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ABSTRACT
Future interactive entertainment applications will feature
the physical simulation of thousands of interacting objects
using explosions, breakable objects, and cloth effects. While
these applications require a tremendous amount of perfor-
mance to satisfy the minimum frame rate of 30 FPS, there
is a dramatic amount of parallelism in future physics work-
loads. How will future physics architectures leverage paral-
lelism to achieve the real-time constraint?

We propose and characterize a set of forward-looking bench-
marks to represent future physics load and explore the de-
sign space of future physics processors. In response to the
demand of this workload, we demonstrate an architecture
with a set of powerful cores and caches to provide perfor-
mance for the serial and coarse-grain parallel components of
physics simulation, along with a flexible set of simple cores
to exploit fine-grain parallelism. Our architecture combines
intelligent, application-aware L2 management with dynamic
coupling/allocation of simple cores to complex cores. Fur-
thermore, we perform sensitivity analysis on interconnect
alternatives to determine how tightly to couple these cores.

Categories and Subject Descriptors:
C.1 [Processor Architectures]: Multiple Data Stream Archi-
tectures C.3 [Special-Purpose and Application-based Sys-
tems]: Real-time and Embedded Systems

General Terms: Design, Performance.

Keywords: Application Specific Processor, Real-time Physics,
Physics Based Animation, Chip Multiprocessor, Stream Pro-
cessing, Interactive Entertainment.

1. INTRODUCTION AND MOTIVATION
Interactive entertainment (IE) applications demand high

performance from all architectural components. In the fu-
ture, this demand will increase even further. These appli-
cations will be composed of a diverse set of computation-
ally demanding tasks. One critical task is modeling how
objects and characters move and interact in a virtual en-
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vironment. Most current IE applications make use of pre-
recorded motion clips to synthesize the motion of virtual
objects (kinematics), but as these objects and their inter-
actions scale up in complexity, pre-recording has become
impractical. Physics-based simulation has emerged as an at-
tractive alternative to kinematics, providing high levels of
physical realism through motion calculation. Future appli-
cations targeting a true immersive experience will demand
this as a cornerstone of their design.

The benefits of physics-based simulation come with a con-
siderably higher computational cost. To maintain a fluid vi-
sual experience, IE applications typically provide at least a
30 frames per second (FPS) display rate (33ms per frame).
This is the total time allotted to all game components, in-
cluding physics-based simulation, graphics display, AI, and
game engine code. Conventional cores cannot meet the com-
putational demands of these applications. For example, in
Section 6 we show a realistic example where a single-core
desktop processor achieves only 2.3 FPS.

The difficulty in meeting the performance demands of
physics-based simulation is somewhat mitigated by the high
degree of parallelism available in these applications. Our
results show that on average 91% of a physics workload can
be broken down into parallel subtasks of varying granular-
ities. Although only 9% of the workload is serialized, on
a single desktop core this portion can take up to 125% of
the available frame time. This argues for an architecture
that has sufficient performance to tackle the serial tasks,
but also has the flexibility to fully exploit parallel regions.
There are existing designs that combine some number of
large coarse-granularity (CG) cores with a larger number of
fine-granularity (FG) cores, including GPUs connected to a
host CPU through a system bus [20], the Cell’s SPE’s paired
with its PPE [10], and a conventional core paired with multi-
ple vector units [14]. However, these designs lack flexibility
in how their cores can be utilized, making it difficult for
them to efficiently meet the demands of real-time physics.
This paper proposes a more flexible design that is optimized
to meet these demands, based on a design space exploration
that includes the number and type of cores required, the
amount of cache state required, and the interconnect re-
quired between these components.

In this paper, we make the following contributions:

• We devise a forward-looking benchmark suite for inter-
active, physical simulation. The suite combines rigid
body, cloth, debris and other features at a level of scale
commensurate with future-generation games.



• We show that current multi-core architectures will not
be able to sustain interactive frame rates even when
the benchmark suite is aggressively parallelized. Oper-
ating system, cache contention, and control logic area
overhead all contribute to this conclusion.

• We propose an architecture with both CG and FG
cores that is able to sustain interactive frame rates
for physics workloads through efficient area utilization.
The key elements of this efficiency are:

– Intelligent, application-aware L2 management –
In section 6.1 we examine the L2 requirements
for physics simulation and propose a partitioning
strategy that reduces the required L2 space by
more than half.

– Dynamic coupling/allocation of FG cores to CG
cores – In section 7.1 we propose an arbitration
policy that balances the maximal utilization of
available FG core resources and the exploitation
of locality among FG cores working on the same
CG task.

– Relaxed communication latency of FG and CG
cores– In sections 7.2 and 8.2.2 we explore de-
sign alternatives to interconnecting FG and CG
cores. The tight coupling of FG and CG cores can
restrict where these cores are placed (i.e. on/off
chip) and how effectively we can dynamically lever-
age FG cores. To loosen this coupling, we con-
sider the amount of buffering space and applica-
tion parallelism required to overlap communica-
tion for a variety of interconnection strategies.

The rest of this paper is organized as follows. In section 2
we discuss the related work. Section 3 describes our physics
engine and the associated computational load. In section 4
we propose a set of future-thinking benchmarks that rep-
resent a wide range of physical actions and entertainment
scenarios. Section 5 details the experimental setup. Sec-
tion 6 explores the performance of this suite on conventional
architectures and threading methodologies. In section 7 we
outline our proposed physics architecture, and in section 8
we explore its design space. We conclude in section 9.

2. RELATED WORK
RIKEN’s MDGRAPE-3 [26] and AGEIA’s PhysX [3] are

currently the only dedicated physics simulation accelerator
designs. While MD-GRAPE targets computational physics
with limited programmability, PhysX targets real-time physics
for games. Both designs are accelerator boards which con-
nect to the host CPU through a system bus.

Two other closely related bodies of prior work are vector
processing [9] and stream computation [15, 12]. VIRAM[13]
has achieved an order of magnitude performance improve-
ment on certain multimedia benchmarks. However, conven-
tional vector architectures are constrained [14] by limita-
tions such as a centralized register file, precise exception
handling, and an expensive on-chip memory system. While
CODE is scalable, the data shows a plateau at eight clusters
with eight lanes, and the cacheless CODE can not satisfy our
measured physics workload.

