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Figure 1: Figures (a)-(c): Demonstration of overtaking. Figure (d):Agents walking through a hallway. Figure (e): Queue formation as agents
enter narrow passageway. Figures (f)-(h): Steering in confined environments. Figure (i): Forest. Figure (j): 5000 agent simulation.

Abstract

In this paper we propose a general framework for local path-
planning and steering that can be easily extended to perform high-
level behaviors. Our framework is based on the concept ofaffor-
dances– the possible ways an agent can interact with its environ-
ment. Each agent perceives the environment through a set of vec-
tor and scalar fields that are represented in the agent’s local space.
This egocentric property allows us to efficiently compute a local
space-time plan. We then use these perception fields to compute a
“goodness” measure for every possible action, known as an affor-
dance field. The action that has the optimal value in the affordance
field is the agent’s steering decision. Using our framework, we
demonstrate completely autonomous virtual pedestrians that per-
form steering and path planning in unknown environments along
with the emergence of cognitive responses to never seen before sit-
uations.
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1 Introduction

Research in the area of pedestrian simulation has seen a dramatic
rise in recent years. With the potential for this work being realized
in a wide variety of areas, ranging from urban planning, training
simulations and games, life-like steering motions for each individ-
ual have become critical for a truly immersive and realistic experi-
ence.

There are two major components involved in pedestrian navigation:
path planning and a steering mechanism. They are often tackled
as separate problems that need to be interfaced for a fully func-
tional navigation system. Approaches such as A* [Hart et al. 1968]
and potential fields [Warren 1990; Shimoda et al. 2005] are popular
planning methods for pedestrian simulations. Given a target loca-
tion and an obstacle laden environment, these techniques compute a
global path to the target. Then, a steering mechanism (e.g. [Loscos
et al. 2003; Pelechano et al. 2007]) tries to follow the planned path
while avoiding dynamic objects.

However, an important feature of realistic steering is missing in
traditional approaches: humans constantly compute a local short-
term space-time plan to steer through their immediate environment
which includes dynamic objects and other agents. This short-term
plan is essential fornatural steering in crowded environemnts, as
well as for resolving deadlock situations, for example two people
arriving at a doorway from opposite directions. Most agent-based



approaches do not perform space-time planning. Recent works with
space-time predictions (e.g. [Paris et al. 2007]) use an explicit time
dimension and simple linear prediction. Continuum dynamics ap-
proaches (e.g., [Treuille et al. 2006]) do not model individual agent
interactions that would use such short-term plans. Field-based ap-
proaches (e.g. [Shimoda et al. 2005]) effectively compute plans on
the required scale, but do not take into account time and require
storing large high-resolution fields for the entire environment.

This paper presents a novel technique that bridges the gap between
steering and planning by using information fields in an egocen-
tric fashion, where the agent is centered about the origin at all
times. Our approach is based on the concept ofaffordances– the
ways in which an agent can interact with its environment [Gibson
1977]. Affordances have been applied to agent systems [Michael
and Chrysanthou 2003; Turner and Penn 2002], but not explicitly
for steering. We definegoodnessto be a measure of how appropri-
ate the associated affordance (associated action) will be. Anaffor-
dance fieldis a scalar field that has a goodness measure associated
with every affordance in the space of all possible actions. A fi-
nal decision is the affordance associated with the optimal goodness
measure.

This paper presents a novel egocentric fields steering framework
with four main contributions:

- We represent the fields in an egocentric local-space, as op-
posed to a global world-space. This allows us to implicitly
account for time when planning, and removes the resolution
problem of global field-based approaches.

- We propose the concept of affordance fields as a powerful way
to combine sensory information, giving more meaningful data
than simple potential fields.

- Our discretized model has variable resolution, where infor-
mation accuracy decreases with increase in distance from ori-
gin. This avoids wasteful computation and storage cost fur-
ther away, where a plan would be re-computed sooner than it
is used.

