
Proceedings of the 2000 IEEE
International Conference on Robotics & Automation

San Francisco, CA • April 2000

Towards Agile Animated Characters

Michiel van de P a n n e

Joe Laszlo
Ped ro H u a n g

Pe t ros Fa lou t sos

D e p a r t m e n t of C o m p u t e r Science

Univers i ty o f Toronto*
Abstrac t

Dynamic simulation is a potentially useful tool for cre-
ating realistic motion for animated characters. How-
ever, improved control techniques are required before
this approach will bear fruit. We compare and con-
trast control for animation with control for robotics.
This is followed by an overview of two control meth-
ods which were conceived in the context of computer
animation, but which also have potential applications
for robotic control.

1 Introduction

Physically-based models and simulations are behind
an increasing number of tools and techniques in com-
puter graphics. Dynamic simulations are particu-
larly well suited to generating passive motions, such
as the movement of a character's clothing, the mo-
tion of falling and fracturing objects, and the mo-
tion of fluids. However, the simulation of human mo-
tions remains a formidable challenge given the many
complexities involved in the simulation and control.
Formidable accomplishments in this area have come
from biomechanics[20], robotics[17, 22], and control[9].

The physically-based simulation of human motion
is also of interest in computer animation[l, 2, 8].
Simulation-based animation techniques have also been
used to generate realistic animated motion for more
imaginary creatures[19, 23, 25]. At first sight it would
appear that the use of a complex physical simulation
is unwarranted when the end result is an animated
motion that could just as well have been created di-
rectly with a kinematic method. However, kinematic
algorithms produce unconstrained motion trajectories
* {van, jflaszlo ,psh,pfal}@dgp.utoronto. ca

0 -7803 -5886 -4 /00 /$ 10 .00© 2000 IEEE 682
whose lack of a physical basis is often readily apparent.
In production animations, the talents of an animator
can be relied upon to edit the motions until they are
sufficiently realistic. However, this is an impossibil-
ity in the realistic interactive environments that many
games and virtual worlds strive to provide.

The use of procedural kinematic algorithms[6, 5, 10]
or, alternatively, playback of stored motion data cap-
tured from real human actors is currently the method
of choice in some animation tools and many computer
games, although such methods suffer from being lim-
ited to the repertoire of captured motions. Algorithms
to alter captured motions can be used to provide an
expanded repertoire of motions and are a current topic
of research in the animation community[7, 11]. Given
the physical origins of the motions, it is perhaps not
surprising that some of these motion transformation
algorithms are reverting to the use of physics in order
to compute plausbile transformations[21].

In many scenarios, it can be argued that a full-fledged
physical simulation, together with the appropriate
control algorithms, is the most compact representa-
tion of a class of motion. Consider, for example, the
difficulty of representing two colliding football play-
ers using only a set of stored motions examples. The
difficulty of enumerating the large number of possible
motions that can arise in such a scenario is evidenced
in the current generation of games by the unrealistic
motion often apparent during such events.

1 .1 T h e A n i m a t i o n P e r s p e c t i v e

The task of intelligently controlling the motion of a
simulated character has many similarities to the task
of intelligently controlling the motion of a real robot.
However, there are some notable differences between

the animation problem and the robotics problem. As

is necessarily of prime importance. Creating animated

3
well, there are many different variations on the anima-
tion control problem. The following list elaborates on
some of the characteristic axes that define the design
space for the motion control problem in animation.

Hard physics vs soft physics.
In creating an animation, a desired motion specifica-
tion such as "leap 10m forward" might well be impos-
sible. In the context of animation, this need not neces-
sarily be a problem. A clever animation tool can relax
the laws of physics just enough to allow the motion
to be performed, resulting in a motion that satisfies
the motion specification, while still being yielding a
'best fit' to the constraints imposed by physics. Alter-
natively, animation tools can treat physics as a hard
constraint, as implemented by a conventional forward
dynamics simulation.

Observed motions vs synthetic motions.
The dynamics involved in creating a motion can be
modelled either explicitly, as is the case with typical
dynamic simulations, or implicitly, as is the case with
good kinematic animation which nevertheless attempt
to mimic the appropriate physics. While explicit mod-
els are perhaps the most interesting, given that they
synthesize motion from first principles, implicit mod-
els have the advantage of being able to exploit data
captured from real human motions. Motion capture
technology has made such data increasingly available,
and with the right techniques, captured motions can
be generalized to produce novel motions.

