
Bringing Sketch Recognition into Your Hands
Gabriele Nataneli

Department of Computer Science
University of California Los Angeles

Email: nataneli@cs.ucla.edu

Petros Faloutsos
Department of Computer Science

University of California Los Angeles
Email: pfal@cs.ucla.edu

Fig. 1. Our sketch recognition pipeline running on a Nintendo DS.

Fig. 2. Our sketch recognition pipeline running on the the iPhone.

Abstract—
Sketching is an important enabling technology for modern

animation interfaces. We present an approach for the analysis
of sketches that is very flexible and works consistently across
a variety of different software and hardware platforms. Im-
portantly, our method suits well the restricting requirements
of mobile devices. The proposed framework builds a semantic
representation of informal drawings and uses this model along
with other properties of the sketch to drive an output module.
Our method is reliable and can run in real-time even on devices
with very limited hardware resources. We fully implemented the
proposed recognition pipeline on a Nintendo DS, an iPhone, and
a regular PC. We showcase an application of this technology for
driving facial expressions.
Index Terms—recognition, sketching, embedded systems, com-

puter graphics

I. INTRODUCTION

Building a pen-based computer interface has been a great
ambition of computer science for over forty years. However,

Input Sketch
Shape Attr.

Computation

Shape 
Attr.

Grouping

Classification

Refinement

Training 
Set

Template
Matching

Template 
Library

Output 
Module

Fig. 3. High level diagram of the recognition pipeline.

only recently this area of research has experienced a substan-
tial resurgence, due to the wide-spread availability of devices
that use sketching as their primary form of input. Applications
range from simple interfaces, such as the touch menus of
the iPhone to very advanced applications for computer-aided
design. Furthermore sketch-based interfaces are also emerging
as a promising ground for innovative applications and games.
Sketch-based interfaces are designed to control a computer

application, with the same fluidity of writing on paper. The
main challenge is that the input is unconstrained and there may
be an entire range of valid ways to trigger a specific action.
This is in contrast with traditional interfaces in which we can
establish a direct mapping between input events and actions. In
fact, sketches are inherently ambiguous and their interpretation
often leads to some fundamentally under-constrained or even
ill-posed problems.
Our work focuses on the analysis of informal drawings. An

informal drawing is a freely-drawn sketch, whose semantics
are defined by the general shape of strokes and their overall
arrangement in the sketch. Our approach is designed for
applications that can be driven with these kinds of sketches.
We do not attempt to do precise symbol recognition, which
requires a substantially different methodology.
The main purpose of our framework is to analyze a given

sketch and build an internal representation of its semantics.
This representation is a quantitative description of the sketch
that is used to drive an output module. In our case, any

1



application that is capable of utilizing this description is
a valid output module. The process of recognition is only
concerned with the aforementioned analysis of the sketch and
is the main focus of this paper. However, the main purpose
of our work is to devise an approach that can work well
on devices with minimal hardware capabilities, while still
allowing good artistic control for practitioners designing rich
interactive applications. We also instist on the importance of
separating the recognition stage from output stage; this notion
is very important when designers seek to create an interface
that works consistently across a large range of devices with
vastly different hardaware specifications. We showcase the
results of our framework working with several different output
modules, such as the Poser animation system, a custom
graphics engine on the Nintendo DS and the iPhone (Figure
1). Figure 3 shows a high level diagram of our framework.
The recognition pipeline is organized in three distinct stages:
stroke classification, template matching, and refinement. Stroke
grouping is an optional stage that interacts with the classifier
and extends the range of sketches that our framework can
handle reliably. Our analysis proceeds by first probing only
higher level features of the sketch and then gradually moving
to a more detailed inspection of the drawing. The classifier
establishes a correspondence between individual components
of the sketch and components of the output module. A
component of the sketch may be an individual stroke or a
group of strokes replaced by a single representative stroke as
explained in Section III-D. The classifier is based on a machine
learning approach and requires a training set. The template
matcher compares the sketch against a library of templates that
encode the semantics of the application domain quantitatively.
For every component of the sketch the template matcher picks
the template that best matches the features of that component.
The refinement module adjusts the representation of the sketch
built so far by considering nuances of the drawing. A key
advantage of our framework is to encapsulate the analysis of
the sketch, so that sketch recognition is independent of the
applications is used for. As a result, the output module can be
any tool that can interpret the quantitative description of the
sketch generated by our recognition pipeline.
We illustrate this process by referring to the sketches in