Stream architectures (SAs) aim to enable ASIC-like per-
formance efficiency with high-level language programmabil-
ity. Stream programs express computation as a signal flow

graph with streams of records flowing between computation
kernels. While a broad range of designs populate this space,
the high-level characteristics of SAs are described in [15].
The Stream Virtual Machine (SVM) architecture model log-
ically consists of three execution engines (control, kernel,
and DMA) and three storage structures (local registers, lo-
cal memory, and global memory). Related designs in this
space include IBM’s Cell, GPUs, and the Xbox360 system.

Heterogenous CMP designs such as the Cell target task
specific performance using different cores. However, accord-
ing to our exploration, both the PPE and SPE designs are
not optimal for physics computation. This may be a result
of the Cell being designed to execute all components of a
game, not just physics simulation.

The Graphics Processing Unit (GPU) [20] is another stream-
ing architecture design. GPUs are specialized hardware
cores designed to accelerate rendering and display. While
Havok’s FX allows effect physics simulation on GPUs, GPUs
are designed to maximize throughput from the graphics card
to the display – data that enters the pipeline and the results
of intermediate computations cannot be easily accessed by
the CPU. With the host CPU connected to the GPU via
a system bus, the long communication latency is problem-
atic for physics simulation working in a continuous feed-
back loop. This limitation is alleviated in the Xbox360 sys-
tem [4], which combines a 3-core CMP and GPU shaders.
This system allows the GPU to read from the FSB rather
than main memory and L2 data compression reduces the
required bandwidth.

In terms of physics engine software, both Ageia [3] and
Havok [8] provide proprietary SDKs. Open Dynamics En-
gine (ODE) [7] is the most popular open-source alternative.
It has been used in commercial settings, and provides APIs
and numerical techniques similar in nature to proprietary
engines. ODE is the basis of our physics engine.

3. PHYSICS SIMULATION WORKLOAD
In this section, we discuss physics simulation and identify

its main computational phases.

3.1 Our Physics Engine
Our physics engine is a heavily modified implementation

of the publicly available Open Dynamics Engine (ODE) ver-
sion 0.7 [7]. ODE follows a constraint-based approach for
modeling articulated figures, similar to [5, 18], and it is de-
signed for efficiency rather than accuracy. Our implemen-
tation supports more complex physical functions, including
cloth simulation, pre-fractured objects, and explosions. We
have parallelized it using pthreads and a work-queue model
with persistent worker threads. Pthreads minimize thread
overhead, while persistent threads eliminate thread creation
and destruction costs.

The following is the high-level algorithmic flow of ODE,
augmented with our changes (shown in italics).

1. Create and setup a dynamics world.

2. While (time < timeend)

(a) Apply forces to the objects as necessary (e.g. gravity).

(b) Calculate all pairs of objects that are in contact.
(c) For each pair of objects in contact do the following:

i. Compute the contact points and create the asso-
ciated contact constraints (joints).



ii. If an explosive object makes contact with another
object, create a sphere representing blast radius.

iii. If a body makes contact with a cloth’s bounding
volume, insert body on cloth’s contact list.

iv. If a pre-fractured object is in contact with a blast
volume (sphere) break object into debris.

(d) Form groups (islands) of objects interconnected with
joints, i.e. find the connected components.

(e) Forward simulation step: For each island compute the
applied loads and the new positions/velocities of each
object.

(f) Check all breakable joints: if joint’s applied load has
exceeded a threshold, break the joint.

(g) Process all cloth objects by taking a forward simula-
tion step.

(h) Advance the time: time = time + ∆t

3. End.

At the core (forward step) of the simulation loop lies the
constraint solver, which typically uses an iterative relaxation
method. There are two key parameters to trade off accuracy
for efficiency, the time-step ∆t and the number of iterations
n. ∆t defines the amount of simulated time that separates
successive executions of the simulation loop and defines the
number of executed loops per simulated second. n controls
how many relaxation steps the solver takes in a single step.

For our benchmarks, ∆t is 0.01 seconds and 3 steps are
executed per frame to ensure stability and prevent fast ob-
jects from passing through other objects. We use a n of 20
as recommended by [7].

3.2 Computation Phases of Physics Workload
The steps in the above algorithm form a dataflow of com-

putational phases shown in Figure 1. All phases are se-
rialized with respect to each other, but unshaded stages
can exploit parallelism within the stage. Simulations such
as cloth and fluid are specializations of this. Because cloth
simulation presents a conceptually and numerically different
load than rigid-body simulation, we considered it a separate
phase. Below we describe the 5 computational phases in de-
tail. We will use the terms phase and task interchangeably.

Broad-phase. This is the first step of Collision De-
tection (CD). Using approximate bounding volumes, it ef-
ficiently culls away pairs of objects that cannot possibly col-
lide. While Broadphase does not have to be serialized, the
most useful algorithms are those that update a spatial repre-
sentation of the dynamic objects in a scene. And updating
these spatial structures (hash tables, kd-trees, sweep-and-
prune axes) is not easily mapped to parallel architectures.

Narrow-phase. This is the second step of CD that de-
termines the contact points between each pair of colliding
objects. Each pair’s computational load depends on the geo-
metric properties of the objects involved. The overall perfor-
mance is affected by broad-phase’s ability to minimize the
number of pairs considered in this phase. This phase ex-
hibits massive fine-grain (FG) parallelism since object-pairs
are independent of each other. Based on the number of
worker threads, we partition the object-pairs into equal sets.

Island Creation. After generating the contact joints
linking interacting objects together, the engine serially steps
through the list of all objects to create islands (connected
components) of interacting objects. This phase is serializing
in the sense that it must be completed before the next phase
can begin. The full topology of the contacts isn’t known
until the last pair is examined by the algorithm, and only

then can the constraint solvers begin. Practical techniques
for parallel island generation are not commonly available.

Island Processing. For each island, given the applied
forces and torques, the engine computes the resulting accel-
erations and integrates them to compute the new position
and velocity of each object. This phase exhibits both coarse-
grain (CG) and fine-grain (FG) parallelism. Each island is
independent, and the constraint solver for each island con-
tains independent iterations of work. We parallelized the
engine at both granularities. Only islands with more than
25 degrees-of-freedom removed are inserted into the work-
queue – smaller islands execute on the main thread.