- Our approach performs short-term planning, accounting for
dynamic objects, making it possible to steer naturally in chal-
lenging agent-agent interactions, such as deadlocks. Demon-
stration of these abilities can be seen in the accompanying
supplementary video.

This paper is organized as follows: Section 2 provides a brief
overview of the current state of the art in the field of crowd sim-
ulation. We present our egocentric information representation, with
implicit time dependency and discuss the concept of affordance in
Section 3. Section 4 describes the discretization of the egocentric
fields and discusses our method of implementing steering and im-
plicit path planning in dynamically changing environments. We
then evaluate our approach using a suite of test cases and we illus-
trate ease of integration with higher level behaviors by demonstrat-
ing group behaviors (Section 5). Finally, Section 7 discusses future
work.

2 Related Work

Since the seminal work of [Reynolds 1987; Reynolds 1999], there
has been a growing interest in crowd simulation with a wide array of
techniques being tested and implemented. [Clements and Hughes
2004] and [Treuille et al. 2006] utilize fluid dynamics in produc-
ing high density crowd simulations. [Millan and Rudomin 2006]
render large crowds by using existing programmable graphics hard-
ware. These approaches generate smooth crowd locomotion at the
expense of losing detailed behavior of each individual. [Sung et al.
2004] adopts an agent model where behaviors are added depend-
ing on the environment situation. Rule based systems [Loscos et al.

2003; Lamarche and Donikian 2004] limit the steering functionality
to conditions that have been foreseen and do not react well to irreg-
ularities in the environment that inevitably arise in a high density
crowd simulation. Example based approaches [Lerner et al. 2007]
use video segments of real pedestrian crowds as input to a learn-
ing system that generates natural looking crowd behaviors. [Boulic
2008] offers the ability of reaching a goal with a prescribed direc-
tion by extending the funneling behavior. [Funge et al. 1999; Shao
and Terzopoulos 2005; Yu and Terzopoulos 2007] focus on the cog-
nitive abilities of autonomous pedestrians.

There are two popular methods to path planning in crowd simula-
tion. The A* algorithm and its derivatives [Hart et al. 1968; Hart
et al. 1972; Dechter and Pearl 1985; Trovato and Dorst 2002] tend
to produce non-realistic routes and require smoothing techniques in
addition to a steering mechanism for dynamic collision avoidance.
The approach of potential fields [Warren 1989; Warren 1990; Shi-
moda et al. 2005] generates a global field for the entire landscape
where the potential gradient is contingent upon the presence of ob-
stacles and distance to goal. Since a change in target or environ-
ment requires significant re-computation, these navigation meth-
ods are generally confined to systems with non-changing goals and
static environments. A solution is proposed by [Surasmith 2002] in
which path-finding data is pre-computed and stored in a connectiv-
ity table which offsets this issue at the cost of a considerable mem-
ory overhead. [Li et al. 2003] uses a segregated local and global
planner to perform path planning in a layered environment. The
work of [Takeuchi et al. 1992] employs the notion of attractiveness
of objects for path planning and its use in human animation.

Space-time models (e.g., [Kant and Zucker 1988; Tsubouchi et al.
1995; Shapiro et al. 2007]) combine space and time into a single
construct by representing space as three dimensions and time as the
fourth dimension. Space time planning exploits the inherent ad-
vantage of having information in time to predict collisions in the
future. These models improve steering behaviors at the cost of an
additional dimension which greatly increases the search space, in-
curring a considerable overhead.

There has been previous work in the realm of egocentric based navi-
gation [Altun and Koku 2005; Chao and Dyer 1999; Fleming 2005].
These techniques use egocentric maps for simple static obstacle
avoidance but do not address the issue of larger environments where
the goal falls outside the local egocentric map. Moreover, this ego-
centric model does not address space-time planning for dynamic
object avoidance or real-time performance.

In most crowd simulation approaches, the underlying steering
framework offers parameters that can be used by a higher lever
framework to implement group behaviors. For example, in force
based approaches, properly designed attractive forces can keep a
group of people together or make them follow a leader. Our frame-
work allows group behaviors to be implemented by simply setting
intermediate dynamic or static goals for the agents.

