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Abstract— Fluid bipedal locomotion remains a significant
challenge for humanoid robotics. Recently bio-inspired ap-
proaches have made significant progress using small numbers
of tightly coupled neurons, called central pattern generators
(CPGs). Our approach exchanges complexity of the neuron
model for complexity in the network, gradually building a
network of simple neurons capable of complex behaviors. We
show this approach generates controllers de novo that are able
to control 3D bipedal locomotion up to 10 meters. This results
holds for robots with human-proportionate morphologies across
95% of normal human variation. The resulting networks are
then examined to discover neural structures that arise unusually
often, lending some insight into the workings of otherwise
opaque controllers.

I. INTRODUCTION

Walking robots are long-standing goal for the field of
robotics. Human-like bipedal robots hold a special sway.
This seems in-part due to the practical importance of their
development. Anthropomorphic robots might be able to
relieve humans from dangerous or difficult work, and such
machines might be able to make use of the wide variety
of human-oriented services and systems already in place.
And beyond the mere immediate utility of the human form,
it seems likely that humans would prefer interaction with
machines that more closely mimicked natural, biological
humans. With this perspective, we describe a methodology
for the creation of robot controllers that attempt to mimic
both the form and function of human locomotion.

The methodology presented here is rooted in evolutionary
robotics– a biologically inspired approach that loosely sim-
ulates both the representation of controllers, using artificial
neural networks, and their design through evolutionary or
learning processes[1]. Work on the biologically inspired con-
trol of legged robots has had two main focii. One common
approach is to use layered, typically feed-forward networks
of simple neuron models[2], [3]. The second approach is
to use more complex individual neuron models in highly
interconnected networks. The networks of the second ap-
proach resemble central pattern generators(CPGs), actual
neural structures found in the spine of many varieties of
vertebrates, include bipeds, and thought to be responsible for
the generation of cyclical patterns for locomotion control [4].
In part, the success of the CPG approach results from
the effort applied to careful design and weight tuning [5].
Methodologies to automatically tune the interconnection
weights of CPGs have had some success, both by evolu-
tionary process [6] and by supervised learning [7].

In this contribution, we describe a methodology for the

automatic synthesis of controllers for bipedal locomotion.
Our method uses a third biologically inspired approach:
gradually growing networks of simple neurons. Our approach
starts with a minimal network of simple neuron models, like
the first approach described above. Next, neural structures
are gradually added in an evolutionary search process. In
forgoing the inherent cyclical dynamics of more complex
neuron models, such as those typically used in CPG-based
controllers, our approach is to instead rely on complex
interconnections between the neurons. The choice to use a
simple neuron model is deliberate and embodies a trade-off:
the loss of inherently cyclical pattern generation in exchange
for the ability to modify the behavior in small steps with
topological changes. In comparison to previous work using
CPGs for biped locomotion, our approach moves complexity
out from the neuron model and into the network.

The primary contribution of this work is the de novo
creation of neural networks capable of limited bipedal lo-
comotion. Controllers can be evolved for a wide range
of human-scale morphologies. In addition, individual con-
trollers can adapt, without additional learning, to previously
unseen morphologies.

The neural networks used for control are analyzed by
searching for network motifs that are coincident with suc-
cessful neural topologies. This result provides some practical
insight into the workings of the neural networks, slightly
disturbing the veil that has historically separated successful
“black-box” neurocontrollers from an understanding of their
mechanism.

II. THE SIMULATED BIPEDAL ROBOT

The simulated robot is designed with a minimal set of
actuated degrees of freedom that still allow for an anthropo-
morphic walk. The masses and sizes of body links, as well as
the range of motion of joints, are based on aggregate human
measurements[8].

Sensors report the angular position of each actuated joint.
Sensory data are scaled so that the full range of motion is
reported at [−1, 1]. In addition, sensors on each foot indicate
whether the foot is in current contact with the ground (−1)
or not (+1), and sensors provide the distance of each foot
from the current center of mass(CoM), as projected to the
ground plane. In addition, the height of the waist segment
and the linear velocity of the CoM projected to the ground
plane are provided as sensors.

The controller specifies the target angle of each actuated
joint. The corresponding actuator applies torque to drive the



(a) Anthropometric simulated biped
robot.