Figure 1. First, the classifier labels the strokes as: mouth,
nose, eyes, and eyebrows. Then, the template matcher uses the
template library to discriminate between a smile and a frown
or an open eye and a closed eye. Lastly, the refinement stage
will probe the mouth stroke to determine the intensity of the
smile or frown. Each stage of the pipeline is art directable and
can be adapted to work with completely different application
domains as explained in Section V.
We demonstrate our work by presenting a concrete appli-

cation that runs in real-time on both a high-end PC, a low-
end PC, and mobile platforms with limited resources (Section
IV-A). In this paper we analyze the proposed pipeline in
detail and also discuss the technical challenges that we had
to overcome in order to adapt our technique to fully run on
mobile platforms with an emphasis on the Nintendo DS, which

is our most limited target platform. The main highlight of our
work is to show that, by employing a robust sketch recognition
engine and maintaining a full separation between the analysis
of the sketch and the output module, we obtain an interface
that is highly adaptable and works consistently across a variety
of platforms.
The contributions of this paper are:
• We present a framework for sketch recognition that
leverages machine learning, template matching, and other
techniques to achieve the level of efficiency and flexibility
that is required to target applications that must work
consistently on wide range of devices. Furthermore, our
work demostrates that is feasible to run these techniques
on mobile devices (Section IV).

• We propose a series of techniques that elevate sketch-
recognition to the level robustness needed by real-world
applications.

• We demonstrate that the entire recognition pipeline is
highly efficient and can even work in real-time on a
Nintendo DS, which has very limited hardware resources.

II. RELATED WORK

One way to obtain usable sketch-based interfaces for com-
puter graphics is to establish a direct mapping between strokes
and geometry [1]. These approaches tie the analysis and
handling of the sketch with the final output closely together.
However, these methods are unsatisfactory when the interface
must scale to a range of devices with varying computational
capabilities. With this paradigm, a high-end device capable of
manipulating detailed models and accepting precise input will
offer a rich user experience, but the same interface running on
a low-end device will offer an experince that is rather poor
in comparison and significantly inconsistent with the other.
Our work instead separates the analysis of the sketch from
the target application by generating a reusable quantitative
description of the sketch. Therefore, when we provide a
framework that can perform the same analysis on all devices,
regardless of how well these devices can manipulate an output
model, then we can enable applications that can work more
consistently across different platforms.
For this reason we focus our method on the problem of

sketch recognition rather than insisting on a specific target
application. This contrast is also evident by comparing our
work to the papers by Chang et al. [2] and Lau et al. [3], that
focus specifically on posing facial expressions—an application
similar to the one we present in Section IV. We also point out
that the computational requirements of these methods make
them largely unfeasible on mobile devices.
Closely related to our work are the papers by Yang et al.

[4] and Sharon et al. [5] that exploit template matching and
stroke classification for the interpretation of sketches. The
work by Yang et al, however, focuses on modeling which is a
different problem than ours, while the paper by Sharon et al. is
restricted on the problem of classification (labeling) and does
not allow for the more general analysis of drawings that is
possible with our full recognition pipeline. Furthermore, these