Comparison to previous work. The most similar works to
ours are potential field methods [Warren 1989], affordance meth-
ods [Michael and Chrysanthou 2003; Turner and Penn 2002], and
continuum crowds [Treuille et al. 2006]. The key difference be-
tween these works and ours is that our affordance fields are repre-
sented in anegocentricmanner, giving us several benefits: (1) we
are no longer bound to the resolution and scaling problems associ-
ated with global fields and continuum methods. (2) We can dynam-
ically scale the resolution of our egocentric fields to get the highest
resolution possible for the scale we need. (3) The computational
cost of our approach is not dependent on the complexity of the en-
vironment. (4) Our approach naturally supports efficient space-time
planning, which is difficult to integrate into global fields and con-



Figure 2: Overview of proposed framework and data flow using
egocentric fields. P = Perception Fields, A = Affordance Fields.

tinuum methods. To our knowledge, our work is the first to present
an egocentric fields approach to model affordances for steering.

3 Perception and Affordance Fields

In this section, we present a novel theoretical basis of information
representation for steering. An overview of our proposed frame-
work is illustrated in Figure 2 . There are two key elements in our
model. First, the data is represented usingegocentric fields, where
the origin is always the center of focus. Second, we use the concept
of affordance, described below, which is a convenient and power-
ful way to combine all sensory information. The model consists of
three phases, which are described below.

3.1 Sensory Phase – Egocentric Perception Fields

An egocentric perception field, P ( ~X), is a vector or scalar field
that quantifies a property of the environment. For example, a
traversability fieldquantifies how easy it is to occupy a location
in space – high traversability value implies that it is easy for an
agent to occupy that location, while a low traversability value im-
plies that an agent would not be able to occupy that location, per-
haps because another object already occupies that location. Other
examples of perception fields are: velocity information of nearby
objects and planned trajectories of other agents. Egocentric percep-
tion fields can be computed from sensors for a robot or by querying
the environment data structures, e.g., in a virtual world.

Time is naturally taken into account in this model, because of the
egocentric representation. The agent is always located at the origin,
and therefore the shortest distance between any point and the ori-
gin is directly proportional to the time it would take to reach that
point. We use this property to efficiently predict collisions and plan
in the space-timedomain without requiring an explicit additional
dimension in the system.

Perception fields are combined to provide a more intuitive represen-
tation of sensory information which can then be used to compute the
affordance fields,

P ′( ~X) = g(P1, P2, P3, ...Pn, goal) (1)

Figure 3: Data flow diagram for steering using egocentric fields.

whereg(·) is a function of one or more perception fields. For ex-
ample, a linear combination of static and dynamic perceptual infor-
mation provides information of traversability in the environment.

3.2 Affordance Phase – Affordance Fields

The concept of affordance was introduced by Gibson in
1954 [Greeno 1994]. In our context, affordances describe the var-
ious ways that an agent can interact with its environment. Specifi-
cally, we define an affordance as a possible steering action that an
agent could perform at a given point in time.

An affordance field, A(q), quantifies the relative “strength” of all
affordances, based on the desired goals of the agent. An affordance
value,A(qi) for a particular actionqi is an evaluation of how much
this action would help advance the agent towards accomplishing its
goals. It is computed as a function of perception fields:

A(q) = f(P ′
1, P

′
2, P

′
3, ...P

′
m) (2)

where the functionf(·) is defined so thatA(q) provides a numeric
value indicating the strength of a particular affordance. The spe-
cific functions that we use for our implementation of steering are
described in Section 4.

3.3 Selection Phase

The final output of the system is the affordance (action)qi associ-
ated with the optimal valueA(qi). Optimality is defined by maxi-
mizing or minimizingf(·). Example of output decisions are target
speed and desired direction of an agent.

So far our discussion has been in continuous space. Section 4
presents a discretization of these fields and applies this discrete
model to steering.