Spine - 3 DoF (1 DoF)

Hip - 2 DoF (2 DoF)

Knee - 1 DoF (1 DoF)

Ankle - 3 DoF (0 DoF)

(b) Schematic diagram of robot.

Fig. 1. The robot has 15 degrees of freedom (DoF) in total. Seven of
those are actively controlled by the neurocontroller. The remaining DoFs
act under PD control and maintain a constant target position defined by the
standing-upright pose.

joint to the desired angle using PD control. The output signal
of the controller ranges within [0, 1], of which the central
0.8 range is linearly scaled to the full range of the joint,
leaving 0.1 units at each extreme clamped to 0.0 and 1.0,
respectively.

Range
Joint, axis High Low Controlled

Spine, transverse −π/12 π/12 Yes
Spine, coronal −π/16 π/16 No
Spine, sagittal −π/16 π/16 No
Hip, transverse 0 0 No

Hip, coronal −π/48 π/24 Yes
Hip, sagittal −π/16 π/16 Yes

Knee 0 3π/4 Yes
Ankle, transverse −π/12 π/12 No

Ankle, coronal −π/12 π/12 No
Ankle, sagittal −π/4 π/4 No

TABLE I
THE ALLOWED RANGES FOR EACH JOINT OF THE AGENT. THE CONTROL

COLUMN INDICATES IF THE JOINT’S TARGET ANGLE IS SET BY THE

CONTROLLER. IF NOT, THE JOINT APPLIES TORQUE TO CENTER ITSELF

IN ITS RANGE.

III. NEURAL CONTROLLER

In this section, we briefly describe a method of determin-
ing topology and connection weights of a neural network
responsible for the control of the robot. Our approach is
heavily based on neuroevolution by augmenting topology
(NEAT)[9].

A. Neural Network

The neural networks used as controllers are composed of
a set of neurons, each with a single scalar activation level
y, and a set of weighted, directed connections between the
neurons.

Each neuron is updated once per cycle by linearly com-
bining its incoming connections’ activations and applying
the activation function, σ(x), to that sum to determine its
activation level for the next cycle:

yi = σ
( N∑
j=1

wjiyj

)
, σ(x) =

1
1 + e−x

, (1)

where σ is the sigmoid function and wji the weight of the
connection from the jth neuron to the ith.

To achieve state and time-dependant behavior, the neural
network must rely on cycles in its topology, in a manner
analogous to cross-linked XOR gates forming an electronic
flip-flop. Note that in the sigmoidal neurons used here, such
cycles are the only way a network can store state internally.
To manage complex timing-based behavior, as is needed for
a motion controller, a network of simple neurons requires a
complex topology of inter-neuron connections.

B. Bilateral Symmetry

Bilateral symmetry of control was enforced by using
two initially identical and independent neural networks. The
outputs of each network drive their side’s actuated joints,
with the central waist joint taken as the average of the
two corresponding output nodes’ activations. The inputs of
each network are likewise set from per-side information.
The internal activation state of each network is allowed
to vary independently. In fact, since asymmetric motion is
generally required to initiate walking from a standing pose,
the internal states of the two control networks tend to diverge
immediately.

Each neural network has two bias nodes. The first bias
node has a constant activation of 1.0 and is the same for
both right and left networks. The second bias node has an
activation of 1.0 for the right-side network and −1.0 for
the left. This per-side bias allows for initial asymmetrical
behavior. In addition, two tactile foot-contact sensor inputs
are connected as same-side and opposite-side.

Sensors Controller Actuators

Right

Left

Shared

NN

NN

Right

Left

Fig. 2. The controller is composed of two structurally identical neural
networks(NN), each accepts input signals from the shared and same-side
sensors. Likewise, each neural network drives the actuators of one side and
contributes to the control of the shared actuator.

IV. GENETIC ALGORITHM

The network topology and connection weights of the
neural controllers are determined by a genetic algorithm. A
given neural network, specified as a weighted, directed graph,
is evaluated qualitatively by its ability to control the robot
through balanced, 3D locomotion.



Evolutionary runs use a population of 512 individual
networks, which are clustered into ten species based on a
simple graph similarity function. Each generation, each of
the networks is given a fitness score based on its ability at
bipedal walking.