2



approaches are not designed with mobile applications in mind.
There are several interfaces for the recognition of sketches
within specific application domains, such as chemistry, electric
circuits, or music. In contrast, our work does not focus
specifically on the vernacular of a particular domain, but it
focuses on the recognition of informal drawings, which are
more appropriate for applications in computer graphics and
animation.
Substantial effort is also devoted to the study of more

general recognition frameworks and the difficult problem of
multi-domain sketch understanding [6]. We do not attempt to
achieve the same level of generality for sketch-recognition as
these papers. Nevertheless, this area of research was an im-
portant basis for our design of a framework that can recognize
informal drawings robustly and with sufficient generality.
Several papers study specific sub-tasks related to the prob-

lem of sketch recognition, such as parsing [7] and grouping
[8]. We do not consider directly the problem of parsing in our
work, but we exploit the concept of grouping to enable our
approach to work with complex sketches.
Another notable domain of research studies languages for

describing sketch-recognizers, such as LADDER. These tools,
however, are appropriate for a different class of interactive
techniques that rely on the recognition of symbols as opposed
to informal drawings (Section I) and require more technical
expertise; thus they are more difficult to direct artistically.

III. APPROACH

A brief overview of our approach is given in section I. In
this section we describe each stage of our recognition pipeline
in detail with reference to figure 3.

A. Shape Attributes
Shape attributes (or shape descriptors) are quantitative de-

scriptors that are used to build a sound representation of
the sketch. They have been used extensively in the past as
a means to improve the performance of sketch recognition
[9] and address the problem of fast shape retrieval from
large databases. In general shape attributes are functions that
analyze a stroke or a collection of strokes and return a scalar
that measures a desired property. Shape attributes cannot be
used to recover the original shape, but they are useful for
discrimination. In our case, we use shape attributes to:

• Obtain a statistically well-behaved representation of
strokes to improve the reliability of the classifier.

• Improve the performance of the template matcher to
discriminate between shapes.

• Probe perceptually meaningful features of strokes to
refine our analysis of the sketch.

To obtain these properties, we designed shape attributes
based on concepts of statistical pattern classification as ex-
plained in Section III-B, and the general literature on human
perception of shape [10].
Shape attributes in our framework can be categorized based

on two criteria:

Name Example Indicates

Bounding Box Size

Centroid Position

Ordering

2

3
1

2 Arrangement

Orientation αα Orientation

Topology Open Closed Closed Closed Open or Closed?

Concavity Upward Downward Upward or Downward?

Depth

0

0

1
1

Overlap

TABLE I
THE LOCAL SHAPE ATTRIBUTES USED IN OUR FRAMEWORK.

1) The level of granularity they offer in describing detailed
aspects of strokes.

2) Whether they describe strokes in isolation or with respect
to each other.

We picked shape attributes so that each stage of analysis is
working at the most appropriate level of abstraction and to take
advantage of both local and global features of the drawing.
Table I illustrates the local shape attributes that we use in our
framework. For a detailed description and algorithmic details
of the shape attributes used for classification and grouping
please refer to prior work by the authors [8]. The topology
and concavity shape attributes are detailed in the Appendix
and used for template matching (Section III-E). A local shape
attribute measures properties of individual strokes and their
relationships. A global shape attribute probes overall features
of the drawing which are not related directly to how each
individual stroke is drawn.
For global shape attributes we use the overall bounding

box of the entire sketch and the global count of strokes in
the sketch, which helps to disambiguate certain special cases.
When appropriate, shape attributes are normalized with respect
to the overall bounding box to make them independent of
scaling.

B. Classification
The purpose of the classifier is to establish a correspondence

between components of the sketch and related components of
the output module. We formulate the classification problem
as assigning a user-defined label to each component of the
sketch. Since our work emphasizes interactive applications and
the robustness of the recognition process, we restrict at first
the classifier to assign labels to individual strokes. In order

3



to further our control over the classification, we make two
additional assumptions:
1) The sketch must not contain strokes that do not have any
valid user-defined label. We call these outliers.

2) The sketch does not contain multiple strokes that belong
to the same class. We call these duplicate strokes.