Degree of autonomy.
Generating the motion of a foreground character in
a feature film is a different problem from generating
the motion of a character in a game. The former
necessitates detailed control over the motion, while
the latter must be capable of interactive autonomous
motion. Such different applications are best served
by tools uniquely tailored for each, given the differ-
ent needs. For example, a game character requires
models for sensing and planning in order to operate
autonomously. These same skills are assumed by an
animator when animating a feature-film character.

Visual quality vs. stability
In robotics and control, guarantees of stability are im-
portant, while in animation the visual quality is of
primary importance.

1.2 P r a c t i c a l C o n s i d e r a t i o n s

A number of practical considerations require attention
when considering the use of dynamic simulations as a
means for creating animation. First, the user interface

68
motions, whether through traditional animation tech-
niques or using complex dynamic simluations, is a cre-
ative process and thus the tools should be predictable
in their actions, should provide suitable feedback, and
should support the required workflow for creating an-
imatious. This is no small challenge, given that these
requirements are superimposed on top of already dif-
ficult control problems.

The use of physics in computer games presents a fur-
ther interesting dilemna. Imagine that you are in con-
trol of a running character and you suddenly wish
to execute a sharp turn to the right. A physically-
realistic solution might require waiting until a par-
ticular phase in the stride where the sharp turn can
be executed. However, from the game-player's per-
spective, this lends a 'sluggish' feel to the game. The
fidelity to physics must be compromised in order to
accomodate the game-player's wishes.

Lastly, the computer graphics world is not bound
by the conventional methodology used in robotics,
namely that of treating control and simulation as two
separate problems. For the purposes of animation, it
may well be more efficient to build a model which en-
compasses both dynamics and control, thus yielding a
black box which accepts high-level motion commands
as input and generates appropriate motions as output.

1 .3 Explorations

Given the large body of literature which is relevant to
the dynamic simulation of human-like characters and
robots, it is beyond the scope of this article to pro-
vide an overview. Instead, the following two sections
present two distinct approaches to control that are
drawn from our own work, and which we feel provide
useful insights relevant to both robotics and computer
animation.

In section 2 we describe the use of limit cycle con-
trol as a general method for controlling the balance of
walking or running gaits. The technique is successfully
applied to the control of a 3D dynamically-simulated
walking gait, among others. Section 3 presents a tech-
nique for planning dynamic motions. The goal here
is to provide motions with the anticipatory behav-
ior necessary to execute very dynamic motions across
variable terrain. While the results are demonstrated
using physical systems having only a few degrees of
freedom, they lend potential insight into the planning
of dynamic motions. Lastly, conclusions are provided
in section 5.

choices of parameters, the FSM-based controller de-
: . : : - ~ : : ~ : : : ~ : ~ : : ~ : : :
: . : : : :~. . . : . : , . , - : : : : :

Figure 1: The human model.

2 Limit Cycle Control

The dynamic simulation of human walking is a surpris-
ingly difficult task, as evidenced by the assumptions
and simplifications commonly used in the literature.
The limit-cycle control algorithm described here is
based upon existing ideas of limit cycle control[13, 18].
The instantiation we propose makes relatively few as-
sumptions about the specifics of the gait and the an-
thropometry. The algorithm is capable of stabilizing
walking gaits for dynamically-simulated human mod-
els, as well as particular running gaits. A complete
description of the method and the results can be found
in [16].

The art iculated skeleton used for our simulations has
19 degrees of freedom (DOF) and is shown in Fig-
ure 1. The dimensions and physical parameters have
been chosen to be a realistic reflection of measured
human anthropometric data. The character has two
DOF ankle joints, three DOF hip joints, and one DOF
joints elsewhere. A commercially available dynamics
package[15] is used as the core of our simulation and is
augmented with procedures for computing the internal
and external forces. Internal forces (i.e., torques) are
computed using the limit-cycle control algorithm to
be described shortly; external ground-reaction forces
are computed using a penal ty-method contact model.
This contact model allows for slippage under the ap-
propriate circumstances.