Cloth Simulation. We have implemented cloth largely
based on Jakobsen’s position-based approach[11]. An exten-
sion of this approach that handles more general constraints
has been proposed by AGEIA[18]. A cloth object is repre-
sented using a triangular mesh where each edge represents
a length constraint. The constraints are solved using an
iterative constraint relaxation solver and the mesh is sim-
ulated forward in time using a Verlet integrator. Collision
detection is based on a combination of ray casting and axis-
aligned bounding volume hierarchies. Collision resolution is
based on a vertex projection scheme. This phase also ex-
hibits both CG and FG parallelism. Each cloth object is
independent, and the integrator contains independent tasks
for each vertex in the cloth object. We parallelized the en-
gine at both the object and vertex levels.

As we will demonstrate in the rest of this paper, physics
simulation differs from conventional workloads (i.e. SPEC
and multimedia) in the following ways:

• Concrete performance goals - a real-time constraint of
at least 30 FPS.

• Discrete phases of the application - with very different
levels of parallelism and architectural requirements.

• Tightly coupled application phases - these phases are
serial with respect to one another and feature a feed-
back loop not present in applications such as rendering.

4. FUTURE PHYSICS BENCHMARKS
We propose a comprehensive set of benchmarks to repre-

sent the complexity and scale of physics simulation in fu-
ture game-scenarios. Our benchmark suite can be leveraged
by: (1) computer architects/researchers to explore real-time
physics hardware/software designs, and (2) application de-
signers to determine gaming platform performance bounds.

Our benchmark design was guided by high-level physi-
cal actions and representative scenarios from different game
genres. Benchmarks are constructed with parameters for
problem-size scaling, and we use the set of features demon-
strated in Table 2. Table 3 explains the benchmarks while
Table 4 provides some statistical data.

Game physics data scaling has roughly tracked Moore’s
Law along an exponential path as developers load as much
physics onto a game as the minimum-spec system could han-
dle. This trend can be illustrated by three popular games:
(a) Unreal Tournament 2003, (b) Unreal Tournament 2004,
and (c) Gears of War 2006. From discussion with indus-
try insiders, the estimated number of rigid objects in these
games are 75, 100, and 200 respectively. That means that
the number of rigid bodies increased by 33% between 2003
and 2004 and by 100% between 2004 and 2006.

Past benchmarks [27] are limited to small scale rigid-body
interactions. Our suite has dramatically increased the types



of simulations and number of interacting objects. Based on
information from Ageia, future games in development (like
Cell Factor Revolution, Auto Assault, and Stoked Rider)
targeting the PhysX card use 1000-10,000s of rigid body
objects, 10,000s of particles, and 1000s of vertices for de-
formable meshes (cloth). In contrast, physics targeting a
dual-core desktop processor tops out at 500 rigid bodies,
1000s of particles, and no deformable meshes.

5. EXPERIMENTAL SETUP
We used a Simics-based [16] full-system execution-driven

simulator. Both the cache and processor timing simulators
are from the GEMS toolset [17]. All L2 caches are based on
1MB 4-way banks, and Table 1 shows the configuration pa-
rameters used for the coarse-grain cores in our simulations.
Fine-grain cores are described in section 8.

Processor Pipeline: Functional Units:
4-wide, 14-stages 4 int, 2 fp, 2 ld/st
Window/Scheduler: Branch Predictor:
96, 32 entries 17KB YAGS + 64-entry RAS
Block size: L1 I/D caches:
64 bytes 32KB, 4-way, 2-cycle
L2 cache/banks: On-chip network:
15-cycle Point-to-point, 2-cycle per hop
Main Memory: 340 cycles Clock Frequency: 2GHz

Table 1: Coarse-grain Core Design

All benchmarks are executed for 3 frames of physics sim-
ulation due to very long simulation times – the average in-
struction per frame is shown in table 3. Some benchmarks
require more than 4 days to complete a single frame when
simulating a 4-core design. The simulation proceeds with
0.01 second time steps. The benchmarks are setup with
most activity occuring in the first 10 frames. The frames
5-7 are executed, and the frame with longest execution time
is chosen. All benchmarks are warmed up for one physics
simulation step prior to execution of the selected frames.
The performance target is 30 frames-per-second (FPS).

The cores simulated in Simics are SPARC ISA processors
running Solaris 10 in single user mode. All binaries for per-
formance simulation do not include graphical display code
and are compiled by gcc 4.1.1 for the SPARC ISA using the
following flags: [-mcpu=v9 -mtune=ultrasparc3 -mvis -m32
-pthreads -O2]. For visual verification, we compile a sep-
arate set of binaries with visual display code for the x86
ISA. All instrumentation for separating computation phases
uses Simics’ MAGIC instruction, which is not counted when
calculating execution time.

5.1 Interconnect Models
For the on-chip 2D mesh interconnect, we used the data

in Table I from [24] for 90 nm technology. The per hop delay
is 1 cycle, and the router pipeline is 5 cycles (2GHz clock).
This network uses 64-bit flits, and four virtual channels can
simultaneously send data. We assume the packet header to
be 8-bit long, so each packet’s payload is 56-bit.

For the off-chip configurations, we assume the use of ei-
ther Hypertransport (HTX) [1] or PCI Express (PCIe) [2] to
connect the discrete chips. On the fine-grain chip, the same
2D mesh described above connects all cores to the I/O.

6. PERFORMANCE DEMANDS
This section examines physics simulation’s performance

demand by evaluating single-core performance, the per phase
working set, and the limits of coarse-grain (CG) parallelism.

Figure 2(a) shows the total execution time, broken down
into per phase contributions, of one frame for single-threaded
benchmarks running on a 2GHz single-core desktop-class
processor with a 1MB L2 cache. The distribution of exe-
cution times shows good complexity scaling ranging from
Periodic to Mix. Only two benchmarks, Periodic and Rag-
doll satisfies the 30 FPS requirement. The most complicated
benchmark Mix requires over an order of magnitude perfor-
mance improvement to reach 30 FPS.