We refer to sketches that satisfy these two assumptions as
clean sketches. Our classification mechanism is designed to
offer the best level of classification robustness for clean
sketches. As explained in Section III-D, the reliability of
the classifier for clean sketches allows us to extend our
classification mechanism to deal with sketches that violate the
stated assumptions.
Rule-based mechanisms and statistical methods are the two

dominant approaches for classification that are commonly used
for sketch recognition. While over the years several grammars
and languages were proposed to ease the development of ro-
bust rule-based symbol recognition systems [11] these methods
do not provide the level of artistic control that we desire.
Yet an even greater problem is that rule-based approaches
rely on compound strokes and classify symbols based on
their connectivity patterns. In our work we wanted instead
to classify individual strokes based on their individual shape
and arrangement in the overall drawing. For these reasons we
decided to use a statistical approach.
The method we use for classification is a supervised ma-

chine learning technique based on Support Vector Machines
(SVMs). The classifier is trained by drawing a sufficient (Sec-
tion III-C) number of example sketches with manually labeled
strokes. The example sketches with their labels constitute the
training set for the SVM. The classifier then uses the statistical
information of the training set to assign labels to the strokes
of new sketches that are not found in the training set. In
order to achieve the desired level of robustness, we rely on
the statistical notion of data representation. In general a good
training set for discrimination must satisfy two properties:

• Data points that belong to the same class should exhibit
a small scatter.

• The means of two different classes of data points should
be well-separated.

The common approach is to project the original data points to
a lower-dimensional space that maximizes these properties. In
statistics one can find this space automatically with methods
such as the Fisher Linear Discriminant. However, for our
purpose linear methods may not be able to effectively represent
strokes and nonlinear methods are computationally expensive.
Furthermore, we need more control over the recognition
process and we can achieve better overall robustness by
exploiting theories of visual perception [10]. Therefore, we
devised a good representation space manually by means of
shape attributes. We started with a set of over a hundred
manually labeled sketches and implemented several shape
attributes following the suggestions of the general literature
on visual perception. Our original shape attributes mirrored
closely the notions described in the classic work by Arnheim

Bounding Box Width
Bounding Box Height

Bounding Box Aspect Ratio
Centroid X
Centroid Y

Horizontal Ordering
Vertical Ordering

Overall Stroke Count
Depth

TABLE II
THE STABLE SELECTION OF SHAPE ATTRIBUTES USED FOR THE

CLASSIFICATION.

[10]. By studying the class scatter and the inter-class means,
we narrowed down the set of shape attributes so that the
aforementioned properties are maximized. We repeated the
same process with a comparable number of sketches belonging
to different application domains to ensure that our selection
is sufficiently general. Table 2 shows the shape attributes that
we chose for classification. Using these shape attributes, we
trained the classifier for three distinct types of drawings: facial
expressions, houses, and cars. We studied the reliability of
the classifier using cross-correlation tests and we obtained an
average accuracy of 93%. The cross-correlation results show
that our classifier is very reliable and at the same time is not
overfitting the data, thus it has a good ability to generalize. The
original training sets had about a hundred training examples
each. We then reduced the number of training examples in
each set and repeated the cross-correlation tests. We found
experimentally that we need about 10 training examples per
class in order to achieve the desired level of robustness.

C. Training

The classifier is trained interactively by drawing a sufficient
number of clean sketches (refer to Section III-B) and manually
labeling each stroke. It is important that the training sketches
are varied, so that the classifier can easily learn important
properties of the application domain. This follows from the
fact that a statistically well-behaved training set should exhibit
a large separation between class means. For each stroke si

that is manually labeled, we generate a training vector ti of
the following form:

ti = [li, A1(si), A2(si), . . . , Am(si)]

where li is a value that uniquely identifies each class label
and Aj(si) is a scalar produced by a specific shape attribute
from Table 2 applied to stroke si. Note that each training
vector incorporates three kinds of information relating to the
individual shape of each stroke, the relation between strokes,
and global attributes of the sketch as discussed in Section
III-A. The selection of class labels by the user is also important
to address the problem of ambiguity resolution. For instance,
the classifier will not reliably distinguish ambiguous class
labels for a face, such as a smile and a smirk, but is reliable
in distinguishing classes for the mouth and the nose. Instead,
subtle variations like these are handled by the template matcher

4



and the refinement stages, discussed in Section III-E and
Section III-F.
In Section III-B, we pointed out that in general ten training

vectors per class are sufficient to obtain reliable classification.
Thus, our method requires a fairly small training set for most
applications. Furthermore, in most cases the training set is
prepared only once for a given application domain and end-
users should not be concerned with it. On the other hand,
in our implementation a training set with about 120 training
vectors can be processed in less than a second on an entry level
laptop, so designers can also envision applications in which
end users can interactively train the classifier and customize
the behavior of the recognition pipeline.

