DANCE: Dynamic Animation and Control
Environment

Victor Ng-Thow-Hing and Petros Faloutsos
Department of Computer Science, University of Toronto
{victorng|pfal}@dgp.toronto.edu

Introduction

Research in physics-based animation (PBA) and con-
trol is currently producing isolated results. Research
efforts result in controllers that are bound to cus-
tomized software supporting predetermined types of
object and controllers, thus limiting opportunities to
share or exchange results. We believe that an envi-
ronment that remedies these limitations is essential to
the progress of physics-based research. This inspired

DANCE Core Coreclasses
Tcl Articulated ;
interface { Object View

Abstract classes

Actugtor | | Geometry | | Simulator

Figure 1: The main components of DANCE.

a joint development project by the authors to build a
common environment where multiple controllers and
object models could co-exist and interact with each
other. The long-term goal is to reduce the startup
overhead of future research projects in this area so
that investigators can proceed directly to controller
design and object model construction. The resulting
system, named DANCE, allows practitioners to cre-
ate their own controllers and physical models as ex-
ternal plug-ins that can be integrated into a common
simulation environment. A secondary goal is to give
the user the ability to edit controller and actuator pa-
rameters interactively through a direct manipulation
interface.

Design

Our system is based on an object oriented, plug-in
architecture and it is portable across most popular
architectures. The main features of DANCE are:

o Object-oriented and modular design Can easily
be customized and ported.

e Plug-in open architecture Controllers in the form
of plug-ins can be as independent and complex
as desired.

o Physics-based simulation Based but not bound
to a commercial package.

e Scripting and window interface Fully customiz-
able and expandable based on Tcl/Tk.

e Direct manipulation Direct manipulation of
plug-ins and core objects.

e Portability Runs on SGI Irix, Linux, Windows
NT, MacOS.

o Standard keyframing functionality

Figure 2: Two actuators: Forward falling and muscles
on bones.

We have separated our system into two parts, the
core and the plug-ins as shown in Figure 1. The core
classes are built into the main system and implement

the common, yet complex functionality that any an-
imation system needs. We have carefully chosen the
core part elements to be those that, most probably,
users do not need to modify. The main core classes
are the ArticulatedObject class, the View core class
which implements viewing and direct manipulation
and the Dance core class which manages all event
queues, objects and plug-ins.

Plug-ins are represented in the system as abstract
classes with the specialized subclass implementation
residing in external, dynamically linked executables.
These classes impose very few restrictions on the de-
sign of specific plug-ins. In addition, they provide the
necessary interface for plug-ins to interact with each
other, allowing a wide variety of controllers and mod-
els to co-exist in the same environment. The main
plug-in classes are as follows. Simulator plug-in class:
The engine that drives the animation is the simulator.
We use the commercially-available SD/FAST engine
which produces C-code for the equations of motion
of a particular AF. However, users can implement
and use any simulator they prefer. Actuator plug-in
class: We defined actuators to be any entity that can
exert forces on the articulated figure. They can be a
simple gravitation field or a high-level pose controller
that can coordinate forces for multiple joints on mul-
tiple articulated figures. Given the diversity of con-
trol techniques it is preferable not to build a specific
type of controller into the main system as users will
most likely want to build their own using the plug-
in mechanism. Geometry plug-in class: Subclasses
of this class implement the geometric representation
of links in an articulated figure. We currently have
implemented an indexed face set plug-in class that al-
lows a large set of VRML polygonal models to be im-
ported into DANCE. This subclass supports oriented
bounding boxes (OBB) [1] for collision detection and
can automatically compute the mass and a diagonal
inertia tensor for polygonal models.

Implementation Details

To achieve platform independence, we chose toolkits
that were available on multiple platforms. OpenGL
is used for 3-D graphics rendering, GLUT is used for
window management and event handling and Tcl/Tk
comprises the graphical user interface, Figure 1. We
purposely did not integrate the GUI with the system
to allow users to customize and develop their own
interfaces targeted towards their specialized applica-
tions.

Applications

The power of DANCE comes from its ability to sup-
port a wide variety of diverse plug-ins. We present
two different applications that use DANCE as a com-
mon environment.

Anatomically-based modeling. We use
DANCE to build articulated structures correspond-
ing to musculoskeletal systems in the human body,
Figure 2 left. Digitized bone data can be loaded and
their mass properties estimated. We have built an ac-
tuator class that uses B-spline solids as a deformable
object and that can exert forces on the bones. This
actuator is used to model musculotendons and liga-
ments. Through DANCE’s open interface, muscles
can be sketched, placed and manipulated directly.

Composeable controllers We use DANCE to
implement a framework in which controllers that pro-
duce simple everyday motions for human figures can
be composed together in a smart and effective way.
Currently we focus on producing a composite con-
troller that deals with different cases of loss of bal-
ance of human figures. This controller should be able
to detect unbalance, and choose between a number of
protective moves or natural falling motions depend-
ing on what is natural in the specific case, Figure 2
right.

Conclusion

We have built an open, portable and extensible
physics-based animation system. Practitioners of
PBA can begin to develop controllers without need-
ing to implement all the other subsystems that are
necessary for such a system. Furthermore, they can
exchange models and controllers and can develop con-
trol strategies that allow articulated figures to coop-
erate or compete with each other. The ability to in-
teract with controllers, articulated figures and actu-
ators with direct manipulation provides quick visual
feedback for bringing a human user directly into the
process of directing physically-based animation. The
challenge remains of devising novel manipulators for
controllers that intuitively map to desired motions.

References

[1] Stefan Gottschalk, Ming Lin, and Dinesh
Manocha. OBB-Tree: A hierarchical structure for
rapid interference detection. In Computer Graph-
ics (SIGGRAPH ’96 Proceedings), pages 171-180,
1996.