The point of departure for the control algorithm is
a cyclic finite-state machine (FSM) which operates
in a deterministic fashion. Each state has associ-
ated parameters which specify a set of desired joint
angles. The joint torques are then computed using
proportionai-derivative (PD) controllers, which drive
the joints towards their desired configurations. State
transitions occur after a fixed t ime duration, with the
exception of two sensor-based transitions. These lat-
ter transitions are activated when the left and right
feet strike the ground and their function is to keep the
FSM synchronized with the movement in progress.

Given appropriate initial conditions and appropriate

68
scribed thus far is sufficient to make a simulated
human take several walking or running steps before
falling over due to a lack of balance. The goal of the
limit cycle control mechanism is to introduce small
control per turbat ions into the FSM, which will serve
to provide the balancing actions.

The operation of the limit-cycle control is illustrated
in an abstract fashion in Figure 2. The loop drawn
in bold gives the desired periodic motion of the sys-
tem state. The goal of the controller will be to push
the system state back onto this trajectory. Instead of
dealing with the continuous system dynamics, how-
ever, we can significantly simplify mat ters by creating
a discrete dynamical system. This is done by sampling
the motion once per cycle, as il lustrated in the figure.
The discrete dynamical system can then be expressed
as xn+l = g (x n , u n) , where xn is the system state at
the star t of cycle n, xn+l is the system state at the
end of cycle n, un represents the control inputs ap-
plied during cycle n, and the function g is the state
transit ion function. If the original FSM-based con-
troller provides control inputs u0, then the limit cycle
controller must compute the control per turbat ion ~ un
such tha t the applied control, un = u0 + Aun, results
in the state returning to the desired limit cycle, i.e.,
X n . J c l ~ X d .

In order to further simplify the problem, we introduce
the use of a reduced-order model for the system dy-
namics. First, we note tha t balance is concerned with
avoiding a fall, and thus the basic requirement for Xd
is tha t the simulated human be upright at the end of
each step. There are several ways of defining upright;
one of the simplest is to a t tach an up vector to the
coordinate frame of the pelvis. By projecting the up
vector onto the ground plane, we obtain two compo-
nents, one which measures tilt in the lateral plane, i.e.,
to the left or right, and another which measures tilt
in the sagittal plane, i.e., forwards or backwards. We
refer to these two observable parameters as the regula-
tion variables, as we wish to drive the values of these
variables to zero, or some other suitably-chosen target
values.

An appropriate choice of control variables is required
to effect the desired control over the regulation vari-
ables. Two control variables are required in order to
yield a controllable system. Several choices are possi-
ble; one robust choice we use is to apply an additive
per turbat ion to the target hip angles in one or more
of the FSM states. This affects the sagittal and lat-
eral pitch of the t runk segment during the motion and
thus can serve as a mechanism for balance control.

4

8

d ,\

end ot one cycle,
beginn ing o! the next

xn+ 1 = g(x n , u 0 + ~ u n)

,~Xn+ l = Xn+ 1 - xnO+l

state space xnO+ 1 = g(Xn' Uo)

Figure 2: A limit cycle as a discrete dynamical system.

I I I f I I I I J S / I f I

I ? I I I I I I 1 / I I I J

Figure 3: Simulated movements for a human model
and robot.

Given the definition of the 2D discrete dynamical sys-
tem, the control algorithm constructs a first order
model of the state transition function, g, by evaluat-
ing the Jacobian, ~ at state xn. This is done once
for each simulated walking step, using a total of four
simulations of the same step, each executed with dif-
ferent control parameters. Finite differences are then
used to construct the linear model.

Figure 3 illustrates two variations on a human walk
as well as a running gait synthesized for a bird-like
robot. Animations of these motions are available on
the web[24]. The speed, direction, and style of the
walks can be controlled independently of the balancing
mechanism. Subjectively speaking, the walks exhibit
a rather robotic style, although we intend to explore
tuning mechanisms capable of producing more natu-
ral walks. Based on the results to date, however, the
limit-cycle control algorithm is of potential interest for
both animation and robotics applications.

6

Figure 4: A Flipping Acrobot.