4 Discrete Egocentric Fields for Steering

This section describes the specific egocentric fields used for steer-
ing, and the steering algorithm itself. A discretization of egocentric
fields is described in Section 4.1. Sensory information, such as
traversability, dynamic threats and velocity of neighboring agents,



is represented using egocentric perception fields (Section 4.2). Af-
fordance fields are computed as a function of these perception fields
which provide the relative strength of all possible steering deci-
sions, based on the goal(s) of the agent (Section 4.3). The final
output decisions, in the form of target speed,starget and target di-
rection, ~Dtargetare used for locomotion of agent (Section 4.4). The
data-flow diagram for steering is illustrated in Figure 3.

4.1 Discretization of Egocentric Fields

We implement a discretization of the model developed in Section 3
as a connectionist architecture that uses nodes arranged in concen-
tric circles to maintain egocentric spatial information. At all times,
the central node represents the current position of the agent. Each
node perceives information corresponding to its “spatial awareness”
in the environment.

Discrete Egocentric Fields comprise the following structural com-
ponents, shown in Figure 4:

- Root: The root represents the current position of the agent
and is the origin of the egocentric fields.

- Layers: The egocentric map is segregated into layers, de-
noted by the layer numberl, where each layer comprises a
fixed number of nodes that store the information of an area of
the environment. The number of nodes per layern and the
number of layersm are the two user-defined parameters.

- Layer Radius: The distance from the root to thelth layer is
known as thelayer radius, denoted asrlayer(l).

- Node Radius: The radius of the area associated with node of
the lth layer is termed as thenode radius, rnode(l). The node
radius increases for layers further from the root. As a result,
the spatial area covered by the node increases with increase in
distance from the root, giving rise to variable resolution.

- Inter-node weight: The inter-node weight, w(l), determines
the area between two adjacent nodes in successive layers. It
allows us to dynamically scale the coverage of the environ-
ment, for a constant memory cost.

- Node Information: Each node contains its location, connec-
tivity to neighboring nodes, and values of the perception and
affordance fields for its given location.

Variable Resolution and Dynamic Scaling

Our discrete egocentric perception fields are modeled with variable
resolution where the accuracy of information is high near the root
and decreases further from the origin. The layer radius is thus a
determining factor of the relative importance of the information.
The information storage per unit area is dense close to the origin,
and density decreases further from the root.

Accuracy is dependent on the layer radius, node radius, and the
inter-node weight, which in turn are determined by user-defined
parameters: number of nodes per layer,n, and number of layers,
m. Appendix A demonstrates how the structural components are
determined from these two user-defined parameters.

To dynamically scale the field at runtime, we use inter-node
weights,w[l], to scale the field with respect to the distance of goal,
D. LetD′ be the radius of the outermost layer. IfD > D′, the goal
lies outside of the field. In this case, we iteratively increasew(l) to
scale the field until the goal lies inside the field. Thus, the scaled
node radiusr′node(l) is,

r′node(l) = rnode(l) × w(l) (3)

Figure 4: Structure of Egocentric Fields with variable resolution
information representation.

4.2 Sensory Phase – Perception Fields

Our steering uses the following egocentric perception fields:
- Static Field: The static field,Pstatic( ~X), represents the con-

figuration of the obstacles in the environment surrounding the
agent. A high numeric value of the field for a given loca-
tion indicates that the location is free from static obstacles,
whereas a low value indicates that it cannot be traversed.

- Dynamic Field: The dynamic field,Pdynamic( ~X) represents
the current state of all dynamic objects, by providing the pre-
dicted positions of neighboring agents at various points of
time. A high numeric value indicates that the likelihood of
a dynamic threat at the given location is minimal, whereas a
low value indicates a high probability of a dynamic threat.

- Velocity Field: The velocity field, ~Pvelocity( ~X) is a vector
field that provides the direction and speed magnitude of neigh-
boring agents.

