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Figure 1: Snapshots of a bottleneck and a doorway scenario, showing progress from left to right. The hybrid approach efficiently handles

large crowds and challenging space-time scenarios.

Abstract

Next-generation steering algorithms will need to support thousands
of believable individual agents, capable of steering in very challeng-
ing situations with low-latency reactions. In this paper we propose
a steering framework that offers three key contributions: (a) It inte-
grates several models of steering into a single steering decision, (b)
it employs a novel space-time planning approach to allow agents
to steer during complex local interactions, and (c) it varies the fre-
quency of update of each component (phase) of the framework to
drastically improve performance. We demonstrate the versatility
and robustness of our framework using a large number of test cases.
We also show that the frequency of updates for each phase of the
framework can be “decimated” by a surprisingly large amount be-
fore resulting steering behaviors degrade. This technique achieves
more than a 5x performance improvement, allowing the use of bet-
ter, more costly algorithms for robust steering, while supporting
thousands of agents with low-latency reactions in real-time.
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1 Introduction

Steering is the layer of intelligence between cognition and locomo-
tion that an agent uses to navigate through a virtual environment.
Despite the many positive advancements to steering in research lit-
erature, the quality of steering in commercial applications is still
unsatisfactory. There are several reasons for this disparity:

e The majority of steering research focuses on crowd behaviors,
while many applications, such as games, need to have equally
realistic local intelligence for individual agents up close.
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e Applications tend to have rigid real-time constraints, allowing
only 5-10% of computing resources to be dedicated to steering
and artificial intelligence (AI) [Rabin 2005]. If Al is updated
at 20 Hz, this leaves only 5 ms per frame to update all agents.
Better algorithms are generally more costly, and it is not ob-
vious whether some costly algorithms can still be used in real
time.

e There are many ways to model real pedestrian steering, each
with its own advantages and disadvantages. A robust steering
framework needs to integrate these techniques, capitalizing
on the advantages of each technique when appropriate. This
is not a trivial issue, because each model of steering overlaps
and potentially conflicts with other aspects.

In this paper, we explore the use of multiple steering techniques in
combination, in order to achieve more versatile and robust behav-
iors in a single framework. We view the problem as a mapping from
an agent’s current situation to the steering technique (or techniques)
that should be used. There are many possible ways to do this which
are discussed in Section 3.1. We combine space-time predictions,
reactive rules, and crowd-based steering decisions that are based on
existing literature, and we also incorporate space-time planning that
allows agents to form localized small-scale plans to steer through
complicated situations. Space-time path planning can solve chal-
lenging local steering situations that other approaches cannot, but
to our knowledge it has not been used in any previous real-time
steering framework.

Our modular approach also creates a unique opportunity: various
components of steering do not need to execute at the same rate
of update. Existing real-world and research applications update
steering decisions at slower frequencies than rendering and physics,
but to our knowledge, no previous approach has explored running
phases within steering at separate update frequencies. In fact, some
steering algorithms are monolithic by nature and cannot be modu-
larized. By choosing the right phases and running these phases at
separate rates, not only can agents react more quickly in low-level
steering, but agents can also afford to use more expensive high-
level steering methods that produce better quality results. We call
this technique phase decimation.

We demonstrate the effectiveness of these techniques with a broad
variety of test cases and provide an in-depth analysis of how far we
can push phase decimation. Results show that phases can be deci-
mated quite drastically, with very little degradation in the quality of
steering behaviors, achieving more than 5x performance improve-
ment compared to common update rates. We show that a hybrid
framework that integrates crowd-based, reactive, predictive, and
space-time steering techniques can support thousands of agents in
real-time using phase decimation.



Steering Technique ‘ . Loca}l ‘ med Deadk?ck ‘ Performance Role
interactions behaviors resolution
Simple forces poor very good poor very fast locomotion and dense crowds
Reactive steering average very good poor fast low-latency reactions
Space-time predictions very good average poor average believable local interactions
Following a space-time plan very good intractable | very good very slow resolves complex local interactions
Following a planned path N/A N/A N/A average used when no interactions

Table 1: Taxonomy of different steering techniques used in our hybrid approach. Each technique has advantages that compensate for other

technique’s limitations.