3 Planning Dynamic Motions

The synthesis of regular, periodic gaits such as walking
and running is only a starting point for developing the
types of dynamic motions which are readily observ-
able in soccer players, tennis players, or cross-country
runners. These sports require novel actions that are
beyond the scope of a parameterized gait controller
and they typically involve interaction with unstruc-
tured dynamic environments. In such scenarios, it is
difficult to make a distinction between planning and
control. Fundamental questions to be asked about
such motions include What action vocabulary is ap-
propriate]or planningf and How far ahead should one
plan ? To this end, we have experimented with a finite-
horizon planning algorithm, tested on simplified 'crea-
tures' which are never the less capable of very dynamic
motions[14]. One of our creatures is the acrobot, a two-
link underactuated robot which has been the subject
of considerable study in the control literature[12, 3, 4].
Our goal will be to create a sequence of animted flips,
as shown in Figure 4. The other is Luxo, a 'jumping
lamp,' drawn from a computer animation context.

We shall explain the motion planner by way of an ex-
ample. Figure 5 shows the output of the motion plan-
ning algorithm for the jumping lamp character. This
is a planar articulated figure consisting of three links
connected by two single-DOF joints. The problem to
be solved is the same for each of the four terrain seg-
ments: find the sequence of control actions necessary
for Luxo to hop across the terrain in minimal time and
without falling. For clarity, Figure 5 only illustrates
the motion of the middle link. The final motions, view-
able on the web[24], exhibit considerable anticipation
of the upcoming terrain, which we shall argue is both
realistic and desireable.

The motion planning process is carried out as follows.
Luxo is given discrete repertoire of five control actions,
which we shall denote as a, b, c, d, and e. Each of
these actions corresponds to a different variation of a
forward 'hop.' Qualitatively, these hops vary in their

5

wastefully planning too far ahead. The current con-

6

/ / / l l \v l~

Figure 5: Synthesized control for Luxo on cross-
country runs.

amounts of forward or backward lean. All the hops
are implemented using a three-state FSM with fixed,
timed state transitions. Each state provides a unique
set of desired joint angle values, which are used by
local PD controllers on each joint in order to produce
the internal torques which drive the motion.

As output, the planning algorithm should produce the
sequence of actions which causes Luxo to traverse the
terrain in minimal time, e.g., d,a,b,b,c,a, This is
done using a finite-horizon decision tree, which works
as follows. A decision tree is constructed to explore the
outcome of every possible action sequence of length
n, where n represents the planning horizon. For our
example, we have chosen n = 4, which leads to the
simulation of 54 possible outcomes. The optimal de-
cision sequence is then chosen based upon the final
amount of progress made, i.e., the maximal distance
travelled. The planner then commits to the first action
of the optimal decision sequence. The entire process
is repeated for each subsequent decision. While the
decision tree grows exponentially as a function of the
depth, this behavior is not seen in practice because of
the early termination of branches due to falls, as well
as the application of branch-and-bound techniques.

One of the insights to be gained from the resulting
motions is a meaningful evaluation of the required
planning horizon for particular classes of motion. The
variation of the measured performance, i.e., the time
taken to traverse the terrain, can be plotted as a func-
tion of the planning horizon used, n. For the examples
shown in Figure 5, there are no increasing returns to
be had for n > 4. An optimal choice of n = 4 looks
far enough ahead to achieve the best result, while not

68
trol decision should be influenced by the shape of the
terrain up to four jumps ahead, which is a surprisingly
long planning horizon.

The same motion planning algorithm also allows for
explorations of the capabilities of particular dynam-
ical systems. In particular, we consider the acrobot,
a simple two-link articulated figure which has a sin-
gle DOF actuated joint. Novel motions can be syn-
thesized by using the finite-horizon planning process
with an objective function which measures progress
towards a desired behavior. For example, we have
produced control strategies which allow the acrobot
to perform sequences of cartwheels, front flips, back
flips, and forward balanced hopping. An example of
a back-flip sequence is shown in Figure 4. These ani-
mations are also available online[24].

4 Conc lus ions

The dynamic simulation of human motion is a com-
mon goal of computer animation, biomechanics, con-
trol systems, and robotics. Indeed, these respective
fields of research already share many common tools
and ideas, although they may differ in their end goals
and their means of evaluating success. However, the
largely disjoint publication forums for these areas still
leaves room for improved collaboration and exchange
in order to remove the artifacts that arise from the
academic partitioning.

We have described two control techniques which have
potential implications for the dynamic simulation of
human motion. Limit cycle control illustrates a gen-
eral method for stabilizing simulated human walks and
has the promise of extending to other types of gaits
and anthropometry. The finite-horizon motion plan-
ner provides insight into the types of motions a dy-
namical system is capable of, as well as quantifying the
amount of anticipation necessary for particular classes
of motion.