- Traversability Field: Ptraversability( ~X), the traversability
field, is a combination ofPstatic andPdynamic:

Ptraversability( ~X) = Pstatic( ~X) + Pdynamic( ~X) (4)

- Local Dynamic Field: The dynamic field,Pdynamic( ~X) is
subject to a kernel function that considers the regions in which
dynamic threats are most imminent. The resulting fields are
known as local dynamic fields, denoted byPlocal-dynamic.

Plocal-dynamic( ~X) = K( ~X) · Pdynamic( ~X) (5)

Our current implementation uses a simple step function which
only considers the information in the firstm/2 layers of the
dynamic field, wherem is the total number of layers :

K( ~X) =

{

1 if | ~X| < rlayer(m/2)
0 otherwise

(6)

- Relative Velocity Field: The relative velocity field,
~Prelative-velocity( ~X) provides the relative velocity of neighbor-
ing agents with respect to the agents velocity.

~Prelative-velocity( ~X) = ~Pvelocity( ~X) − (starget× ~Dtarget) (7)



wherestargetis the speed with which the agent is traveling and
~Dtarget is its current direction of motion.

Implicit Space-Time Planning

Previous approaches implement space-time planning by represent-
ing space in two or three spatial dimensions with time as an ad-
ditional dimension. This incurs a considerable processing over-
head which becomes intractable in large crowd simulations. Our
approach naturally supports efficient space-time planning by using
egocentric fields. Due to the egocentric nature of our data repre-
sentation, we can represent time implicitly as the distance from the
origin to any point of interest, effectively reducing the dimensions
in space-time planning by one. The remainder of the section de-
scribes how we apply this concept to perform efficient space-time
planning and threat prediction simultaneously.

There exists a mapping between time and a particular layer of an
agents egocentric field, as time is directly proportional to the dis-
tance from the origin of the field. Lett[l] be the time taken by the
agent to travel a distancerlayer(l), for a particular layer,l. Pdynamic

and~Pvelocity are computed by considering thistime-level associativ-
ity and the neighbors,N , surrounding an agent . If the difference in
the time taken by the neighborN(i) in travelling a distancerlayer(j)
and the time taken by the agent to travel a distancerlayer(k) is be-
low a certain threshold,ǫ, then a dynamic threat is predicted at that
instance of time and space.Pdynamicof the agent reflects a potential

threat at the predicted position ofN(i), at timet[k]. ~Pvelocity stores
the current velocity of the potential threats at that point in space.
Once these fields are computed,Plocal-dynamic and ~Prelative-velocity
are determined using Equations 5 and 7.

4.3 Affordance Phase – Affordance Fields

Affordance fields for direction and speed of locomotion are defined
as follows:

Direction Affordance Fields

Direction Affordance Fields,Adirection(θ), quantify the relative
strengths of all possible directions,θ in which an agent can steer. A
pedestrian in a crowd bases its direction of travel on the presence of
static objects in the environment as well as other pedestrians (dy-
namic objects). For instance, a slow moving pedestrian in front
would mandate a direction change in order to perform an overtak-
ing maneuver. This is an emergent behavior in our model by using
the following formulation:

Adirection(θ) = f1(Ptraversability, ~Xgoal) (8)

wheref1 is an iterative process onPspatial. The process starts by
adding a strong goodness measure at the goal position and then
propagating this value in all directions. The propagation at each
point in space is affected by the spatial perception fields. For ex-
ample, if there is an untraversable object between the agent and its
goal, the value of goodness will not propagate through the object.
Instead the goodness measure will eventually reach the agent by
propagating around the object.

Given a 3D location ~X1, which is initally set to ~Xgoal, a set of
points at an infinitely small displacement of∆r in all directions
around ~X1 can be represented by the following function,a( ~X):

a( ~X) = { ~X2 : | ~X − ~X1|
2 = ∆r2, ~X ∈ R3} (9)

The goodness measure propagates from point~X1 to point ~X2 ac-
cording to the following recurrence:

Aspatial( ~X2) = (Aspatial( ~X1) − Ptraversability( ~X2)) × α (10)

whereα ∈ (0, 1) is the rate of decay. The end result of this process
is a path of high goodness from~Xorigin to ~Xgoal that represents the
path that must be traversed to reach the goal.