While Broadphase and Island Creation (the difficult to
parallelize phases - i.e. serial phases) make up only an av-
erage 9% of total execution time, they can still take up to
125% of one frame’s worth of time (i.e. 1/30th of a sec-
ond). This data forces us to optimize both the serial and
parallel components of this workload. The instruction mix
in figure 7(b) shows that serial phases and Narrowphase are
integer dominant with large amount of branches while par-
allel phases Island Processing and Cloth are FP dominant.

To determine the hardware requirement of future physics
applications, we first consider the working set for both the
serial and parallel portions. Then we explore the perfor-
mance impact of exploiting CG thread-level parallelism (TLP).

6.1 Working Set Analysis
After evaluating different core designs and L2 configura-

tions, we found the L2 cache design to be the dominant
factor affecting the serial phase performance. Figure 2 (b)
shows execution time for the serial phases as the L2 cache
is scaled from 1MB to 32MB by adding 4-way 1MB banks.
The banks are configured with a point-to-point network and
use a 2-level directory based MOESI coherency protocol [17].

Most misses are determined to be capacity misses by us-
ing 1024-way 1MB banks. A minimum of 4MB of L2 cache
is required to complete the serial phases within a frame’s
worth of time, and maximum performance requires a fully-
associative 16MB or a more realistic 32MB L2. These sizes
seem relatively large when we consider the number of ob-
jects in these simulations. A majority of L2 misses occur
inside the parallel phases, pointing to the possibility that
the parallel phase data evicts the serial phase data between
simulation steps. To illustrate this, we examine each phase’s
L2 effective working set size by saving the cache state at the
end of a phase and loading this cache state at the beginning
of the next step for the same phase. Figures 3 (a) and 4 (a)
show that the performance for both serial stages plateaus at
4MB, and the performance is within 7% of a 16MB L2 used
by all stages on Figure 2 (b).

Figures 3(b), 4(b), and 5(a) show the isolated L2 scaling
performance data for Narrowphase, Island Processing, and
Cloth respectively. Both Island Processing and Cloth are
relatively insensitive to L2 cache scaling. For Narrowphase,
the benchmarks Explosions and Highspeed show roughly 2X
improvement when scaling the L2 from 1MB to 16MB. This
behavior can be attributed to the large number of object-
pairs shown in Table 4. The increased amount of data re-
quired for Explosions and Highspeed results in their higher
sensitivity to L2 cache size.
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Figure 1: Physics Engine Flow.

Constrained Simulation of articulated objects connected with ideal joints. Virtual humans consist of 16 segments of
Rigid Bodies anthropomorphic dimensions. Cars have a body, rotating wheels, and a suspension system of slider joints.
Terrains Uneven surfaces described by heightfields or trimeshes.
Breakable Joints are broken by accumulation of force or a single strong force exceeding a predetermined threshold.
Joints Bridges, cars, and robots contain breakable joints.
Prefractured Each breakable object contains a set amount of debris that can break apart from the object. The object and
Objects geom representing each piece of debris is created at startup time and enabled once the object breaks.
Explosions Each object is marked with an explosive flag. If an explosive object makes contact with any other object, the

explosive object is replaced by a sphere representing the blast radius with predetermined duration.
Static Immobile objects that moving objects can come in contact with. They do not participate in forward
Obstacles stepping since they do not move but they do participate in collision detection.
Cloth Softbody modeling using constrained vertices that approximate a continuous surface. Large cloth objects use
Simulation 625 vertices to simulate drapery or netting. Small ones, typically attached to virtual humans, use 25 vertices.

Table 2: Features Found in Our Benchmarks

Benchmark Avg Inst/Frame Description

Periodic 34 million Role-playing scenario with 30 humanoids engaging in hand-to-hand combat.
Ragdoll 36 million First-person shooter (FPS) scenario with 30 humanoids falling due to projectile impact.
Continuous 47 million Racing scenario with 30 cars driving on terrain and between obstacles.
Breakable 256 million FPS scenario with cannons shooting and bombs exploding in 3 areas enclosed by walls.
Deformable 409 million Sports/Action scenario with 30 uniformed players and 2 large cloth objects.
Explosions 547 million Real-time strategy scenario with an army fighting in an urban environment with explosives.
Highspeed 518 million Action scenario with 20 cars crashing and non-explosive high-speed rockets destroying 10 buildings.
Mix 829 million A combination of all the features/entities used in the previous 7 benchmarks. There are 3

buildings, 6 bridges, 30 uniformed humanoids and 6 vehicles.

Table 3: Our Physics Benchmarking Suite

Benchmark Obj-Pairs Islands Cloth Objs [vertices] Static Objs Dynamic Objs Prefractured Objs Static Joints
Per 2,633 99 0 0 480 0 480
Rag 2,064 30 0 0 480 0 480
Con 3,182 37 0 1,700 650 0 120
Bre 11,715 97 0 0 1,608 5,652 564
Def 7,871 89 32 [2000] 480 480 0 480
Exp 21,986 58 0 0 3,459 0 200
Hig 21,041 12 0 0 3,309 0 80
Mix 16,367 28 33 [2625] 0 1,608 5,652 564

Table 4: Benchmark Specs
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Figure 2: (a) Execution Time Breakdown of 1 Core + 1MB L2 — (b) Single Core Execution of Serial Parts
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Figure 3: (a) Broadphase Performance [dedicated L2] — (b) Narrowphase Performance [dedicated L2]
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Figure 4: (a) Island Creation Performance [dedicated L2] — (b) Island Processing Performance [dedicated
L2]
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Figure 5: (a) Narrowphase Performance [dedicated L2] — (b) Performance with Processor Scaling
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Figure 6: (a) Execution Time Breakdown (4 Core + 12MB L2) — (b) L2 Miss with Thread Scaling
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With dedicated cache space for each computation phase,
the L2 cache requirement has been significantly reduced.
The serial stages now each require 4MB of L2 cache space.
Because Broadphase uses shape data (geom) for collision de-
tection and Island Creation uses object and joint data to
create islands, there is little data sharing between these two
phases. The memory required per object and geom is 412B
and 116B respectively. The memory required per joint varies
between 148B to 392B depending on the type. To obtain the
performance shown on Figures 3(a) and 4(a), we allocate
8MB of L2 with 4MB dedicated to each serial phase.