These neural networks are supplied with sensory data and
updated once every 0.07 seconds of simulated time. This
delay was chosen to be within the observed range of spinal
reflex response times in humans[10].

A. Gradual Complexification of Topology

The network’s connection weights are optimized for a
given task using a genetic algorithm. Rather than operat-
ing on a fixed-sized genome, as is common with genetic
algorithms, the neural network’s weighted, directed graph
is manipulated directly in a manner similar to evolutionary
programming[11].

1) Scalar and Topological Mutations: Mutations to the
directed-graph genotype are of two kinds: structural and non-
structural. The latter alter the weight of a connection or a
parameter of a neuron. Small alterations (µ = 0, σ2 = 0.1)
are most likely, though occasionally entirely new values are
chosen (at random uniformly in the range (−0.1, 0.1)) as
replacements. In an effort to bias mutational changes toward
newer structures, parameters that are relatively new features
in the genome are more likely to be replaced than older ones.

Three types of mutation affect the neural topology. The
first splits an existing edge into two edges and a node. The
second introduces a directed edge between two previously
unconnected nodes, or between a node and itself. The third
removes an edge, and if the removal results in interior nodes
with no remaining connections, the nodes are removed as
well.

2) Cross-Over: The key innovation of NEAT is the
introduction of “historical markers” to label each neuron
and connection. During asexual reproduction, these markers
are preserved and passed to the offspring. During sexual
reproduction, these historical markers are used to determine
genetic homology. The guiding assumption is that genes with
the same historical origin (and therefore the same historical
markers) will perform the same function in the phenotype.
Although this is, in essence, an ad hoc approach with a key
assumption that can, and may often, fail, it has been shown to
be among the most successful machine learning approaches
for simple benchmark control problems such as double-pole
balancing and predator-prey simulations[12].

3) Speciation: In addition to enabling a more productive
cross-over operation, NEAT historical markers can also be
used to estimate the chance of mating success between
individuals. A distance metric groups the individuals of a
population into species, allowing sexual reproduction within
a species containing similar individuals. Such speciation
greatly improves the likelihood that the next generation will
be viable. The distance metric is defined as

δ =
G

Nk
+ cW, (2)

where G is the number of genes without a corresponding
historical marker in the genes of the other parent. The
constant c is a normalization factor based on the magnitude
of connection weights. N is the number of genes in the
larger genome, and k is a term allowing a scaling of the
effect of normalization based on the number of genes N .
Note that previous implementations of the NEAT algorithm
have used k = 0, while our implementation uses k = 1.
The effect of k = 1 is to measure genomic distance by
the ratio of differing genes to the total number of genes, in
contrast with k = 0, which considers the absolute number.
Comparing the ratio, rather than absolute number better
supports genomic distance calculations for the large networks
needed for bipedal locomotion. This modification was found
useful to ensure proper speciation for larger neural networks.

New structural innovations will likely differ significantly
(as measured by δ) from existing genomes, meriting classifi-
cation in a new species. Individuals only compete directly
with other members of their own species, providing pro-
tection to new innovations until they have time to optimize
their structure. This process is further assisted by giving new
species an artificial fitness bonus of 20% for their first few
generations.

B. Objective Function

Designing an objective function measure that accurately
quantifies the quality of an arbitrary attempt at bipedal walk-
ing is a challenging notion. One might reasonably include
a host of previously suggested factors, such as minimal
energy use[13], or similarity to recorded human motions.
Our approach is to instead use a very simple measure of the
fitness of a walk. In doing so, we rely on the anthropometric
body and torque limits to bias the search toward a human-like
walk.

Our objective function is

fwalk = kd max(‖proj~j ~d‖, ε), (3)

where ~d is the vector from the starting position to the
hindmost foot, and ~j is the unit vector in the direction the
character is to walk. kd is a constant scaling factor, and ε
is a small positive value. We also experimented with more
complex fitness functions for locomotion, however 3 was
equally effective and used for the results presented here.

1) Early Termination: Identifying criteria for early ter-
mination of a trial is a useful way to improve the overall
speed of the evolutionary process, since the evaluation of
unpromising individuals is stopped as soon as one of the
conditions is met.
Waist height: If the z-coordinate of the waist segment’s
center of mass falls below a minimum height (50% of the
waist segment’s starting height), the simulation is terminated
and the genome’s final fitness is that computed in the
previous time-step.
Instability: If, during the course of the physical simulation,
significant numerical instability or joint divergence is de-
tected, the simulation is terminated and the genome’s final
fitness is set to the minimal allowed value, ε.