The spatial affordance field,Aspatial( ~X) provides goodness values
for all points in space. However, we require the goodness measure
for all possible directions which serve as our steering choices. The
goodness values for all points in space immediately surrounding us
serve as the values for direction affordance,Adirection(θ).

Speed Affordance Fields

The speed of an agent is based on the velocity of neighboring agents
that are perceived as threats. The goodness of speed is governed by
the the presence of threats along the previously predicted path to
the goal. The speed affordance field,Aspeed(s) provides the relative
strength of all speed affordances.

Aspeed(s) = arg min
~X

( ~Xi + t × Prelative-velocity( ~X)) (11)

where ~Xi ∈ { ~X : Plocal-dynamic> 0}

4.4 Selection Phase – Optimal Affordance Selection

Once the affordance fields are computed, the final step is to select
the speed and direction having optimal goodness values. The target
speed,starget is the speed for which,Aspeed(s) is maximized and is
computed as follows:

starget= arg max
s

Aspeed(s) (12)

The target direction,~Dtarget is estimated by rotating the current di-
rection by an angle,θtargetwhich is computed as follows:

θtarget= arg max
θ

Adirection(θ) (13)

In the discretized implementation of our model, selecting the di-
rection having maximum goodness producesvibrationswhich arise
due to the fact that the goodness of adjacent directions may oscillate
over key frames. We offset this undesirable effect by performing
quadratic interpolation over a window of directions whose cumu-
lative goodness is maximized. LetY (θ) = Aθ2 + Bθ + C be a
quadratic equation that maps goodness values to angular displace-
ments. The value ofθ for whichY (θ) is maximized is simply given
by θtarget= −B/2A.

4.5 The Steering Algorithm

The complete algorithm for steering using egocentric fields is out-
lined below:

- Determine goal position of an agent,~Xgoal.
- Initialize node weights,w(l) = 1, ∀l. If necessary, iteratively

increasew(l) to scale the field until the goal lies inside the
field.

- Populate the static perception field,Pstatic.
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Figure 5: The Steering Algorithm: (a) The current state of the environment. (b) Static Perception Field indicating low traversability at
position of obstacle. (c) Dynamic Perception Field for velocity,starget = s0. (d) Dynamic Perception Field for velocity,starget = s0 + ∆V
(e) Affordance Field indicating path of high goodness to goal.

- Estimate time-layer associativity,t[i] = 1 to m, the number
of layers for alli. t[i] is the predicted time taken by the agent
to travel a distancerlayer[i], corresponding to layeri, at the
current speed.

- Populate dynamic threat perception field,Pdynamic, at the cur-
rent speed.

- Populate local dynamic threat perception field,Plocal-dynamic
using Equation 5.

- Populate velocity perception field,~Pvelocity.

- Populate relative velocity perception field,~Prelative-velocityus-
ing Equation 7.

- Generate speed affordance fields,Aspeed(s) =

f2(Plocal-threat, ~Prelative-velocity)).
- Compute new value of target speed,starget which maximizes

the goodness of the speed affordance. Refer to Equation 12.
- Re-estimate time-layer associativity, dynamic fields and ve-

locity fields at new target speed.
- Generate direction affordance fields,Adirection(θ) =

f1(Pstatic, Pdynamic).

- Compute target direction,~Dtarget(Section 4.4).

The above mentioned steps are executed at every time step for each
agent. starget and ~Dtarget are the steering decisions made by our
system.

5 Evaluation

We evaluate our system by testing it against a suite of scenarios
( [Singh et al. 2008]) that are frequently encountered in pedestrian
crowds. These scenarios range from basic cases, testing the ability
of agents to handle oncoming and crossing threats, to large scale
cases which stress test our system in the presence of a large number
of agents. Section 5.1 outlines the suite of cases that we tested our
system with. Section 5.2 discusses the performance of our system
and presents interesting results. Finally, Section 5.3 demonstrates
a variety of group behaviors, illustrating ease of integration of our
system with higher level behaviors.

