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Abstrac t  

Dynamic simulation is a potentially useful tool for cre- 
ating realistic motion for animated characters. How- 
ever, improved control techniques are required before 
this approach will bear fruit. We compare and con- 
trast control for animation with control for robotics. 
This is followed by an overview of two control meth- 
ods which were conceived in the context of computer 
animation, but which also have potential applications 
for robotic control. 

1 Introduction 

Physically-based models and simulations are behind 
an increasing number of tools and techniques in com- 
puter graphics. Dynamic simulations are particu- 
larly well suited to generating passive motions, such 
as the movement of a character's clothing, the mo- 
tion of falling and fracturing objects, and the mo- 
tion of fluids. However, the simulation of human mo- 
tions remains a formidable challenge given the many 
complexities involved in the simulation and control. 
Formidable accomplishments in this area have come 
from biomechanics[20], robotics[17, 22], and control[9]. 

The physically-based simulation of human motion 
is also of interest in computer animation[l, 2, 8]. 
Simulation-based animation techniques have also been 
used to generate realistic animated motion for more 
imaginary creatures[19, 23, 25]. At first sight it would 
appear that the use of a complex physical simulation 
is unwarranted when the end result is an animated 
motion that could just as well have been created di- 
rectly with a kinematic method. However, kinematic 
algorithms produce unconstrained motion trajectories 
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whose lack of a physical basis is often readily apparent. 
In production animations, the talents of an animator 
can be relied upon to edit the motions until they are 
sufficiently realistic. However, this is an impossibil- 
ity in the realistic interactive environments that many 
games and virtual worlds strive to provide. 

The use of procedural kinematic algorithms[6, 5, 10] 
or, alternatively, playback of stored motion data cap- 
tured from real human actors is currently the method 
of choice in some animation tools and many computer 
games, although such methods suffer from being lim- 
ited to the repertoire of captured motions. Algorithms 
to alter captured motions can be used to provide an 
expanded repertoire of motions and are a current topic 
of research in the animation community[7, 11]. Given 
the physical origins of the motions, it is perhaps not 
surprising that some of these motion transformation 
algorithms are reverting to the use of physics in order 
to compute plausbile transformations[21]. 

In many scenarios, it can be argued that a full-fledged 
physical simulation, together with the appropriate 
control algorithms, is the most compact representa- 
tion of a class of motion. Consider, for example, the 
difficulty of representing two colliding football play- 
ers using only a set of stored motions examples. The 
difficulty of enumerating the large number of possible 
motions that can arise in such a scenario is evidenced 
in the current generation of games by the unrealistic 
motion often apparent during such events. 

1 .1 T h e  A n i m a t i o n  P e r s p e c t i v e  

The task of intelligently controlling the motion of a 
simulated character has many similarities to the task 
of intelligently controlling the motion of a real robot. 
However, there are some notable differences between 

the animation problem and the robotics problem. As 
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well, there are many different variations on the anima- 
tion control problem. The following list elaborates on 
some of the characteristic axes that define the design 
space for the motion control problem in animation. 

Hard physics vs soft physics. 
In creating an animation, a desired motion specifica- 
tion such as "leap 10m forward" might well be impos- 
sible. In the context of animation, this need not neces- 
sarily be a problem. A clever animation tool can relax 
the laws of physics just enough to allow the motion 
to be performed, resulting in a motion that satisfies 
the motion specification, while still being yielding a 
'best fit' to the constraints imposed by physics. Alter- 
natively, animation tools can treat physics as a hard 
constraint, as implemented by a conventional forward 
dynamics simulation. 

Observed motions vs synthetic motions. 
The dynamics involved in creating a motion can be 
modelled either explicitly, as is the case with typical 
dynamic simulations, or implicitly, as is the case with 
good kinematic animation which nevertheless attempt 
to mimic the appropriate physics. While explicit mod- 
els are perhaps the most interesting, given that they 
synthesize motion from first principles, implicit mod- 
els have the advantage of being able to exploit data 
captured from real human motions. Motion capture 
technology has made such data increasingly available, 
and with the right techniques, captured motions can 
be generalized to produce novel motions. 

Degree of autonomy. 
Generating the motion of a foreground character in 
a feature film is a different problem from generating 
the motion of a character in a game. The former 
necessitates detailed control over the motion, while 
the latter must be capable of interactive autonomous 
motion. Such different applications are best served 
by tools uniquely tailored for each, given the differ- 
ent needs. For example, a game character requires 
models for sensing and planning in order to operate 
autonomously. These same skills are assumed by an 
animator when animating a feature-film character. 