2 Related Work

Particle and dynamics approaches. The seminal work of
Reynolds [Reynolds 1987] modeled agents as particles that interact
using dynamics. Most particle flow and dynamics based techniques,
e.g., [Brogan and Hodgins 1997; Goldenstein et al. 2001; Treuille
et al. 2006; Helbing et al. 2000], are well suited for modeling large
crowds. They usually achieve natural behaviors at a macro-scale,
relying on emergent properties of their interactions, but they are
not intended to simulate local agent interactions.

Rule-based systems. Rule-based approaches, e.g. [Reynolds 1999;
Loscos et al. 2003; Lamarche and Donikian 2004; Metoyer and
Hodgins 2004; Lee et al. 2007; Lerner et al. 2007; Pelechano et al.
2007; Rudomin et al. 2005; Shao and Terzopoulos 2005; Sud et al.
2007; van den Berg et al. 2008; Boulic 2008; Paris et al. 2009],
consist of (1) interpreting the agent’s environment, and (2) rules or
heuristics to react to the interpreted information. Most rule-based
systems perform a large amount of redundant computation per up-
date, for example, updating an agent’s visual field that is not likely
to have changed since the last frame. In general, rule-based sys-
tems are very difficult to tune for more than approximately four
agents interacting simultaneously, but for fewer interacting agents,
rule-based behaviors can be highly believable.

Space-time prediction and planning. For rule-based systems, one
promising technique is to use the space-time domain [Feurtey 2000;
Paris et al. 2007; Kapadia et al. 2009]. So far, the space-time do-
main has only been used in crowd steering to make predictions. Full
space-time planning is traditionally found in the context of robotics
and motion planning, e.g. [Lau and Kuffner 2005; Shapiro et al.
2007], and to our knowledge it has not been applied to the goal of
real-time robust crowd simulation.

Comparison to our work. While most previous works focus on
only a few aspects of human steering, we aim to model a more di-
verse set of steering abilities. For performance, instead of trying
to approximate or simplify the models of steering, we use an adap-
tive technique that reduces computation. Furthermore, most other
works demonstrate only a small, focused set of scenarios. In this
paper, we show results of more rigorous testing using a wide vari-
ety of test cases, benchmarking, and user studies.

A common technique in games is to decouple path planning from
agent updates. A similar technique has been used in recent steer-
ing research, decoupling steering from the rest of the system. Paris
et. al. [2007] perform their steering algorithm updates at 1-2 Hz.
Treuille et al. [2006] perform updates at approximately 3-5 Hz. Our
phase decimation technique goes one step further, and decouples
phases within steering. This allows agents to react with low la-
tency (high frequency) while updating state-machine, predictions,
perceptions, and several types of planning only as frequently as
necessary. This keeps amortized costs very low despite the high
cost of phases such as perception.
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Figure 2: Overview of our steering framework: the reaction phase
decides between predictive collision avoidance, reactive steering,
or steering to follow the planned path. If necessary, space-time
planning is invoked to briefly control locomotion directly.

3 Our Framework

Our framework has the following phases: planning, perception, pre-
diction, reaction, space-time planning, and locomotion. Table 1
shows a taxonomy of the steering methods we combine, and Fig-
ure 2 shows the phases of our framework. Each approach has
advantages that compensate for the other approaches’ limitations.
Steering with simple forces is very fast and works well in dense
crowds where the agents have only a few steering options. Reac-
tions serve as a “catch-all”, reacting with low-latency to situations
that are not successfully avoided by prediction or planning. How-
ever, by itself, reactive steering looks awkward, waiting until the
last minute to steer around other agents, and without predictions,
the agent can easily steer itself into deadlock. Predictive steer-
ing makes the agents aware of threats in advance, and naturally
steers through local interactions. In crowded environments, where
too many threats are predicted or the environment is too dense,
the agent relies more on reactive and force-based behaviors any-
way. Finally, even with a good set of predictive and reactive rules,
some deadlocks are unavoidable without space-time planning, such
as a narrow doorway where one agent must backtrack or sidestep
away from its goal in order to let all agents progress. Space-time
planning, however, is too computationally expensive to apply to all
agents all the time. Essentially, all of these steering techniques are
necessary and rely on each other to produce versatile behaviors.