5.1 Scenarios

Similar direction: Agents traveling in similar directions, with
slightly differing goals.
Crossing threats: Agents crossing paths, at various angles, in the
presence of obstacles.
Oncoming threats: Agents traveling in opposite directions, with a
potential for head-on collisions, with obstacles in the way.
Curves: Agents having to travel along a curved path to avoid obsta-
cles.
Group-interactions: Agents traveling in groups, with other agents
cutting across.
Squeeze: 2-4 agents, passing through a narrow hallway, with same



or opposite directions (Figure 1).
Doorway: Agents having to pass through a narrow doorway. (Fig-
ure 1 (f)-(h))
Overtake: An agent, encountering a slower moving agent in front,
while traveling through a narrow passageway. (Figure 1 (a)-(c))
Confusion: Agents traveling in opposite directions, arriving at the
same place, at approximately the same time.
Random: A large number of agents, with random goals. (Figure 1
(j))
Forest: A large number of agents, with random goals, in an obstacle
laden environment. (Figure 1 (i))
Urban: A large number of agents, with random goals, in an envi-
ronment with large obstacles, resembling large buildings.

5.2 Discussion

Here, we discuss our results of our framework on the scenarios de-
scribed above (Section 5.1). These and additional results are shown
in the supplementary video.

• Local Agent Interactions.Agents steer naturally around each
other, with and without obstacles. This is shown in all sce-
narios, particularly the Crossing, Oncoming, Confusion, and
Curves scenarios.

• Human-like Behaviors.Natural reactions are also captured by
our framework. For example in the Surprise scenarios (with
sharp turns), agents do not see each other until the collision
is imminent. In such cases, behavior is affected by each in-
dividual’s visual field. Macro-scale crowd simulations with
global knowledge cannot model this. Our framework models
this individuality successfully.

• Implicit Space-time Planning.The importance of space-time
planning is demonstrated in doorway, overtake, confusion,
and squeeze (narrow passage) scenarios. Comparisons of be-
haviors with and without implicit space-time for the 3-way
confusion and overtaking scenarios show that the natural, an-
ticipatory behaviors are a result of our implicit space- time
planning. In general, we observe that space-time planning
is essential for complicated interactions involving 3 or more
agents.

• Crowd Behaviors.The video shows several bottleneck and
densely crowded scenarios where agents cooperatively wait or
steer around each other. Note that many previous approaches
steer unnaturally into each other and into obstacles, relying on
collision resolution and greedy steering to progress the agents.
We do not explicitly prevent agents from colliding and over-
lapping; collision avoidance is purely a result of our steering
algorithm.

Visualizing Results. Robustly animating the agent’s locomotion is
orthogonal to the focus of this paper. The animations in the sup-
plementary video are produced by retrofitting walking and idling
animations to the resulting agent paths. Agents use a walking an-
imation when going faster than some user-specified speed thresh-
old, and agents use an idle animation when below this threshold.
We also scale the animation speed with the speed of the pedestrian.
Artifacts in the video (unnatural large steps or abrupt transitions
between animations when agents move slowly) are a result of this
simple animation technique, not because of the steering algorithm.

Performance and Memory Consideration. Each agent has asso-
ciated with it a set of fields that serve as its memory repository. We
observe that a field with 8 layers and 16 nodes per layer is sufficient
to perform effective steering in a virtual environment. It takes 2.5 -
3 KB of memory per agent to store the information of these fields.
This is about 3 MB of memory per 1000 agents, which we believe

Figure 6: Time of update per agent for stress cases. Number of
nodes per layer, n = 16. Number of layers, m = 8.

to be a manageable overhead that increases linearly with increase in
crowd density. The stress test cases, discussed earlier, are evaluated
by varying the number of agents from 100 to 5000 on a 2.66 GHz
Core 2 processor (on a single thread). The time of update per agent
for each of these scenarios is outlined in Figure 6. We observe that
the computation time linearly increases with increase in number of
agents, and is independentof the complexity of the environment.