C. Support Harness
A simulated harness provides lateral and vertical and

torsional support to the character. The strength of the harness
is gradually diminishes from full-strength to exerting no
force over the first 150 generations according to hs =
1−sin(π2

g
150 ) where g is the current generation. In addition to

the stabilizing support, the harness exerts a linear force in the
direction of desired motion of hsm(vd− ˙CoMy) where m is
the total scalar mass of the robot. The desired CoM velocity
vd is intended as a natural walking speed for the robot. Since
we examine a variety of robots with different dimensions and
masses, the natural walking speed must be generalized to
physical properties. The Froude ratio Fr provides a simple
method to estimate locomotion speeds based on the inverted
pendulum model[14]. Using this method, the desired CoM
velocity is vd =

√
glFr, where l is the leg length of the

robot and g the acceleration due to gravity of 9.81m/s2. A
Froude ratio of Fr = 1

4 is used to match a typical human-
style walking gait[15].

V. RESULTS

The approach presented generates neural networks capable
of controlling the biped walking distances of up to 10
meters. Fully stable controllers, able to walk arbitrarily
long distances, were not produced. The authors suggest
that the subjective appearance of the resulting controllers
is interestingly organic and, considering that no motion
trajectories were provided to the system, surprisingly human-
like. Example joint angles for a typical successful walk
controller are shown in Figure 3. This particular individual
is of medium female height, weight and hip-width.

Although evolutionary processes are stochastic by nature,
our approach is reliably able to find controllers capable of
walking short distances. Over the entire range of human
body shapes evaluated at walking, 93% of the runs found
controllers capable of walking upright for at least two meters
(28 out of 30 runs). The failures were for the heaviest (95th

percentile weight) and shortest (5th percentile height).
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Fig. 3. Joint angles observed for a robot with media female morphology
during the initiation phase and through several steps of a walk cycle.

A. Anthropometric Variation
Since we are partly concerned with controllers that pro-

vide human-like motion, we use robot morphologies whose
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Fig. 4. Hip/knee joint cycle in walking, including the gait-initiation phase.

Fig. 5. Five characters starting to walk from a line-up. The two left-most
(red) characters are 5th and 50th percentile height, weight and BIB females.
The three remaining characters (blue) are males, with the nearest character
5th percentile height and 95th percentile weight and BIB, the middle blue
character 95th height but 5th percentile weight and BIB, and finally the
farthest character 95th percentile in each height, weight and BIB. Each of
these characters evolved the behavior shown in a single evolutionary trial.

physical parameters mimic human dimensions. In addition,
the generality of the approach is an important measure of
success. To test the generality of our method in finding
human-style gaits, we use a sample of humanoid character
models from the normal human range of height, weight
and bi-iliac (hip) breadth (BIB) covering the 5th to 95th

percentile of each men and women.
Body segment sizes and weights are scaled linearly ac-

cording to the three measures (height, weight and BIB)
obtained from anthropometric data aggregated from over
30,000 U.S. military personnel[8]. The relative proportions
of segment sizes and weights are fixed and listed in Table
II.

Neural networks evolved controlling a single robot mor-
phology (height, weight and BIB). We then applied that



Body Segment Height Proportion Mass Proportion
Trunk 31.2% 51.6%
Waist 6.2% 10.3%
Thigh (2) 31.0% 19.3%
Shank (2) 25.3% 9.3%
Foot (2) 6.2% 9.3%

TABLE II
THE ROBOT’S MORPHOLOGICAL PROPORTIONS REMAINED CONSTANT

AND ANTHROPOMETRIC. THE MASS PROPORTION OF BILATERALLY

REPEATED SEGMENTS SHOWS THE SUMMED MASS PROPORTION OF

BOTH SIDES.
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Fig. 6. This graph shows the effect of varying the physical model on the
fitness of a controller. The network evolved using a single robot morphology
with median female proportions. The dashed curve shows the distribution
of the population of human female heights, approximated as a Gaussian
distribution[8]. The dashed horizontal line is the fitness of the neural network
when controlling the robot used for the network’s evolution.

network to the control of different robot morphologies to
test the degree of generalization of the controller. With
robot morphologies within around one standard deviation
of normal human variation, the network is able to take a
few steps, traveling about half the distance it reaches when
applied to the morphology it evolved with. The results of
variation in height across a human-like range are shown in
Figure 6. That the network is able to adapt to robots with
large changes in simulated morphology hints that our method
might be robust to differences between simulation and a
physical robot, thus reducing the problem of the “reality
gap” [16].