When executing the parallel phases in single-thread mode,
1MB of additional L2 space is sufficient to obtain the bulk
of the performance. This 1MB can be shared between all
three phases since there will be sharing between Broadphase
and Narrowphase and between Island Creation and Island
Processing. The cache space dedicated to the serial phases
should be read-only during parallel phases.

However, the cache requirement for parallel phases changes
with the number of simultaneously active threads. To better
understand this, we vary the number of processor cores that
are available to exploit coarse grain parallelism along with
the total L2 space. While Cloth continues to be insensitive
to L2 cache size, both Narrowphase and Island Processing
see an interesting shift in L2 sensitivity. At two threads,
these phases improve performance with the same dedicated
L2 cache because of the increased TLP. However, at four
threads, thrashing between threads grows considerably and
drives demand for L2 space higher. For Island Processing,
1MB of dedicated L2 cache degrades performance when scal-
ing from 1 to 4 cores. The memory requirement per island
depends on the number of joints, bodies, and degrees-of-
freedom removed. To satisfy this demand, we allocate an
additional 4MB of L2 cache space for the parallel phases in
the rest of our experiments.

6.2 Exploiting Coarse-Grain Parallelism
Figure 5 (b) shows the performance as we scale up the

number of cores per processor. With every additional core,
we add an additional worker thread. The L2 cache space
is allocated at a phase granularity according to the ear-
lier observations: (12MB total – organized into three 4MB
partitions [25, 21, 28]: one for Broadphase, one for Island
Creation, and one for the parallel sections). Phase iden-
tification for physics simulation is trivial as shown by the
sequential flow of Figure 1. Depending on the computation
phase, different parts of the shared L2 are used for writing
data. Future work will examine L2 cache size reduction by
prefetching, per-thread cache management, and DMAs.

The L2 is composed of 1MB 4-way cache banks, and the
partitioning granularity is done per cache way [6]. Because
serial stages are more sensitive to load latency, the 4MB
cache partitions for the serial stages are allocated near the
CG core used for serial execution. To attain minimal L2
latency for each serial phase, the main thread will execute
Broadphase on one CG core and Island Creation on another.

Figure 5 (b) clearly shows that the performance improve-
ment starts to plateau at 4 cores. On average, scaling from
one to two cores improves performance by 53% and scaling
from two to four cores improves performance by 29%. Fig-
ure 6 (a) shows the execution time breakdown for a four
core processor with 12MB total L2 cache space. The per-
formance has improved by roughly 3X, but we still need an

additional 5X improvement to satisfy all benchmarks. Per-
formance starts to degrade at eight cores (not shown). This
degradation is surprising, but can be attributed to two main
causes: an increased working set in the L2 cache and oper-
ating system overhead. For all parallel phases, additional
threads consume more cache space by simultaneously ac-
cessing data that had not needed to co-exist in the cache.
The large increase in L2 misses is shown in Figure 6 (b).

Scaling from four to eight threads results in a 5X increase
in L2 misses. Kernel memory accesses inside Island Process-
ing and Cloth make up most of the increase. The pmap com-
mand in Solaris 10 shows that each worker thread uses ap-
proximately 850KB of memory during two and four threaded
execution. At eight threads, each worker thread’s memory
usage jumps to around 5MB. This operating system effect
is being investigated further as future work.

Assuming the use of a custom-tuned operating system and
programmer defined memory mapping/management, CG scal-
ing may continue past four threads. However, even under
ideal conditions (removal of OS overhead and cache con-
tention, unlimited number of cores, and ideal load balanc-
ing), CG parallelism will not be sufficient to achieve inter-
active frame-rates. Figure 7(a) shows that Mix and De-
formable require more than a frame’s worth of time just
for Island Processing and Cloth. When considering serial
phases, Explosions and Highspeed barely achieve 30 FPS.

There are two fundamental limitations to CG scaling: (1)
conventional threading overhead (synchronization and in-
creased working set) and (2) a poor datapath logic to con-
trol logic ratio. Due to conventional threading overhead,
island processing is parallelized at the per island level and
cloth simulation is parallelized at the cloth level. CG per-
formance scaling is thus bounded by the largest island and
cloth. Furthermore, the area ratio of control logic vs datap-
ath logic increases with core complexity. The use of complex
cores for physics acceleration will not be scalable as IE appli-
cations evolve with more features and complexity. Given the
tremendous amount of computation bandwidth required, it
will be shown in section 8 that the use of complex cores
results in prohibitively large die areas.

7. PARALLAX ARCHITECTURE
Figure 8 demonstrates two potential implementations of

our proposed architecture, ParallAX. In both implementa-
tions, we have a set of coarse-grain (CG) cores handling
tasks like serial phase computation, parallel task distribu-
tion, memory allocation, and the components of the parallel
phases which do not have large amounts of parallelism. A
larger pool of fine-grain (FG) cores handle the massively
parallel components of the computation. The key contribu-
tions here are (1) the flexible arbitration policy that provides
area-efficient utilization of available core resources (section 7.1),
(2) the L2 partitioning strategy that has already been ad-
dressed in section 6.1, and (3) an exploration of interconnect
sensitivity (sections 7.2 and 8.2.2). The two models of Fig-
ure 8 differ in whether they treat the CG cores as auxiliary
processing engines or as the main computational core for
a given system – this will be explored further in the third
component of our key contributions. In the rest of this sec-
tion we provide more details on our architecture, and then
perform a design space exploration in the next section.

Both sets of cores (CG and FG) are connected by 2D
meshes. The interconnection between these two sets can be
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on-chip or off-chip. The CG cores communicate through the
shared L2-cache with banks connected via a 2D mesh. The
FG cores are connected via the on-core routers.

In terms of real-time physics tasks, CG cores handle Broad-
phase execution, providing a set of object-pairs to feed into
Narrowphase execution. Narrowphase has considerable par-
allelism, and the CG cores start to process individual sets
of object-pairs (CG parallelism). Object-pairs are then be
farmed out to the FG cores by the CG cores – CG cores
move both instructions and data into the FG cores.

FG parallelism refers to breaking computation down into:

• per object-pair for narrowphase collision detection

• per degree-of-freedom removed for LCP solver of island
processing

• per vertex in cloth simulation

These granularities were selected to extract loosely coupled
data parallelism. Our approach is to design a scalable sys-
tem by using a large number of area-efficient processing el-
ements. The selected granularities strike a good balance
between the lowest level of parallelism (ILP) vs. completely
decoupled parallelism (TLP). We refer the reader back to
Table 4 and Figure 11 for information on the number of
such FG tasks.