5.3 Group Behaviors

By adding a simple high-level layer which decides intermediate
goals for each agent, our steering framework can perform common
group behaviors. The intermediate goals can be dynamic (e.g. other
agents) or static (e.g. location in space). To implement the group
behaviors demonstrated in the video, agents automatically choose a
dynamic goal to be the closest agent in front of itself. The following
examples of group behaviors are demonstrated in the video:

Lane Formation and Queueing: When several agents are given the
same goal, agents with no-one in front simply steer towards the
goal. Agents with others in front begin to follow the agents imme-
diately in front. The strictness of the lane is defined by a ‘comfort
distance’ between agents. As the agents near the goal, they ‘queue’
up politely. (Figure 1 (e))
Snake Motion: We demonstrate snake-like motion by having a
leader weaving around a set of obstacles, and each previous agent
follows the next one.
Group persistence: Persistence of groups is demonstrated in the
Oncoming-Groups scenario. Agents perceive the oncoming group
as a single entity, because of the variable resolution fields. As a
result, the two groups steer around each other.

Additional behaviors can be implemented by varying parameters
(e.g., desired speed) or adding fields to the framework. For exam-
ple, an additional field could be defined based on social constraints,
such as “prefer to stay on the sidewalk” or “avoid a scary group
of people”. Aggressive and polite behaviors, such as agents be-
ing pushy or patient, can be modeled as exerting untraversability
onto the environment. For example, a pushy person would exert un-
traversability of his future position onto other agent’s fields, while
a timid person would exert untraversability of other agents onto his
own field.



6 Conclusion and Future Work

In this paper, we present a view-point dependent model of informa-
tion representation, known as egocentric fields, having implicit time
dependancy. Next, we introduce the concepts of affordance fields
which quantify the relative strengths of all possible actions. An ac-
tion is selected which has optimal affordance value. We present a
discretized implementation of the above mentioned model and il-
lustrate its use in crowd simulation. Some of the features of our
system include variable resolution, dynamic scaling, and implicit
path planning within the bounds of the field. Finally, we evaluate
our system against a wide variety of test cases, including higher-
level group behaviors.

The main focus of our work is in the realm of pedestrian simula-
tion which is largely based in two dimensions. As illustrated in
Section 3, our generic model is inherently in three dimensions, rep-
resenting space with an implicit time dimension. In the future, we
aim to implement a fully functional discrete implementation of a
variable resolution 3-D model of the environment that may find use
in a wide variety of applications not limited to steering.

Our current model performs implicit path planning only within the
confines of area covered by the field. Also, information detail is
lost at locations farther away, which may be essential for an agent
to recognize narrow passageways that are located at a distance. We
propose a hierarchy of fields as an extension to our model, whereby
each node can be equipped with a sub-egocentric field of the area it
encompasses. This would increase the resolution of areas along the
path that are further away.
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A Derivation of User-defined Parameters

The layer-radiusrlayer(l), node-radiusrnode(l), and inter-node
weight w(l) all contribute to the variable resolution and the dy-
namic scaling of the egocentric fields. These structural components
are dependent on the layer numberl and the number of nodes per
layern. Note thatn is a user-defined parameter.

The node radius is proportional to the circumference of thelth layer.
Thus,

rlayer(l) = rnode(l) ×
n

π
. (14)

The first layer is at an offset ofrnode(0), outside the agent. The
agent is modeled as a circle, with radiusragent.

rlayer(0) = rnode(0) + ragent. (15)

From 14 and 15, the initial condition ofrnode(0) is

rnode(0) =
π

n − π
× ragent. (16)

The node radius of the next layer increases to ensure the coverage
of adjacent nodes following the geometry shown in Figure 4,

rnode(l + 1) =
n + π

n − π
× rnode(l). (17)

Equations 14, 16 and 17 provide a method of estimating the node
radii and the layer radii respectively. The user can thus specify the

number of nodes per layer,n and the number of layers,m to control
the size and resolution of the map.
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