D. Grouping
Our classifier makes some restricting assumptions on the

input sketch as explained in Section III-B. These assumptions
enable us to obtain a very reliable and robust classifier,
but they also limit the range of sketches that the user can
draw. Grouping strokes beforehand allows us to relax these
assumptions and greatly extends the range of sketches that
our approach can handle reliably. We replace each group of
strokes with a representative stroke that captures important
features of that group. As a result, the subsequent stages of
the recognition pipeline can still operate as if we used an
individual stroke per class label.
We repeat the assumptions of the classifier here for conve-

nience:
1) Each class label is associated to a single stroke.
2) The sketch does not contain outliers.
3) The sketch does not contain duplicate strokes.
Our approach for grouping follows the method introduced
by the authors [8], which we summarize in this section for
convenience. The key observation of this technique is that we
can always reduce a sketch that violates assumptions (2) and
(3) to one that satisfies them by defining a proper grouping of
strokes. Assumption (1) is accommodated by replacing each
group with a single stroke that captures important properties
of the shape of that group. The SVM classifier presented in
Section III-B is used to find the most appropriate grouping
within the space of possible groupings for a given sketch. This
process is reliable and robust, because we ensured that our
classifier is well-behaved for clean sketches. One fundamental
difficulty with this and other similar methods is that the space
of possible groupings is prohibitively large and it needs to be
pruned beforehand to make the problem tractable. The pruning
heuristics suggested by the aforementioned paper proved to be
appropriate for the applications presented in our work as well.
Figure 4 shows an example of a difficult sketch that can be
correctly classified after grouping. In this example, the training
set had distinct classes for mouth, nose, L/R eye, L/R pupils,
and L/R eyebrow. One peculiarity of our method for grouping
is that the training set differs from the actual sketches that
we used to test the classifier. For a sample of 100 non-clean
sketches, the grouping stage produces more than 90 % correct
groupings and, when it fails, it rarely results in non-sensical

Fig. 4. A difficult sketch that is correctly handled by our framework using
grouping. Left: the original sketch. Right: the representative strokes after
grouping.

Fig. 5. A few sample templates for mouth expressions. Each template is
composed of a template shape and a set of parameters that can be interpreted
by the output module

groupings. For a more detailed analysis of grouping, please
refer to [8].

E. Template Matching

We use a library of templates to produce a quantitative
description of sketch semantics. Each template is composed of
a representative stroke and a corresponding set of parameters
that are usable by the output module. The significance of this
representation is that the template library is easily understood
in visual terms and therefore it lends itself well for art
direction. We further scope the template library by defining
a different set of templates for each class label specified in
the training set. Figure 5 shows a few templates for one
of the applications that we designed using our recognition
pipeline. The role of the template matcher is to match input
strokes to the most similar template in the library and feed the
corresponding parameters to the next stage of the recognition
pipeline.
For each classified stroke (or the representative stroke of

a group) we query the templates that correspond to its class
and search for the template that is most similar. We perform
template matching in two stages as to make the process fast
and robust. We call these stages respectively: hard matching
and soft matching. Hard matching uses special discrete shape
attributes to exclude obvious mismatches and narrow down
the size of the search space. This is important to avoid user
frustration. In fact, we found that users prefer the interface
to ignore a stroke completely, rather than produce results that