FG cores use local instruction and data memories instead
of caches, since the instructions and data required for each
task are easily determined. Each FG core iterates through
all the tasks assigned to it, and no communication is re-
quired between these FG cores as there are no data depen-
dencies between iterations. All FG cores execute the same
kernel at one time due to the dependency between phases
of physics computation. This argues for one pool of shared
FG resources for all kernels instead of unique cores dedi-
cated to each kernel. Although this observation is similar
to unified shader design [19], physics computation is inher-
ently different from graphics where little pipelining of the
phases described in section 3 can occur. There is additional

overhead involved in pushing the data to the FG cores and
retrieving the data back after computation completes.

7.1 Mapping Fine-Grain to Coarse-Grain Cores
There are a number of design decisions to be made in this

architecture. The first is how CG cores should map to FG
cores. One alternative would be to statically map some set
of FG cores to a single CG core, simplifying task schedul-
ing, but possibly underutilizing our pool of FG cores in cases
where one large task dominates the computation – the lim-
iting scenario for CG parallelism. Instead, we allow any CG
core to assign tasks to any FG core. However, there are two
concerns here: (1) arbitration for FG cores among the CG
cores and (2) maximizing FG core locality. This locality ex-
ists because FG tasks that comprise the same coarser-level
task use some common data. Therefore, when there is bal-
anced demand for FG cores among the CG cores, we would
like to evenly distribute FG cores among the CG cores to
maximize this locality and reduce data communication.

We propose a hierarchical arbitration policy to schedule
tasks to FG cores. We logically divide the FG cores evenly
among the CG cores. Each set of FG cores is controlled
by an arbiter. The arbiter assigns tasks to FG cores from
CG cores in a priority ordering – a different CG core has
priority on each arbiter. This ensures even sharing of FG
cores when we have an even load across the CG cores. If
the top-priority CG core for that arbiter no longer has any
FG tasks, or there are idle FG cores for that arbiter, the
arbiter checks the next CG core on its priority list (where
each arbiter has a unique priority order). This ensures that
one CG core with a larger load is able to utilize all FG cores.
Detailed load balancing studies will be future work.

7.2 CG to FG Communication Latency
Another design issue we explore is buffering tasks at the

FG cores to hide communication latency between CG and
FG cores. The more tasks that are sent to each FG core
at once, the more potential communication latency we can



hide, and the looser we can make the coupling between CG
and FG cores. However, this requires that we have suffi-
cient buffering space and application parallelism to overlap
communication with computation. Looser coupling of cores
allows the use of less expensive interconnect, enables flexi-
ble placement of cores (i.e. off-chip), and facilitates flexible
mapping of FG to CG cores.

Our goal is to completely overlap all communication la-
tency with computation except for the startup cost of buffer-
ing communication and post process retrieval of results. With
the insatiable performance demands of IE, the primary goal
of a physics architecture is to maximize performance for a
given area. One way to maximize performance is to ensure
the cores are maximally utilized – they should never be idle
waiting for data to be sent to them. By overlapping commu-
nication and computation, we can avoid idle cycles for the
cores, and as we will show, the data required to buffer tasks
at the cores does not have a large impact on overall area.

Our CG cores and L2 cache banks connect via a 2D mesh,
and the FG cores connect to each other through a second 2D
mesh. The 2D mesh combines simplicity, area effeciciency,
and power efficiency. Its latency and power consumption are
slightly worse than a 2D torus, but its simplicity translates
to less design effort.

Given the large resource demand of FG cores and prior
work’s use of off-chip acceleration (i.e. both Ageia’s PhysX
and GPU-based physics acceleration), one natural question
to ask is whether future physics accelerators can be located
off-chip, tolerating inter-chip communication delays. To ad-
dress this, we examine two existing off-chip interconnect pro-
tocols to perform CG core to FG core communication: PCI
Express (PCIe) and Hypertransport (HTX).

PCIe, a system interconnect with a maximum half-duplex
bandwidth of 4 GB/s, is used by both GPUs and PhysX.
HTX, a co-processor interconnect with a maximum half-
duplex bandwidth of 20.8 GB/s, is used by AMD to connect
CPUs and co-processors. Additional local buffering is used
to overlap data communication and computation, and data
distribution from the I/O ports of the physics chip to the
individual FG cores is done via a 2-D mesh topology.

7.3 Programming Model
The orchestration of the FG cores need not require ISA

modifications. The memory locations of instructions and
data structure need to be remapped into the local memory
space of the FG cores, and FG kernel functions need to be
inlined. All of this can leverage existing compilers by adding
a new back-end customized for the FG cores.

Additional code to do data packing (before sending from
FG to CG cores) and data scattering (before sending from
CG to FG cores) is also required. The hand-shaking between
CG and FG cores for data transfers is similar to network
protocols using control and data packets. The control packet
includes task id (unique), data-set id (unique per task id),
data size, iteration count, and kernel id. Each data packet’s
header includes task id and data-set id.

The control packet, in conjunction with the previously de-
scribed arbiters, sets up the flow of data packets to FG cores.
Once the a full set of data is received on a FG core, the kernel
id chooses the kernel to execute (kernel code already resides
in FG cores). The iteration count indicates the number of
iterations to execute (the code assumes all FG tasks start
from iteration 0 and the data has been packed accordingly).

The task id uniquely identifies the CG thread which submit-
ted the FG request, and the data set id uniquely identifies
each FG core. This information is tracked on the CG core to
identify the results returned back from FG cores. Each CG
core has a network interface module to send, receive, and
buffer these packets. Each arbiter tracks FG core activity
by examining data packet headers.

8. DESIGN EXPLORATION
In this section, we explore the design space for ParallAX,

including different types of fine-grain (FG) cores and inter-
connect strategies for FG and coarse-grain (CG) cores. For
each design point, we will determine how many FG cores are
required to satisfy our workload and how much local buffer-
ing is required at each core to hide communication latency.
First, we characterize the FG components of parallel phases,
including memory requirements.