Long-term and mid-term planning phases. The agent plans a
path to its goal using the standard A-star algorithm [Hart et al. July
1968]. The graph used by A-star is a rectangular grid where each
node is connected to its eight neighbors. The grid-based graph can
result in costly A-star searches, but this choice avoids the need for
manually creating A-star graphs, and the amortized cost of path
planning still remains low.

Short-term planning phase. Given the planned path, the agent
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Figure 3: Short-term planning. The local target (white star) is cho-
sen as the furthest point such that all path nodes between the agent’s
closest path node (blue star) and the local target have line-of-sight
to the agent.

Figure 4: Space-time prediction. Left: agents predict a collision,
knowing their trajectories will overlap at the same time, 3. Right:
agents steer to avoid the collision. Note that space-time prediction
correctly avoids a false prediction between the blue agent at #4 and
the red agent at #3, because they reach that point at different times.

chooses a point along the path to steer towards. This local target is
chosen as the furthest point along the path such that all path nodes
between the agent and the local target are visible to the agent. This
criterion smooths the agent’s path while enforcing that the agent
follows the path correctly around obstacles.

Perception phase. To perform natural predictions and reactions,
it is important to model what the agent actually sees. We model
an agent’s visual field as a 10 meter hemisphere centered around
the agent’s forward facing direction. The agent collects a list of
objects using a range query in the spatial database, as described
above. Furthermore, objects that do not have line-of-sight are not
added to the list of objects the agent sees.

Prediction phase. The agent predicts possible collisions, only with
agents in its visual field, using a linear space-time predictor based
on [Paris et al. 2007]. Given an agent’s position P, velocity V, and
radius r, our linear predictor estimates the agent’s position at time ¢
as P+1-V. A collision between agent a and b would occur at time ¢
if the distance between their predicted positions becomes less than
the sum of their radii:

||(Pa+t~Va)—(Pb+t~Vb)H<ra+rb. €8
Solving this expression for time ¢ results in a quadratic equation.
The agents collide only if there are two real roots, and these two
roots represent the exact time interval of the expected collision. Pre-
dicted threats are handled similar to [Shao and Terzopoulos 2005],
where the agent that will reach the collision first speeds up and
turns slightly outward, and the agent that will reach the collision
later slows down and turns slightly inward (Figure 4).

Reaction phase. Our reaction phase implements both reactive
steering and crowd-based steering. The agent traces three forward-
facing rays, 1 meter to the front of the agent, and 0.1 meters to the
side. If these rays intersect anything, the agent may need to react.
When reacting, the agent takes into account the relative location
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Figure 5: State machine used to integrate space-time planning, pre-
diction, reaction, and state-dependent steering behaviors. The agent
steers normally in state N, proactively avoids threats in state P, waits
for avoided threats to pass in state W, follows a space-time path in
state S, and re-orients itself towards the target in state T. These be-
haviors may be overridden by the reaction phase.

and orientation of the new obstructions. This results in a very long
list of rules that account for all possible configurations: there can
be up to three perceived obstructions (one per forward-facing ray),
each obstruction may be an agent or an obstacle, and any obstruct-
ing agents can be classified as oncoming, crossing, or facing the
same direction. For efficiency, the rules are implemented using a
hierarchy of conditions instead of checking each rule one by one.
This way, identifying any rule requires only a logarithmic number
of conditional checks rather than linear. Once the specific rule has
been identified, it is usually clear how the agent should steer, and
so we do not enumerate this long list of rules here.

Locomotion phase. The locomotion phase receives an abstract
steering command that tells an agent to turn, accelerate, aim for
target speed, and/or scoot left or right. This allows orientation to
be treated separately from movement. The command is converted
into a force and angular velocity that moves the agent’s position and
orientation using simple forward Euler integration.