References

[1] N. I. Badler, B. Barsky, and D. Zeltzer. Making
Them Move. Morgan Kaufmann Publishers Inc.,
1991.

[2] N. I. Badler, C. Phillips, and B. Webber. Simu-
lating Humans: Computer Graphics, Animation,
and Control. Oxford University Press, 1991.

7
[3] M. D. Berkemeier and R. S. Fearing. Control of
a two-link robot to achieve sliding and hopping
gaits. Proceedings, IEEE International Confer-
ence on Robotics and Automation, pages 286-294,
1992.

[4] S. A. Bortoff. Pseudolinearization Using Spline
Functions with Application to the Acrobot.
PhD thesis, University of Illinois at Urbana-
Champaign, 1992.

[5] R. Boulic, N. M. Thalmann, and D. Thalmann.
A global human walking model with real-time
kinematic personification. The Visual Computer,
6:344-358, 1990.

[6] A. Bruderlin and T. W. Calvert. Goal-directed
animation of human walking. Proceedings of
ACM SIGGRAPH, 23(4):233-242, 1989.

[7] A. Bruderlin and L. Williams. Motion signal pro-
cessing. Proceedings of Siggaph '95, ACM Com-
puter Graphics, pages 97-104, 1995.

[8] J. K. Hodgins et al. Animating human athletics.
Proceedings of SIGGRAPH '95, ACM Computer
Graphics, pages 71-78, 1995.

[9] Vukobratovic et al. Biped Locomotion: Dynam-
ics, Stability, Control and Applications. Springer
Verlag, 1990.

[10] M. Girard. Interactive design of computer-
animated legged animal motion. IEEE Comptuer
Graphics and Applications, 7(6):39-51, June
1987.

[11] Michael Gleicher. Retargeting motion to new
characters. Proceedings of SIGGRAPH 98, pages
33-42, July 1998. ISBN 0-89791-999-8. Held in
Orlando, Florida.

[12] J. Hanser and R. M. Murray. Nonlinear con-
trollers for non-integrable systems: the acrobot
example. Proceedings, American Control Confer-
ence, pages 669-671, 1990.

[13] H. M. Hmam and D. A. Lawrence. Robustness
analysis of nonlinear biped control laws via sin-
gular perturbation theory. Proceedings of the 31st
IEEE Conference on Decision and Control, pages
2656-2661, 1992.

[14] P. S. Huang and M. van de Panne. A search algo-
rithm for planning dynamic motions. Computer
Animation and Simulation '96, pages 169-182,
September 1996.

68
[15] Symbolic Dynamics Inc. SD/Fast User's Manual.
1990.

[16] Joseph F. Laszlo, Michiel van de Panne, and Eu-
gene Fiume. Limit cycle control and its appli-
cation to the animation of balancing and walk-
ing. Proceedings of SIGGRAPH 96, pages 155-
162, August 1996.

[17] Honda Motor Co. Ltd. www.honda.co.jp /en-
glish/technology]robot/.

[18] T. McGeer. Passive dynamic walking. The Inter-
national Journal of Robotics Research, 9(2):62-
82, 1990.

[19] J. T. Ngo and J. Marks. Spacetime constraints
revisited. Proceedings of SIGGRAPH '93, pages
343-350, 1993.

[20] Marcus G. Pandy and Frank C. Anderson. Three-
dimensional computer simulation of jumping and
walking using the same model. In Proceedings of
the VIIth International Symposium on Computer
Simulation in Biomechanics, 1999.

[21] Zoran Popovic and Andrew Witkin. Physically
based motion transformation. Proceedings of
SIGGRAPH 99, pages 11-20, August 1999.

[22] M. H. Raibert. Legged Robots that Balance. MIT
Press, 1986.

[23] U. Sims. Evolving virtual creatures. Proceed-
ings of SIGGRAPH '94, A CM Computer Graph-
ics, pages 15-22, 1994.

[24] M. van de Panne. Animations web page.
http ://www. dgp. utoronto, ca/'van/ani, html.

[25] M. van de Panne and E. Flume. Sensor-actuator
networks. Proceedings of SIGGRAPH '93, pages
335-342, 1993.

	MAIN MENU
	PREVIOUS MENU

	Search CD-ROM
	Search Results
	Print