8.1 Characterizing Fine-Grain Computation
Figure 9 (a) shows the breakdown of Mix’s execution time

into serial, CG parallel, and FG parallel components. The
first set of three bars shows the data for one core with 9MB
of L2, and the 2nd set of three bars shows the data for
four cores with 12MB of L2 as described earlier. The serial
components’ execution time (not shown) does not change
significantly with increased number of cores or amount of
L2. The CG sections’ execution time decreased linearly as
we scale from one to four cores, and the FG sections’ time
decreased by slightly over 50%.

Looking at the four core data, the sum of serial and CG
components for Mix takes up 68% of one frame’s time. This
leaves 32% of one frame’s worth of time for completing all
of the FG computation.

8.1.1 Kernel Characterization
Figure 9 (b) shows the instruction mix for the FG kernels

in Narrowphase, Island Processing, and Cloth. NOPs have
been filtered out of the instruction mix. For all three, inte-
ger operations and memory reads are the top two instruction
types. The main difference between these kernels is the per-
cent of instructions dedicated to control-flow (branch and
floating point (FP) compare instructions) vs data-flow (FP
adds and multiplies).

Narrowphase contains 8% branch instructions and few FP
adds and multiplies. This contrasts greatly with both Island
Processing and cloth, where these instructions make up 32%
and 28% of the total respectively. Cloth differs from Island
Processing with more branches and its use of integer multi-
plies, FP divides, and FP squareroot instructions.

8.1.2 Memory Required for Inst and Data Storage
Next, we address how much instruction memory would be

required by a FG core. Based on the iterations we sampled,
the total number of unique static instructions in each kernel
is 277 for Narrowphase, 177 for Island Processing, and 221
for Cloth. With 32-bit instructions, the largest kernel can
be stored with 1.1KB of local memory. With 64-bit instruc-
tions, the largest kernel can be stored with 2.2KB of local
memory. To allow any FG core to be utilized in any parallel
phase, we allocate enough memory to store the code for all
three kernels. This requires 2.7KB for 32-bit instructions
(1.1KB for Narrowphase, 0.7KB for Island Processing, and
0.9KB for Cloth.)
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For data memory, we statistically sampled the total unique
data read from memory in each kernel for 100 iterations –
we found this to be 1,668B for NarrowPhase, 604B for Island
Processing, and 376B for Cloth. The total amount of unique
data written to memory in each kernel for 100 iterations is
100B for Narrowphase, 128B for Island Processing, and 308B
for Cloth. The required data storage at each core depends
on the buffering needed to hide communication latency.

Based on ths memory reuse exploration, the final FG core
design contains a total of 8KB local memory.

8.2 Fine-grain Core Design and Requirements
In order to complete the FG computations within the time

left, we would like to use as many cores as required to exploit
the level of parallelism needed. In addition to evaluating the
performance of a desktop core on these kernels, we examine
more area-efficient, simpler cores modeled after next gener-
ation console and GPU shader designs. An unrealistically
large core design is also used as a limit study on the avail-
able instruction level parallelism. Table 5 summarizes these
designs. As discussed previously, the memory behavior of
the FG cores is extremely regular. CG cores will send all
data required to the FG cores – i.e. memory requests at
the FG cores will always hit in the single-cycle 8KB local
memory. All cores run at 2GHz.

Desktop Intel Core Duo based core with 32-entry
Inst Window, 96-entry Reorder Buffer,
17KB YAGS, 4-wide 14-cycle pipeline.

Console IBM Cell based core with 8-entry Inst
Window, 32-entry Reorder Buffer, 17KB
YAGS, 2-wide 12-cycle pipeline.

GPU Shader GPU shader based core with 1-entry Inst
Window, 32-entry Reorder Buffer, 1KB
YAGS, 1-wide 8-cycle pipeline.

Limit Study Unrealistic core with 128-entry Inst
Window, 512-entry Reorder Buffer, 64KB
YAGS, 128-wide 14-cycle pipeline.

Table 5: Our Fine-Grain Core Designs

Figure 10 (a) shows the performance, measured in IPC,
on the three kernels. Island and Cloth have bursty amounts
of ILP, as confirmed by the source code and the drastic de-
crease in IPC from the desktop-class to the console-class
cores. The limit study results show an IPC of over 4 for Is-
land and 1.5 for Cloth. Based on the source code, these two
kernels could potentially benefit from SIMD instructions.
Narrowphase degrades with more resources due to mispre-
dicted branch instructions. Ideal branch prediction (results
not shown) resulted in a 30% improvement in performance.

8.2.1 Number of Finegrain Cores Required
Using the average IPC from Figure 10(a) and the dynamic

instruction count of FG computation, we show the number
of required cores for each design to reach 30 FPS for the
most demanding benchmark, Mix, in Figure 10(b). This
calculation assumes 100% utilization of FG cores during the
parallel sections, which we address in the next section. We
also assume that there are enough FG tasks to effectively
hide communication latency, except the startup and post-
process communication costs between CG to FG cores.

The first four sets of data in Figure 10(b) show the re-
quirement if a given % of the total frame time is available
for FG computation. Our 4-core CG simulation results (Fig-
ure 9(a)) left 32% of the frame time (the final set of bars).

The simulated time constraint using the 2D mesh on-chip
interconnect requires 30 desktop-class, 43 console-class, or
150 shader-class cores to achieve 30 FPS. With the HTX
off-chip interconnect, the number of shader-class cores in-
creased to 151. With the PCIe interconnect, the number of
shader-class cores increases to 153. The desktop-class and
console-class core requirements remain the same for both
off-chip interconnects. For all interconnections, 2KB of lo-
cal storage is enough to buffer the minimum amount of data
to hide communication latency for all cases. However, these
interconnect alternatives differ in the amount of parallelism
required to hide communication latency.

Area Estimation:.
By using published die areas and photos of single cores

from Intel Core Duo 2 [22], IBM Cell [10], and Nvidia G80 [23],
we derive area estimates for each core type using 90nm tech-
nology. The required interconnect area is derived from Table
III of [24]. The area estimates for 30 desktop, 43 console,
and 150 shader cores are 1388 mm2, 926 mm2, and 591 mm2

respectively. This argues for the simplest cores as the most
area-efficient alternative and points to a severe need of area
optimization, which will be a main thrust of our future work.