3.1 Integrating multiple steering techniques

The problem of using multiple steering techniques can be stated as
follows: Given all possible situations that an agent can encounter,
how can we map each situation to a decision about which steering
technique(s) to use? Here we discuss four possible solutions:

e Multiple steering decisions can be blended using a weighted
sum. The weights for this sum may even change depending on
the agent’s situation. When we tried this technique, however,
the steering decisions would commonly conflict and cancel
out. For example, an agent may reactively decide to turn right,
but predict a threat further away that should be avoided by
turning left.

e The mapping from an agent’s situation to a single steering
technique could be a classifier, trained with machine learning
techniques. Unfortunately, the training would require signif-
icant manual effort, and the classifier would need to be re-
trained every time the steering techniques are adjusted.

e The mapping from an agent’s situation to a single steering
technique can be manually approximated by a set of heuris-
tics. Our implementation of this approach is described below.

e The agent can blindly compute steering decisions from all
techniques before choosing one, and then choose the decision
that maximizes some fitness criteria. This approach has the
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Figure 6: A challenging scenario that most steering frameworks
cannot solve. Two agents encounter a surprise agent in a narrow
pathway. To solve this properly, the agents must understand how
to backtrack and get out of the way; this is the only way they can
eventually progress through the pathway.

potential to be the most robust for the price of adding signif-
icant computational cost. Exploring this approach is left for
future work.

We chose to use a set of rules that approximately classify the agent’s
current situation. A state machine is used to track the agent’s situa-
tion for predictive, space-time, and normal steering circumstances,
and this can be overridden for reactive or crowd-based steering. The
states and their transitions are shown in Figure 5, and the rules are
described as follows, in order starting with the highest priority rule:

1. If the agent is following a space-time path (state S) and en-
counters an un-predicted agent with its reactive feelers = use
reactive/crowd steering.

. If the agent is following a space-time path that is already
planned = use space-time-plan steering (i.e. closely follow
the space-time path).

3. If the agent is facing the wrong direction from its planned path
(state T) = the agent should briefly slow down and quickly re-
orient itself towards the short-term local target (special case).

. If not following a space-time path, and if the agent encoun-
ters un-predicted agents with its reactive feelers = use reac-
tive/crowd steering.

. If there are any predicted threats (state P and W) = use pre-
dictive steering.

. If there are no threats (state N), = use normal steering (i.e.
follow the planned path)

Results. The results shown in the supplementary video indicate that
this approach works effectively, seamlessly transitioning between
normal steering, predictive decisions, reactive decisions, crowd be-
haviors, and space-time planning.

4 Space-time Planning

Figure 6 and several examples in the supplementary video show
challenging local interactions that are rarely addressed in crowd
steering literature. Real human pedestrians usually have a good un-
derstanding of exactly how they would proceed through an environ-
ment over the next few seconds, even in the presence of other mov-
ing pedestrians. In other words, real pedestrians tend to form very
localized space-time plans. Here we propose a space-time planning
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technique that can be seamlessly integrated into a steering frame-
work.

The space-time graph. To compute the space-time path, we use
A-star over a dynamically generated graph. The graph represents
an on-the-fly discretization of the space-time domain starting at the
agent’s current position. Each node of the graph represents a par-
ticular point in space-time. Children nodes represent the possible
spatial positions that the agent can reach at the next point in time.
These children nodes essentially define the locomotion style of the
space-time path, so for realistic behaviors we found it was neces-
sary to give the agent many options. The agent can be stopped, can
move in 8 different directions at slow speed, and 16 directions at
normal speed. This results in at most 25 children nodes, but there
may be fewer nodes if the corresponding point in space-time is ob-
structed by any predicted threats, which implies the agent cannot
steer that way. Nodes without obstructions are added to the graph
in a lazy manner, only when A-star tries to expand those nodes.
Because A-star finds optimal paths, agents will side-step, stop, and
backtrack only when necessary.

The A-star cost function. It was surprisingly tricky to find a good
cost function for this particular type of graph. We first tried to use
Euclidian distance in the space-time domain. This did not work,
however, because time and spatial units are on different scales, and
the agent kept searching for ways to minimize path length in cases
where it should have minimized the time to reach its goal. As a re-
sult, the agent often chose a space-time path that remained station-
ary for too long while continuing to be an obstacle for other agents.
We then tried to use only time as the cost function, so that the agent
minimizes the time it takes to reach its goal. In this case, the agent
had erratic behavior because there was no constraint on how the
agent should steer while waiting for a path to clear. Our solution is
a novel cost function that represents both time and spatial distance
concurrently, so that when A-star is deciding which node to expand
next, it first chooses nodes that would minimize the time to goal,
and if the two time estimates were equal, then it chooses the node
with the shorter spatial distance estimate. This is implemented by
placing time (in units of frames) in the integer portion of the real-
valued cost, and placing the spatial distance (scaling it by a constant
factor so it is always less than 1) in the fractional portion.