Visual quality vs. stability 
In robotics and control, guarantees of stability are im- 
portant, while in animation the visual quality is of 
primary importance. 

1.2 P r a c t i c a l  C o n s i d e r a t i o n s  

A number of practical considerations require attention 
when considering the use of dynamic simulations as a 
means for creating animation. First, the user interface 
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motions, whether through traditional animation tech- 
niques or using complex dynamic simluations, is a cre- 
ative process and thus the tools should be predictable 
in their actions, should provide suitable feedback, and 
should support the required workflow for creating an- 
imatious. This is no small challenge, given that these 
requirements are superimposed on top of already dif- 
ficult control problems. 

The use of physics in computer games presents a fur- 
ther interesting dilemna. Imagine that you are in con- 
trol of a running character and you suddenly wish 
to execute a sharp turn to the right. A physically- 
realistic solution might require waiting until a par- 
ticular phase in the stride where the sharp turn can 
be executed. However, from the game-player's per- 
spective, this lends a 'sluggish' feel to the game. The 
fidelity to physics must be compromised in order to 
accomodate the game-player's wishes. 

Lastly, the computer graphics world is not bound 
by the conventional methodology used in robotics, 
namely that of treating control and simulation as two 
separate problems. For the purposes of animation, it 
may well be more efficient to build a model which en- 
compasses both dynamics and control, thus yielding a 
black box which accepts high-level motion commands 
as input and generates appropriate motions as output. 

1 .3 Explorations 

Given the large body of literature which is relevant to 
the dynamic simulation of human-like characters and 
robots, it is beyond the scope of this article to pro- 
vide an overview. Instead, the following two sections 
present two distinct approaches to control that are 
drawn from our own work, and which we feel provide 
useful insights relevant to both robotics and computer 
animation. 

In section 2 we describe the use of limit cycle con- 
trol as a general method for controlling the balance of 
walking or running gaits. The technique is successfully 
applied to the control of a 3D dynamically-simulated 
walking gait, among others. Section 3 presents a tech- 
nique for planning dynamic motions. The goal here 
is to provide motions with the anticipatory behav- 
ior necessary to execute very dynamic motions across 
variable terrain. While the results are demonstrated 
using physical systems having only a few degrees of 
freedom, they lend potential insight into the planning 
of dynamic motions. Lastly, conclusions are provided 
in section 5. 
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Figure 1: The  human model. 

2 Limit Cycle Control  

The dynamic simulation of human walking is a surpris- 
ingly difficult task, as evidenced by the assumptions 
and simplifications commonly used in the literature. 
The limit-cycle control algorithm described here is 
based upon existing ideas of limit cycle control[13, 18]. 
The instantiation we propose makes relatively few as- 
sumptions about  the specifics of the gait and the an- 
thropometry.  The algorithm is capable of stabilizing 
walking gaits for dynamically-simulated human mod- 
els, as well as particular running gaits. A complete 
description of the method and the results can be found 
in [16]. 

The art iculated skeleton used for our simulations has 
19 degrees of freedom (DOF) and is shown in Fig- 
ure 1. The dimensions and physical parameters  have 
been chosen to  be a realistic reflection of measured 
human anthropometric  data.  The character has two 
DOF ankle joints, three DOF hip joints, and one DOF 
joints elsewhere. A commercially available dynamics 
package[15] is used as the core of our simulation and is 
augmented with procedures for computing the internal 
and external forces. Internal forces (i.e., torques) are 
computed using the limit-cycle control algorithm to 
be described shortly; external ground-reaction forces 
are computed using a penal ty-method contact model. 
This contact model allows for slippage under the ap- 
propriate circumstances. 

The point of departure for the control algorithm is 
a cyclic finite-state machine (FSM) which operates 
in a deterministic fashion. Each state has associ- 
ated parameters which specify a set of desired joint 
angles. The joint torques are then computed using 
proportionai-derivative (PD) controllers, which drive 
the joints towards their  desired configurations. State 
transitions occur after a fixed t ime duration, with the 
exception of two sensor-based transitions. These lat- 
ter transitions are activated when the left and right 
feet strike the ground and their  function is to keep the 
FSM synchronized with the movement in progress. 