B. Patterns in the Network

The controller networks resulting from the evolutionary
search are generated through a random process tempered by
selection. As described, the structural mutations are fully
random– any potential edge is as likely as any other to
be added, and any existing edge is as likely as any other
to be split with a new neuron. Given that all evolutionary
changes to the neural network’s structure are random, one
might expect for the resulting networks to resemble random
networks. However, the networks evolved for locomotion
contain recurring patterns of interconnections that are signif-
icantly non-random. Recent work in the biological sciences
has proposed methods for finding such patterns, or motifs,
and determining the significance of their presence in a

(a) p = 0.001 (b) p = 0.004 (c) p = 0.006 (d) p = 0.019

(e) p = 0.028 (f) p = 0.032 (g) p = 0.04 (h) p = 0.044

Fig. 7. A selection of some of the motifs common to successful controller
networks. Each subgraph is labelled with its p-value, that is, the probability
that the frequency of that motif in a randomized network is at least the
frequency of the motif in the controller network.

collection of networks.
To identify significant motifs, we use the MAVisto [17]

software to compare the instances of each 3-node and 4-node
motifs in the best-performing network of the 500th gener-
ation for four different locomotion searches. Each search
uses a robot with median height, weight and BIB for a
human male. All four controllers are capable of walking at
least five meters. One of the four networks is reproduced in
Figure 8(e). Statistical significance of motifs is determined
for each network individually by comparing the motif fre-
quencies found in the controller network to frequencies found
in one thousand randomly generated networks with the same
distribution of vertex degrees. Self-loops were not included.
Figure 7 shows a selection of motifs that are significantly
(p < 0.05) more frequent in the evolved networks than in
random networks. Subfigures 7(g) and 7(h) show a span
of three neurons in mutual feedback, contributing a single
output. Variations of cycles dominate. This is notably in
contrast to similar analysis conducted with general biological
neural networks[18], but in agreement with the general
structure of CPGs.

Although not explored here, such motifs may have poten-
tial to improve the evolutionary search process. Ideally, the
random changes that occur as part of the mutation process
would not be truly random, but instead would be biased
toward network topologies more likely to exhibit the desired
behavior. Identifying particularly common or rare motifs
represents a first step in investigating this hypothesis.

C. Alternative Strategies

An evolutionary approach is rooted in specifying only
a generalized description of the desired behavior, and the
results can occasionally be unexpected or use unusual strate-
gies. Some evolutionary runs produced successful motion
strategies that differed from the desired human-like loco-
motion. Figure 9 shows a time-series sequence of one such
alternative strategy, a one-legged hopping motion. Note that
ankle target angles were not controlled by the neural network
and this motion results from coordinated use of the knee
and hip joints. Two additional strategies are shown in the
accompanying video.
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(e) Generation 700, 9.3m.

Fig. 8. The best-performaning networks from a population of 512. The
thickness of the connecting arrow corresponds to the absolute value of the
connection weight, with excitatory (positive-valued) connections in black
and inhibitory (negative-valued) connections in red with inverted arrow-
heads. Each network is labeled with the generation of the network and the
distance travelled.

VI. CONCLUSION

This work presents neuroevolved controllers that show
smooth motion, without the stiffness and phase artifacts
generally associated with methods based on finite-state ma-
chines. The controllers are closed-loop, using proprioceptive
and tactile sensors to maintain balance and improve perfor-
mance.

The contributions of this work are (1) the use of NEAT
for the neuroevolution of biped controllers, (2) demonstrating
the generality of the method to a range of human-like mor-
phologies, (3) demonstrating the adaptability of individual
controllers to different morphologies, and (4) illuminating
the common structure of the evolved networks using motif
analysis.
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