Conditions to invoke space-time planning. An agent invokes
space-time planning if a deadlock is predicted or perceived. Dead-
locks are predicted when there are too many predicted threats in
close proximity to each other. Deadlocks are perceived if the agent
has been stuck at zero speed due to reactive steering. Additionally,
if an agent must react to another agent performing space-time plan-
ning, that agent also computes a space-time plan. To avoid a catas-
trophic ripple-effect of costly space-time plans, space-time plan-
ning is not invoked when agents have more than some user-defined
number of agents in their visual field. We currently set this value
to 3. This may seem arbitrary, but it is arguably a good model of
human-like steering as well, since real pedestrians are more likely
to use basic crowd steering behaviors in crowded environments in-
stead of space-time planning.

Performance. Dynamically generating the graph and running A-
star with a branching factor of 25 are both extremely costly, typ-
ically taking hundreds of microseconds. However, in our imple-
mentation, space-time planning is only invoked on-demand when
a deadlock is perceived, which occurs infrequently. Furthermore,
once the space-time path is computed, the agent follows the com-
puted path with trivial force computations. For these reasons, the
space-time planning phase does not adversely affect our real-time
performance.



Benchmark User Study
A versus B A is more Equal B is more
Test case decimation Score | Score intelligent | intelligence | intelligent
name (Hz) vs. (Hz) for A for B (%) (%) (%) p-value

4vs 20 291 274 16.1 67.8 16.1 0.00

Frogger 20 vs 2 274 297 452 6.45 48.4 0.11
2vs 1.5 297 365 51.6 16.1 25.8 0.02
3-way 4vs20 391 350 19.4 51.6 29.0 0.048
confusion 20 vs 1.17 350 403 41.9 25.8 323 0.4
4-way 20 vs 6.7 369 332 9.68 355 54.8 0.02
confusion 20vs 1.5 369 380 452 29.0 25.8 0.22
1.17 vs 1 343 417 48.4 3.23 48.4 0.11

Double 20 vs 2 442 411 3.23 80.7 16.1 0.00
squeeze 20 vs 1 442 434 0.0 67.7 323 0.00
1vsO 434 529 67.7 25.8 6.55 0.00
Oncoming 20vs 1.3 856 868 51.6 452 3.23 0.048
groups 1.3vs 1.17 868 880 80.7 9.68 9.68 0.00
20vs2 432 474 16.1 774 6.45 0.00

Squeeze 20 vs 1 432 454 16.1 774 6.45 0.00
1vsO 454 812 96.8 3.23 0.0 0.00

Table 2: Comparative user study, also used to validate the benchmark scoring process. Lower benchmark scores are better; the benchmark
correctly captures user opinions. Each row compares two different cases of decimating the prediction phase; 0 Hz means that predictions

were disabled.
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Figure 7: Acceptability user study. Test cases are shown here in
order of increasing decimation of prediction phase. Results are sta-
tistically significant if 20 or more users had the same preference.

5 Phase Decimation

In this section we turn our focus to performance. We study how
much we can reduce the frequency of updates for each phase in-
dependently — a technique we call phase decimation — while still
achieving acceptable behavior. We perform user studies and use a
benchmark suite provided by [Singh et al. 2009] to show that we
can decimate a surprisingly large amount for all phases; even con-
servative decimation has a significant performance improvement.

5.1 Evaluation Method

All forms of path planning in our framework — long-term, mid-
term, and space-time path planning — execute only when needed,
on-demand. Therefore, we only need to study the effects of deci-
mating short-term planning, perception, and predictions. To isolate
the effects of decimation, space-time planning is disabled for these
tests. In all cases, we kept reaction phase running at 20 Hz. Where
possible, we discuss decimation in terms of frequency (Hz), but
with high decimation these frequencies are small fractions, and in
those cases it is clearer to discuss the number of frames skipped
(Updating once per n frames is 20/n Hz).