Given appropriate initial conditions and appropriate 
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scribed thus far is sufficient to  make a simulated 
human take several walking or running steps before 
falling over due to a lack of balance. The  goal of the 
limit cycle control mechanism is to  introduce small 
control per turbat ions into the FSM, which will serve 
to  provide the balancing actions. 

The operation of the limit-cycle control is illustrated 
in an abstract  fashion in Figure 2. The loop drawn 
in bold gives the desired periodic motion of the sys- 
tem state. The goal of the controller will be to push 
the system state back onto this trajectory.  Instead of 
dealing with the continuous system dynamics, how- 
ever, we can significantly simplify mat ters  by creating 
a discrete dynamical system. This is done by sampling 
the motion once per cycle, as il lustrated in the figure. 
The discrete dynamical system can then be expressed 
as xn+l = g ( x n , u n ) ,  where xn is the system state at 
the star t  of cycle n, xn+l is the system state at the 
end of cycle n, un represents the control inputs ap- 
plied during cycle n, and the function g is the state 
transit ion function. If the original FSM-based con- 
troller provides control inputs u0, then the limit cycle 
controller must compute the control per turbat ion ~ un  
such tha t  the applied control, un = u0 + Aun, results 
in the state returning to  the desired limit cycle, i.e., 
X n . J c l  ~ X d .  

In order to further  simplify the problem, we introduce 
the use of a reduced-order model for the system dy- 
namics. First, we note tha t  balance is concerned with 
avoiding a fall, and thus the basic requirement for Xd 
is tha t  the simulated human be upright at the end of 
each step. There are several ways of defining upright; 
one of the simplest is to a t tach an up vector to the 
coordinate frame of the pelvis. By projecting the up 
vector onto the ground plane, we obtain two compo- 
nents, one which measures tilt  in the lateral plane, i.e., 
to the left or right, and another  which measures tilt  
in the sagittal plane, i.e., forwards or backwards. We 
refer to these two observable parameters  as the regula- 
tion variables, as we wish to  drive the values of these 
variables to zero, or some other  suitably-chosen target  
values. 

An appropriate choice of control variables is required 
to effect the desired control over the regulation vari- 
ables. Two control variables are required in order to 
yield a controllable system. Several choices are possi- 
ble; one robust choice we use is to apply an additive 
per turbat ion to the target  hip angles in one or more 
of the FSM states. This affects the sagittal and lat- 
eral pitch of the t runk segment during the motion and 
thus can serve as a mechanism for balance control. 

4  



8

d ,\ 

end ot one cycle, 
beginn ing o! the next  

xn+ 1 = g( x n , u 0 + ~ u  n ) 

,~Xn+ l  = Xn+ 1 - xnO+l 

state space xnO+ 1 = g( Xn' Uo ) 

Figure 2: A limit cycle as a discrete dynamical system. 
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Figure 3: Simulated movements for a human model 
and robot. 

Given the definition of the 2D discrete dynamical sys- 
tem, the control algorithm constructs a first order 
model of the state transition function, g, by evaluat- 
ing the Jacobian, ~ at state xn. This is done once 
for each simulated walking step, using a total of four 
simulations of the same step, each executed with dif- 
ferent control parameters. Finite differences are then 
used to construct the linear model. 

Figure 3 illustrates two variations on a human walk 
as well as a running gait synthesized for a bird-like 
robot. Animations of these motions are available on 
the web[24]. The speed, direction, and style of the 
walks can be controlled independently of the balancing 
mechanism. Subjectively speaking, the walks exhibit 
a rather robotic style, although we intend to explore 
tuning mechanisms capable of producing more natu- 
ral walks. Based on the results to date, however, the 
limit-cycle control algorithm is of potential interest for 
both animation and robotics applications. 
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Figure 4: A Flipping Acrobot. 

3 Planning Dynamic Motions 

The synthesis of regular, periodic gaits such as walking 
and running is only a starting point for developing the 
types of dynamic motions which are readily observ- 
able in soccer players, tennis players, or cross-country 
runners. These sports require novel actions that are 
beyond the scope of a parameterized gait controller 
and they typically involve interaction with unstruc- 
tured dynamic environments. In such scenarios, it is 
difficult to make a distinction between planning and 
control. Fundamental questions to be asked about 
such motions include What action vocabulary is ap- 
propriate ]or planningf and How far ahead should one 
plan ? To this end, we have experimented with a finite- 
horizon planning algorithm, tested on simplified 'crea- 
tures' which are never the less capable of very dynamic 
motions[14]. One of our creatures is the acrobot, a two- 
link underactuated robot which has been the subject 
of considerable study in the control literature[12, 3, 4]. 
Our goal will be to create a sequence of animted flips, 
as shown in Figure 4. The other is Luxo, a 'jumping 
lamp,' drawn from a computer animation context. 

