource
and the interconnect cost to connect the cores and resource
together. We evaluated the performance sensitivity to in-
creased latency from sharing in Figure 8. The baseline for
these figures is the performance of the Lookup Table + Re-
duced Precision Trivialization sharing one FPU among two
cores. LCP (a) is shown to be more sensitive than Narrow-
phase (b) in this figure. For LCP, the performance of the
more aggressively designed FPUs suffers when the latency
increases beyond a single cycle.

6 Summary and Future Work

In this study, we exploit the inherent perceptual error tol-
erance of physics-based animation to dynamically adapt the
required precision for floating-point computation. Then, we
identify and leverage the benefits made possible by dynamic

precision tuning to design a hierarchical floating-point unit
(HFPU). This consists of an area-efficient L1 FPU and a
full-precision L2 FPU that is shared among a number of
cores in the ParallAX architecture. Our best performing L1
FPU design consists of our enhanced trivialization logic and
a mantissa lookup table – an area efficient design that allows
more cores to be packed into a particular silicon area. For
the range of FPU designs we consider, this L1 FPU coupled
with an L2 FPU that is shared among four cores provides an
improvement in overall throughput up to 55% and reduces
energy expended in the FPU by up to 50%.

7 Acknowledgements

We would like to thank the anonymous reviewers for
their helpful comments. Intel Corp., Microsoft Corp.,
AMD/ATI Corp., and AGEIA Technologies Corp. helped
us with their generous support through equipment and soft-
ware grants. This work was partially supported by NSF
grants CCF-0429983 and CCF-0133997, and by SRC grant
1317. Any opinions, findings and conclusions or recom-
mendations expressed in this paper are those of the authors
and do not necessarily reflect the views of NSF or SRC.

References

[1] Open dynamics engine. http://www.ode.org/ode-latest-
userguide.html.

[2] Physicsbench. http://sourceforge.net/projects/physicsbench/.
[3] AGEIA. Physx product overview. www.ageia.com.
[4] C. Alvarez, J. Corbal, and M. Valero. Fuzzy memoization

for floating-point multimedia applications. In IEEE Trans-
actions on Computers, 2005.

[5] E. Atoofian and A. Baniasadi. Improving energy-efficiency
by bypassing trivial computations. In The 19th IEEE In-
ternational Parallel and Distributed Processing Symposium
(IPDPS), 2005.



100

125

150

175

200

1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8
Cores per FPU

To
ta

l N
um

be
r o

f C
or

es

Conjoin / Conv Triv / Reduced Triv Lookup + Reduced Triv + Conjoin
mini-FPU 4 mini-FPU 2
mini-FPU

1.5 mm2 1.0 mm2 0.75 mm2 0.375 mm2 

0%

10%

20%

30%

40%

50%

60%

C R L C R L
0%

10%

20%

30%

40%

50%

60%
% Trivialized % Energy Reduction

Narrow-phase LCP

(a) (b)

Figure 6. (a) Total number of cores in the same die area as 128-core baseline. The total area used:
472 mm2 for 1.5 mm2 FPU, 408 mm2 for 1.0 mm2 FPU, 376 mm2 for 0.75 mm2 FPU, and 328 mm2

for 0.375 mm2 FPU. — (b) FP computation % trivialized and energy reduction. C = Conv Triv, R =
Reduced Triv, and L = Lookup Table + Reduced Triv.

[6] D. Baraff. Physically Based Modeling: Principals and Prac-
tice. SIGGRAPH Online Course Notes, 1997.

[7] R. Barzel, J. Hughes, and D. Wood. Plausible motion sim-
ulation for computer graphics animation. In Computer Ani-
mation and Simulation, 1996.

[8] A. W. Burks, H. H. Goldstine, and J. von Neumann. Pre-
liminary discussion of the logical design of an electronics
computing instrument. Computer Structures: Reading and
Examples, McGraw-Hill Inc., 1971.

[9] G. Chen, H. Chen, M. Haurylau, N. A. Nelson, D. H.
Albonesi, P. M. Fauchet, and E. G. Friedman. On-chip
copper-based vs. optical interconnects: Delay uncertainty,
latency, power, and bandwidth density comparative predic-
tions. In IEEE International Interconnect Technology Con-
ference, 2006.

[10] D. Citron and D. G. Feitelson. Look it up or do the math:
An energy, area, and timing analysis of instruction reuse and
memoization. In Workshop on Power-Aware Computer Sys-
tems, 2003.

[11] F. Fang, T. Chen, and R. Rutenbar. Lightweight floating-
point arithmetic: Case study of inverse discrete cosine trans-
form. EURASIP Journal on Signal Processing, Special Is-
sue on Applied Implementation of DSP and Communication,
2002.

[12] D. Goddeke, R. Strzodka, and S. Turek. Performance and ac-
curacy of hardware-oriented native-, emulated- and mixed-
precision solvers in fem simulations. In International Jour-
nal of Parallel, Emergent and Distributed Systems, 2006.

[13] Havok. http://www.havok.com/content/view/187/77.
[14] P. Hofstee. Power efficient architecture and the cell proces-

sor. In HPCA11, 2005.
[15] C. J. Hughes, R. Grzeszczuk, E. Sifakis, D. Kim, S. Kumar,

A. P. Selle, J. Chhugani, M. Holliman, and Y. Chen. Physi-
cal simulation for animation and visual effects: Paralleliza-

tion and characterization for chip multiprocessors. In 34th
Annual International Symposium on Computer Architecture,
2007.

[16] P. Kongetira, K. Aingaran, and K. Olukotun. Niagara, a 32-
way multithreaded sparc processor. In IEEE Micro, 2005.

[17] K. Krewell. Ultrasparc iv mirrors predecessor. In Micropro-
cessor Report, 2003.