We conducted two user studies, a comparative study and an accept-
ability study, using the same participants in the same session. All
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participants were willing volunteers, with no background in steer-
ing behaviors. For the comparative study, participants were shown
16 comparisons, in random order. For each comparison, we showed
two examples of agents steering the same situation with varying lev-
els of decimation of the predictive phase. We showed example A,
then example B, and then examples A and B side by side, and we
asked them to “compare the intelligence of A and B.” The partic-
ipants were not told the purpose of the study, did not know any-
thing about the concept of phase decimation, and did not know how
the examples were constructed. For the acceptability study, partic-
ipants were shown 21 video examples in random order and asked
to evaluate whether it was “acceptable” or not. Prior to the study
we defined “acceptable behavior” to the participants, orally and in
writing, as a “behavior that could be seen in a real world situation
with normal pedestrians that are paying attention to where they are
going,” and we made sure they understood what was requested of
them. Participants were given enough time to answer between ex-
amples, and they were given the opportunity to re-watch the videos
if they desired. In previous user studies, we tried to use a Lik-
ert scale instead of binary choices, but this consistently resulted in
statistically insignificant results because the participants have var-
ied criteria for evaluation. We found that asking binary questions
resulted in consistently statistically significant results, even if the
results were unfavorable.

A complete description of the test cases used can be found in [Singh
et al. 2009]. The benchmark technique we used was slightly differ-
ent than their published paper. The scoring method uses a weighted
sum of four metrics collected for each agent: number of collisions,
total time, total kinetic energy, and a new metric, total acceleration.
The benchmark score is computed as a weighted sum of metrics,
with a weight of 150.0 for the number of collisions, and a weight
of 1.0 for the other three metrics. Note that benchmark scores can-
not be compared across test cases. Scores can only be compared
for the same test case. We also used the test cases provided by
the benchmark suite, which are described in their paper. Table 2
shows that the benchmark scores matched the user study, and so we
felt comfortable enough using the benchmark score as a method of
evaluating phase decimation in more detail.
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Figure 8: Benchmark results for static decimation. Each cluster of results is one test case with various amounts of decimation, i.e., var-

ious frequencies of updating phases.

The test cases shown are: (a) 3-squeeze, (b) 3-way confusion, (c) 4-way confusion, (d) crossing,

(e) doorway-one-way, (f) double-squeeze, (g) frogger, (h) oncoming, (i) oncoming-groups, (j) squeeze, (k) surprise, and (1) wall-squeeze.
Lower benchmark scores are better, and scores are normalized with respect to the 4 Hz reference cases.

5.2 Static Phase Decimation

Results for the user studies are given in Table 2 and Figure 7.
These results indicate that viewers preferred behaviors with mod-
erate amounts of decimating prediction (2-10 Hz), felt ambivalent
about behaviors with heavy decimation of predictions (below 2 Hz),
and disliked behaviors that skipped predictions entirely.

The results from test cases of the benchmark suite fell into three
categories: (1) large-scale simulations, where the benchmark tool
could only count the number of collisions, (2) results that used
purely reactive steering, and therefore were not affected by decima-
tion, and (3) interesting test cases for decimation. Test cases from
category (2) all worked subjectively well and had no collisions.

Figure 8 shows the benchmark results for (3) the interesting decima-
tion cases. For each test case, benchmark scores were normalized
against the same test case using an un-decimated update frequency
of 4 Hz. Lower benchmark scores are better. These results are con-
sistent with the user studies indicating that moderate amounts of
decimation are acceptable. At the same time, when any phase (such
as prediction) was completely disabled, the benchmark scores were
notably worse.

Decimating the prediction phase had the most direct effect on steer-
ing behaviors, and we conclude that predictions can be safely deci-
mated to 3-4 Hz (skipping every 5-6 frames). Our framework was
more tolerant to decimating perceptions, which only indirectly af-
fect steering behaviors by delaying when predictions can be made.
We conclude that perceptions can be decimated as far as 0.6 Hz
(skipping every 30 frames). Short-term planning could be deci-
mated even further, and can even be used on-demand without break-
ing the steering behavior. However, even a very slow rate of update
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did smooth the path better than on-demand, so we conclude that
short-term planning can be decimated up to 0.20-0.25 Hz (skip-
ping every 75-100 frames). Finally, we benchmarked several com-
binations of decimating predictions, perceptions, and short-term
planning simultaneously. The benchmark scores indicate that we
can decimate each phase simultaneously at approximately the same
rates that we could decimate them independently.