We shall explain the motion planner by way of an ex- 
ample. Figure 5 shows the output of the motion plan- 
ning algorithm for the jumping lamp character. This 
is a planar articulated figure consisting of three links 
connected by two single-DOF joints. The problem to 
be solved is the same for each of the four terrain seg- 
ments: find the sequence of control actions necessary 
for Luxo to hop across the terrain in minimal time and 
without falling. For clarity, Figure 5 only illustrates 
the motion of the middle link. The final motions, view- 
able on the web[24], exhibit considerable anticipation 
of the upcoming terrain, which we shall argue is both 
realistic and desireable. 

The motion planning process is carried out as follows. 
Luxo is given discrete repertoire of five control actions, 
which we shall denote as a, b, c, d, and e. Each of 
these actions corresponds to a different variation of a 
forward 'hop.' Qualitatively, these hops vary in their 
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Figure 5: Synthesized control for Luxo on cross- 
country runs. 

amounts of forward or backward lean. All the hops 
are implemented using a three-state FSM with fixed, 
timed state transitions. Each state provides a unique 
set of desired joint angle values, which are used by 
local PD controllers on each joint in order to produce 
the internal torques which drive the motion. 

As output, the planning algorithm should produce the 
sequence of actions which causes Luxo to traverse the 
terrain in minimal time, e.g., d,a,b,b,c,a, .... This is 
done using a finite-horizon decision tree, which works 
as follows. A decision tree is constructed to explore the 
outcome of every possible action sequence of length 
n, where n represents the planning horizon. For our 
example, we have chosen n = 4, which leads to the 
simulation of 54 possible outcomes. The optimal de- 
cision sequence is then chosen based upon the final 
amount of progress made, i.e., the maximal distance 
travelled. The planner then commits to the first action 
of the optimal decision sequence. The entire process 
is repeated for each subsequent decision. While the 
decision tree grows exponentially as a function of the 
depth, this behavior is not seen in practice because of 
the early termination of branches due to falls, as well 
as the application of branch-and-bound techniques. 

One of the insights to be gained from the resulting 
motions is a meaningful evaluation of the required 
planning horizon for particular classes of motion. The 
variation of the measured performance, i.e., the time 
taken to traverse the terrain, can be plotted as a func- 
tion of the planning horizon used, n. For the examples 
shown in Figure 5, there are no increasing returns to 
be had for n > 4. An optimal choice of n = 4 looks 
far enough ahead to achieve the best result, while not 
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trol decision should be influenced by the shape of the 
terrain up to four jumps ahead, which is a surprisingly 
long planning horizon. 

The same motion planning algorithm also allows for 
explorations of the capabilities of particular dynam- 
ical systems. In particular, we consider the acrobot, 
a simple two-link articulated figure which has a sin- 
gle DOF actuated joint. Novel motions can be syn- 
thesized by using the finite-horizon planning process 
with an objective function which measures progress 
towards a desired behavior. For example, we have 
produced control strategies which allow the acrobot 
to perform sequences of cartwheels, front flips, back 
flips, and forward balanced hopping. An example of 
a back-flip sequence is shown in Figure 4. These ani- 
mations are also available online[24]. 

4 Conc lus ions  

The dynamic simulation of human motion is a com- 
mon goal of computer animation, biomechanics, con- 
trol systems, and robotics. Indeed, these respective 
fields of research already share many common tools 
and ideas, although they may differ in their end goals 
and their means of evaluating success. However, the 
largely disjoint publication forums for these areas still 
leaves room for improved collaboration and exchange 
in order to remove the artifacts that  arise from the 
academic partitioning. 

We have described two control techniques which have 
potential implications for the dynamic simulation of 
human motion. Limit cycle control illustrates a gen- 
eral method for stabilizing simulated human walks and 
has the promise of extending to other types of gaits 
and anthropometry. The finite-horizon motion plan- 
ner provides insight into the types of motions a dy- 
namical system is capable of, as well as quantifying the 
amount of anticipation necessary for particular classes 
of motion. 
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