[18] R. Kumar, N. P. Jouppi, and D. M. Tullsen. Conjoined-core
chip multiprocessing. In The 37th International Symposium
on Microarchitecture (MICRO), 2004.

[19] M. Lipasti, C. Wilkerson, and J. Shen. Value locality and
load value prediction. In Seventh International Conference
on Architectural Support for Programming Languages and
Operating Systems, pages 138–147, Oct. 1996.

[20] M. Matthias, B. Heidelberger, M. Hennix, and J. Ratcliff.
Position based dynamics. In Proceedings of the 3rd Work-
shop in Virtual Reality Interactions and Physical Simulation,
2006.

[21] H. Oh, S. M. Mueller, C. Jacobi, K. D. Tran, S. R. Cottier,
B. W. Michael, H. Nishikawa, Y. Totsuka, T. Namatame,
N. Yano, T. Machida, and S. Dhong. A fully pipelined
single-precision floating-point unit in the synergistic proces-
sor element of a cell processor. In IEEE Journal of Solid-
State Circuits, 2006.

[22] K. Olukoton, B. Nayfeh, L. Hammond, K. Wilson, and
K. Chang. The case for a single-chip multiprocessor. In
ASPLOS-VII, 1996.

[23] C. O’Sullivan, S. Howlett, R. McDonnell, Y. Morvan, and
K. O’Conor. Perceptually adaptive graphics. In Eurograph-
ics 2004, State of the Art Report, 2004.

[24] J. Renau, B. Fraguela, J. Tuck, W. Liu, M. Prvulovic,
L. Ceze, S. Sarangi, P. Sack, K. Strauss, and P. Montesinos.
SESC simulator, January 2005. http://sesc.sourceforge.net.



-20%

-10%

0%

10%

20%

30%

40%

50%

60%

1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8

Cores per full-FPU

%
 P

er
fo

rm
an

ce
 Im

pr
ov

em
en

t 

Lookup + Reduced Triv + Conjoin mini-FPU
Shared mini-FPU 2 Shared mini-FPU 4

1.5 mm2 1.0 mm2 0.75 mm2 0.375 mm2

-20%

-10%

0%

10%

20%

30%

40%

50%

60%

1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8

Cores per full-FPU

%
 P

er
fo

rm
an

ce
 Im

pr
ov

em
en

t 

Lookup + Reduced Triv + Conjoin mini-FPU
Shared mini-FPU 2 Shared mini-FPU 4

1.5 mm2 1.0 mm2 0.75 mm2 0.375 mm2

(a) (b)

Figure 7. (a) mini-FPU LCP performance — (b) mini-FPU narrow-phase performance

-10%

-5%

0%

5%

10%

15%

FPU Design

%
 T

hr
ou

gh
pu

t I
m

pr
ov

em
en

t o
ve

r
 

HF
PU

2 
0-

cy
cle

HFPU4 1-cycle HFPU4 2-cycle
HFPU4 3-cycle HFPU4 4-cycle

1.5 mm2

1.0 mm2

0.75 mm2

0.375 mm2

-10%

-5%

0%

5%

10%

15%

FPU Design

%
 T

hr
ou

gh
pu

t I
m

pr
ov

em
en

t o
ve

r
 

HF
PU

2 
0-

cy
cle

HFPU4 1-cycle HFPU4 2-cycle
HFPU4 3-cycle HFPU4 4-cycle

1.5 mm2

1.0 mm2

0.75 mm2

0.375 mm2

(a) (b)

Figure 8. (a) LCP latency sensitivity — (b) Narrow-phase latency sensitivity

[25] S. E. Richardson. Caching function results: Faster arith-
metic by avoiding unnecessary computation. In IEEE Sym-
posium on Computer Arithmetic, 1993.

[26] S. E. Richardson. Exploiting trivial and redundant compu-
tation. 1993.

[27] A. Seugling and M. Rolin. Evaluation of physics engines
and implementation of a physics module ina 3d-authoring
tool. In Master’s Thesis, 2006.

[28] A. Shayesteh, G. Reinman, N. Jouppi, S. Sair, and T. Sher-
wood. Improving the performance and power efficiency of
shared helpers in cmps. In International Conference on
Compilers, Architecture, and Synthesis for Embedded Sys-
tems, 2006.

[29] D. Sheahan. Developing and tuning applications on ultra-
sparc t1 chip multithreading systems. In Sun Blue Prints
Online, 2007.

[30] P. Shivakumar and N. Jouppi. Cacti 3.0: An integrated cache
timing, power, and area model. Compaq WRL 2001/2, 2001.

[31] V. Soteriou, N. Eisley, H. Wang, B. Li, and L. Peh. Po-
laris: A system-level roadmap for on-chip interconnection
networks. In Proceedings of the 24th International Confer-
ence on Computer Design, 2006.

[32] T. Y. Yeh, P. Faloutsos, S. J. Patel, and G. Reinman. Par-
allax: An architecture for real-time physics. In The 34th
International Symposium on Computer Architecture (ISCA),
2007.

[33] T. Y. Yeh, P. Faloutsos, and G. Reinman. Enabling real-time
physics simulation in future interactive entertainment. In
ACM SIGGRAPH Video Game Symposium, 2006.

[34] T. Y. Yeh, G. Reinman, S. J. Patel, and P. Faloutsos.
Fool me twice: Exploring and exploiting error toler-
ance in physics-based animation. In 2007 ACM Transac-
tions on Graphics (TOG) – accepted with major revisions.
http://www.cs.ucla.edu/ tomyeh/tog07.pdf.

[35] J. Yi and D. Lilja. Improving processor performance by sim-
plifying and bypassing trivial computations. In IEEE Inter-
national Conference on Computer Design: VLSI in comput-
ers and Processors (ICCD), 2002.