Current generation architectures certainly lack the com-
putational resources to meet the demands of real-time physics.
But simply scaling existing designs that statically map FG
cores to CG cores to match the performance demands will re-
quire considerably more area. For example, statically map-
ping GPU shaders only to particular CG cores will require
34% more area (in additional FG cores) than an architecture
that can more flexibly and efficiently leverage core resources.

8.2.2 Parallelism to Hide Interconnect Latency
So far, we have optimistically assumed that the parallel

phases of our workload could achieve 100% utilization of
the fine grain cores. To verify this, we gather the amount of
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available FG tasks in each phase, assuming four CG threads.
As described earlier, the limit of CG parallelism is deter-
mined by the size of large islands. Table 6 shows the amount
of parallel FG tasks required to hide communication latency
for different core types and interconnect technologies.

Narrow, On-chip HTX PCIe
Island,
Cloth

Desktop 30, 240, 60 30, 540, 120 60, 3000, 1650
Console 43, 215, 86 43, 473, 172 129, 2236, 2408
Shader 150, 600, 300 151, 1510, 755 308, 7700, 9394

Table 6: Number of Fine-Grain Tasks Required to
Hide Communication

With four threads, Figure 11 shows all benchmarks con-
tain enough parallel FG tasks to hide on-chip interconnect
latency to the number of FG cores indicated on Figure 10
(b) except Island Processing for Continuous and Deformable,
and Cloth for Deformable. Both benchmarks lack large is-
lands with more than 25 parallel FG tasks. Figure 6 (a) had
demonstrated that Continuous already executes at 30 FPS
without the use of any FG cores. For Deformable, Island
Processing does not take up a significant component of one
frame’s time. Both Continuous and Deformable can achieve
30 FPS without any FG parallelization of Island Processing.

When an off-chip interconnect is used, it becomes diffi-
cult to hide communication latency for Island Processing
and Cloth. By filtering islands and cloth with less than 50
FG tasks, HTX’s latency can be hidden. This reduces the
amount of work executed on FG cores by an average 2% for
Island Processing and 29% for Cloth. For PCIe, it is not
possible to hide communication latency for cloth simulation
running on the console or shader cores. For Island Pro-
cessing, it becomes necessary to filter out islands with less
than 1710 FG tasks in order to hide communication latency.
This reduces the amount of work that can be executed on
FG cores by an average 59%.

For the configurations where communication latency is
fully hidden, only each phase’s startup and post-process
costs at each simulation step are added to the execution
time. When the communication latency is exposed, this
requires more FG cores to satisfy our performance bound,
which can increase area by 18% for on-chip FG shader cores
and 36% for off-chip (HTX) FG shader cores. One alterna-
tive to this would be to share local memories among multiple
FG cores to leverage data locality and reduce the required
communication – an exploration we leave for future work.

Although cloth is shown to have the least amount of FG
parallelism for the next generation of games, the number of

vertices used to model each cloth will likely scale up when
creating realistic cloth movement further into the future.

8.3 Implementation Alternatives
As described in section 2, our design is within the space

of streaming computation. Model 1 in Figure 8 shows how
the design maps onto the SVM architectural model. CG
cores map to the control processor, and FG cores map to
the kernel processor. The host memory maps to the global
memory, and local storage maps to local memory. The DMA
engine, however, is now part of the control processor. Due
to real-time physics simulation’s extensive use of dynamic
memory allocation, the data required for kernel computation
is dynamically allocated and then set up for computation.
All preparation happens on the CG cores first, then data is
sent to the local storage of FG cores. DMA functionality
can be implemented on the CG cores.

We evaluated on-chip and off-chip interconnects between
the CG and FG cores. The communication latency between
CG and FG computation cannot be hidden with the PCIe
off-chip interconnect. This conclusion points to the tight-
ness of physics simulation’s feedback loop between the two
granularities of computation. However, by placing the en-
tire physics pipeline, both CG and FG resources, onto the
same discrete chip, off-chip physics accelerators such as MD-
GRAPE and PhysX with PCIE is feasible. Model 2 in Fig-
ure 8 shows such a design. By moving all physics hardware
onto a discrete, dedicated accelerator, pin-outs are increased
to allow for dedicated physics memory. Dedicated physics
memory may enable optimizations to reduce the dynamic
memory management and OS overheads described in sec-
tion 6. The control processor can preload statically allo-
cated data onto physics memory, and only the position and
orientation (60B) of each object, position (12B) of each par-
ticle, and position (12B) of mesh vertices are communicated
at the beginning and end of a frame. This small fixed over-
head is easily tolerated when using PCIe (0.00006 seconds
for 1,000 objects, 10,000 particles, and 5,000 mesh vertices).

When using a GPU for physics acceleration, the GPU is
only effective for FG tasks. The model, as shown on Figure 5
of [15], ties a general purpose CPU to the GPU using an off-
chip interconnect. The serial and CG computation are done
on a CPU which may not be optimized for this workload,
and the off-chip latency from the CPU to the GPU will be
exposed many times within a frame (similar to our off-chip
evaluation) except when handling massive islands or cloths
(with 7700 to 9400 parallel FG tasks).

While first-generation physics accelerators may only need
to send object position and orientation back to the main
processor core(s), future demands will be more significant.
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Truly immersive reality may only be possible when the re-
sults of physics-guided motion are communicated to other
components of IE applications. For example, an object that
breaks may generate sound or may alert an AI character.

9. SUMMARY
Physical simulation is becoming a significant component

of current and future interactive entertainment applications.
We have proposed ParallAX, an architecture that features
aggressive coarse-grain (CG) cores and area-efficient fine-
grain (FG) cores. The CG cores are designed with suffi-
cient, partitioned, cache space to handle both the serial and
coarse grain parallel components of physics simulation. The
set of FG cores exploit the massive fine-grain parallelism
available for certain components of the computation. FG
cores should be flexibly mapped to CG cores, and all cores
should either be located on the same silicon die or pack-
aged on separate chips in a multi-component module to suc-
cessfully overlap communication and computation. With its
high performance and programmability, ParallAX can be
utilized for other workloads with massive fine-grain paral-
lelism while enjoying the unique economy of scale afforded
by interactive entertainment.
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