5.3 Adaptive Phase Decimation

One issue with our analysis in the previous section is that the
amount of decimation is clearly dependent on the scenario the agent
is encountering. Thus, there can be cases where decimating is not
the right thing to do, and other cases that could be decimated more
drastically. Furthermore, with increasing decimation, the reaction
phase becomes more a significant cost per update. It would be nice
to have a way of decimating the reaction phase as well. Decimating
reactions can be risky, and we would need a way to revert back to
full 20 Hz reactions if necessary.

To address this, we added support in our framework for adap-
tive phase decimation — throttling the frequencies of updating each
phase at run-time, based on a heuristic assessment of the scenario.
Each agent manages its own adaptive frequencies independently of
all other agents. Because we identify cases where each phase needs
to be updated more frequently or less frequently, we can do even
more decimation than described in the previous section. The heuris-
tics we use are listed as follows.

e Short-term planning. The key factor that determines how
often to re-compute the short-term plan is the agent’s distance
to the local goal. If the local goal is close to the agent, short-
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Figure 9: Comparison between (1) a 4 Hz reference, (2) adaptive decimation, (3) static decimation, and (4) matched decimation. In this
round of tests, space-time planning was enabled. Top: normalized benchmark scores to evaluate the quality of results; lower scores are
better. Bottom: performance results, measured in microseconds as the average cost of a single agent update. The test cases shown are:
(a) 3-squeeze, (b) 3-way confusion, (c) 4-way confusion, (d) crossing, (¢) doorway-one-way, (f) double-squeeze, (g) frogger, (h) oncoming,
(i) oncoming-groups, (j) squeeze, (k) surprise, and (1) wall-squeeze. Adaptive decimation scores better than static and matched decimation

on the benchmark, and consistently performs better.

term planning should be more frequent in order to have the
desired smoothing effect on the mid-term path. On the other
hand, if the local goal is far away, the agent’s path will already
be smooth, until it gets closer. Thus, our heuristic is to choose
a frequency so that short-term planning is executed conserva-
tively frequently at 0.25 Hz (every 75 frames) when the agent
reaches within 5 meters of its local goal, and less frequently
as the distance to the local goal increases.

e Perception. The frequency of updating perception is depen-
dent on how likely the visual field will change. We choose
the frequency of perception based on the speed of the agent:
at normal walking speed of 1.3 m/s, we update perceptions at
0.67 Hz (every 30 frames). When the agent travels slower than
1.1 m/s, we slow perceptions to 0.3 Hz (every 65 frames). The
reason we can do this is that an agent slows down when it is
responding to a threat, which may take several seconds to pass
anyway. We can also observe that when an agent’s reactions
override other steering behaviors, it is likely to slow down for
several more seconds. In this case, we decimate perceptions
to 0.25 Hz (every 80 frames).

e Prediction. Predictions, in our current framework, are about
the same cost as reactions, and already can be safely dec-
imated to 3-4 Hz. Thus, to facilitate decimating reactions,
which can be a bigger performance gain, we do not decimate
prediction dynamically.

e Reaction. It is possible to carefully avoid computing reac-
tions at a full 20 Hz. The frequency of reactions should be
dependent on how close the agent might be to a collision.
Therefore, the first heuristic is to maintain a full 20 Hz re-
actions if the agent touches anything with its “feelers”. The
second heuristic is that we can decimate reactions a little bit
if there are no perceived threats in the visual field. In this
case we decimate to 10 Hz (every 2 frames). Finally, if the
agent’s visual field is completely empty, we can risk updating
reactions at 5 Hz.

Figure 9 shows benchmark scores for several test cases, comparing
undecimated reference behaviors, static decimation behaviors, and
adaptive decimation behaviors. In these results, “matched” deci-
mation are tests where we tried to use the same average frequen-
cies achieved by adaptive decimation, but using those frequencies
in static decimation mode. In general, adaptive decimation scored
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better on the benchmark than static and matched cases, yet it con-
sistently performed better. This shows that our adaptive decimation
method was able to exploit decimation for good performance when
appropriate, while scaling back the decimation when needed for
proper steering.

