
DANCE: Dynamic Animation and ControlEnvironmentVictor Ng-Thow-Hing and Petros FaloutsosDepartment of Computer Science, University of Torontofvictorngjpfalg@dgp.toronto.eduIntroductionResearch in physics-based animation (PBA) and con-trol is currently producing isolated results. Researche�orts result in controllers that are bound to cus-tomized software supporting predetermined types ofobject and controllers, thus limiting opportunities toshare or exchange results. We believe that an envi-ronment that remedies these limitations is essential tothe progress of physics-based research. This inspired
Actuator Geometry Simulator

Articulated
Object

View

f(xx t+dt = ,t)t

Tcl 
interface

Plug-ins

Abstract classes

Tk
DANCE Core Core classes

Figure 1: The main components of DANCE.a joint development project by the authors to build acommon environment where multiple controllers andobject models could co-exist and interact with eachother. The long-term goal is to reduce the startupoverhead of future research projects in this area sothat investigators can proceed directly to controllerdesign and object model construction. The resultingsystem, named DANCE, allows practitioners to cre-ate their own controllers and physical models as ex-ternal plug-ins that can be integrated into a commonsimulation environment. A secondary goal is to givethe user the ability to edit controller and actuator pa-rameters interactively through a direct manipulationinterface.

DesignOur system is based on an object oriented, plug-inarchitecture and it is portable across most populararchitectures. The main features of DANCE are:� Object-oriented and modular design Can easilybe customized and ported.� Plug-in open architecture Controllers in the formof plug-ins can be as independent and complexas desired.� Physics-based simulation Based but not boundto a commercial package.� Scripting and window interface Fully customiz-able and expandable based on Tcl/Tk.� Direct manipulation Direct manipulation ofplug-ins and core objects.� Portability Runs on SGI Irix, Linux, WindowsNT, MacOS.� Standard keyframing functionality
Figure 2: Two actuators: Forward falling and muscleson bones.We have separated our system into two parts, thecore and the plug-ins as shown in Figure 1. The coreclasses are built into the main system and implement



the common, yet complex functionality that any an-imation system needs. We have carefully chosen thecore part elements to be those that, most probably,users do not need to modify. The main core classesare the ArticulatedObject class, the View core classwhich implements viewing and direct manipulationand the Dance core class which manages all eventqueues, objects and plug-ins.Plug-ins are represented in the system as abstractclasses with the specialized subclass implementationresiding in external, dynamically linked executables.These classes impose very few restrictions on the de-sign of speci�c plug-ins. In addition, they provide thenecessary interface for plug-ins to interact with eachother, allowing a wide variety of controllers and mod-els to co-exist in the same environment. The mainplug-in classes are as follows. Simulator plug-in class:The engine that drives the animation is the simulator.We use the commercially-available SD/FAST enginewhich produces C-code for the equations of motionof a particular AF. However, users can implementand use any simulator they prefer. Actuator plug-inclass: We de�ned actuators to be any entity that canexert forces on the articulated �gure. They can be asimple gravitation �eld or a high-level pose controllerthat can coordinate forces for multiple joints on mul-tiple articulated �gures. Given the diversity of con-trol techniques it is preferable not to build a speci�ctype of controller into the main system as users willmost likely want to build their own using the plug-in mechanism. Geometry plug-in class: Subclassesof this class implement the geometric representationof links in an articulated �gure. We currently haveimplemented an indexed face set plug-in class that al-lows a large set of VRML polygonal models to be im-ported into DANCE. This subclass supports orientedbounding boxes (OBB) [1] for collision detection andcan automatically compute the mass and a diagonalinertia tensor for polygonal models.Implementation DetailsTo achieve platform independence, we chose toolkitsthat were available on multiple platforms. OpenGLis used for 3-D graphics rendering, GLUT is used forwindow management and event handling and Tcl/Tkcomprises the graphical user interface, Figure 1. Wepurposely did not integrate the GUI with the systemto allow users to customize and develop their owninterfaces targeted towards their specialized applica-tions.

ApplicationsThe power of DANCE comes from its ability to sup-port a wide variety of diverse plug-ins. We presenttwo di�erent applications that use DANCE as a com-mon environment.Anatomically-based modeling. We useDANCE to build articulated structures correspond-ing to musculoskeletal systems in the human body,Figure 2 left. Digitized bone data can be loaded andtheir mass properties estimated. We have built an ac-tuator class that uses B-spline solids as a deformableobject and that can exert forces on the bones. Thisactuator is used to model musculotendons and liga-ments. Through DANCE's open interface, musclescan be sketched, placed and manipulated directly.Composeable controllers We use DANCE toimplement a framework in which controllers that pro-duce simple everyday motions for human �gures canbe composed together in a smart and e�ective way.Currently we focus on producing a composite con-troller that deals with di�erent cases of loss of bal-ance of human �gures. This controller should be ableto detect unbalance, and choose between a number ofprotective moves or natural falling motions depend-ing on what is natural in the speci�c case, Figure 2right.ConclusionWe have built an open, portable and extensiblephysics-based animation system. Practitioners ofPBA can begin to develop controllers without need-ing to implement all the other subsystems that arenecessary for such a system. Furthermore, they canexchange models and controllers and can develop con-trol strategies that allow articulated �gures to coop-erate or compete with each other. The ability to in-teract with controllers, articulated �gures and actu-ators with direct manipulation provides quick visualfeedback for bringing a human user directly into theprocess of directing physically-based animation. Thechallenge remains of devising novel manipulators forcontrollers that intuitively map to desired motions.References[1] Stefan Gottschalk, Ming Lin, and DineshManocha. OBB-Tree: A hierarchical structure forrapid interference detection. In Computer Graph-ics (SIGGRAPH '96 Proceedings), pages 171{180,1996.