5.4 Performance Results

The primary implication of being able to decimate is improved per-
formance. For the results described in this paper, we used a single
thread on a 2.66 GHz Intel Core 2 Duo. A detailed performance
profile is shown in Table 3. These performance numbers were ac-
quired using the Random test case, consisting of 4000 agents ran-
domly placed in a dense environment with random targets. The
simulation was run for 1 minute (1200 frames). We use a base-line
comparison where prediction, perception, and short-term planning
all run at 5 Hz. This represents recent methods such as [Treuille
et al. 2006] and [Paris et al. 2007], whose algorithms run this fre-
quency on similar processors. Figure 9 shows performance results
for more test cases. The corresponding benchmark scores indicate
that adaptive decimation achieves this performance without degrad-
ing the quality of our steering results.

Recall in the introduction that practical applications can usually
only support tens of agents, mainly because they can allot only 5-
10% of computing resources to Al. Conservatively, at 5% of one
second (50 milliseconds), and processing steering behaviors at 20
Hz, we would have merely 2.5 milliseconds to update all agents. In
that amount of time, we can update approximately 400 agents with
robust steering. We can simulate up to 4000 agents with adaptive
decimation in real-time, using approximately 50% of computing re-
sources.

There are two elegant ways that computations are balanced in our
framework. First, more costly phases can generally be updated
less frequently. This is clearly seen in Table 3. The second bal-
ance is more subtle, and it is related to the density of the environ-
ment. In dense, crowded situations, agents rely on the fast reaction
phase, and we can aggressively decimate perceptions and predic-
tions (when using adaptive decimation). On the other hand, in less
dense environments, there are fewer items to perceive and predict,
and so perception and predictions automatically become propor-
tionally faster. In other words, both dense and sparse environments
offer a way to achieve better performance with our framework. All



Un-decimated Reference

] Frequency Profile | Avg. time per
Phase (Hz) (%) update ({sec)
space-time planning on-demand 0.001 216
mid-term path planning | on-demand 1.96 427
short-term planning 5 334 44.0
perception 5 49.2 65.0
prediction 5 2.73 3.61
reaction 20 10.7 3.54
locomotion 20 2.01 0.66
Amortized time for a single update at 20 Hz 33.0 us
Static Decimation
Frequency Profile | Avg. time per
Phase (Hz) %) | update (tsec)
space-time planning on-demand 0.001 185
mid-term path planning | on-demand 7.93 425
short-term planning 0.2 6.00 45.6
perception 0.67 26.9 65.6
prediction 333 747 3.6
reaction 20 43.6 3.5
locomotion 20 8.07 0.66
Amortized total for a single update at 20 Hz 8.1 us (4x)
Adaptive Decimation
Avg. Freq. Profile | Avg. time per
Phase (Hz) (%) update ({sec)
space-time planning on-demand 0.001 318
mid-term path planning | on-demand 9.95 431
short-term planning 0.168 5.67 42.6
perception 0.288 13.9 61.0
prediction 3.33 9.38 3.66
reaction 17.09 50.6 3.74
locomotion 20 10.5 0.67
Amortized total for a single update at 20 Hz 6.3 us (5x)

Table 3: Detailed performance comparison, comparing a 5 Hz ref-
erence, static decimation, and adaptive decimation. These statistics
were collected for the Random test case from the benchmark suite,
where 4000 agents in a dense environment steer towards random
(the same in all three comparisons) goals.

these properties contribute to keeping amortized costs low, and ul-
timately this makes it possible for our framework to support thou-
sands of robust agents in real-time.

6 Conclusion

‘We have presented three contributions for agent-based steering: (1)
a way to integrate multiple steering approaches into a single frame-
work, (2) a space-time planning technique that solves complicated
steering scenarios, and (3) phase decimation that allows us to signif-
icantly reduce the amortized cost of each phase. We demonstrated
a framework with these contributions that performs robustly and ef-
ficiently on a wide variety of scenarios, ranging from challenging
local interactions to dense crowds of thousands of agents. We en-
vision that future commercial applications will benefit greatly from
the experiments and results discussed in this paper.
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