5



are obviously wrong. A good choice of shape attributes for
hard matching requires some knowledge of the application
domain, but for the sake of generality we found that the
following shape attributes are visually relevant in most cases:
topology and concavity (refer to Table 1 and the Appendix).
Soft matching uses a metric to rank the remaining templates
based on similarity and pick the best match. We experimented
with a few established shape matching metrics to measure
similarity, such as the modified Hausdorff distance, the Frechet
distance, and other metrics based on turning angle [12]. In our
experiments, all these metrics provide an excellent success
rate above 90%, but these metrics suffer from fairly high
computational requirements and are not practical for mobile
platforms. Furthermore, the Frechet metric, which is the best
performer, is too slow to be practical for applications even
on high-end machines. Instead, for applications running on
limited hardware an appropriate metric is constructed by
computing the norm difference of mutliple shape attributes.
Simple shape metrics are viable because we resolve most
ambiguities upstream in prior stages of the pipeline.
In order to obtain the highest level of robustness, it is

important that template shapes exhibit substantial variation.
This way we favor the ability of the template matcher to
discriminate shapes and reduce the inherent ambiguities of the
template library. On the other hand, we account for nuances in
the input sketch at the refinement stage discussed in Section
III-F.

F. Refinement
The refinement stage accounts for nuances in the input

sketch by altering the parameters generated by the template
matcher. We defer the refinement stage to the end of the
pipeline, because this way we can perform the main portions
of the recognition discriminatively and robustly in the classifi-
cation and template matching stages. Furthermore, because of
this important design choice, we do not have to specify subtle
features of the sketch as part of the training set and template
library. Consequently, we can reduce ambiguities and favor
the recognition process by relying on a data set that has good
statistical features. Yet we can still provide a good level of
control to the user by means of a dedicated refinement stage.
We refine each stroke (or the representative stroke of a

group) individually. We define the refinement of each stroke
by three elements: 1) refinement function. 2) lower bound. 3)
upper bound. The refinement function uses the lower and upper
bounds to normalize the value of a specified shape attribute to
the range [0, 1]. For each template in the template library we
define a configuration table that specifies the values of these
three elements. The bounds can be defined both as absolute
numbers or relatively to other well-defined elements of sketch,
typically a class label. As an example for a facial expression,
we can refine how much to open the mouth, by parameterizing
the height of the mouth stroke with respect to the bottom of
the nose and the top of the chin. Our approach to refinement is
straightforward, art directable, and has minimal computational
requirements.

Fig. 6. A range of mouth expressions that we obtained with refinement on the
Nintendo DS. The images were captured from an emulator for convenience.

G. Output Module
One key feature of the proposed recognition pipeline is that

it keeps the recognition process completely separate from the
output module. As a result the sketch recognition process can
be used to drive a variety of different output modules that may
operate rather differently from each other. The only require-
ment is to implement a thin interface layer that translates the
quantitative description generated by our system to the one
required by the chosen output module. To demonstrate the
flexibility of this framework, we used our pipeline with several
different output modules without modifications, except for a
rather minimal external interface layer between our recognition
pipeline and the output module:
1) The Curious Labs Poser commercial animation package.
2) A custom blendshape based animation engine on the
Nintendo DS.

3) A custom scene-graph engine on the Nintendo DS.
4) A custom blend shape based animation engine on the
iPhone.

5) A vector based engine for posing cartoons generated in
Adobe Illustrator.

An additional advantage of our method is that a single
sketch can be fed simultaneously to different visualization
packages or reused at different times in a production envi-
ronment and with different target graphic models. As a result,
artists can use a sketch interface to consistently express their
ideas independently of the art assets and software used for
final production.

IV. RESULTS
We have implemented two distinct versions of the sketch

recognition pipeline. We wrote the first version in the Python
interpreted language and ran it on two different machines: 1) a
laptop PC with a single core Pentium 4 CPU at 2.13 Ghz and
1 GB of RAM. 2) a desktop PC with a single core Pentium 4
at CPU 2.4 Ghz and 2 GB of RAM. The second version was

6



Fig. 7. A live shot of using our framework with Poser.

written in C++ and targeted to mobile platforms. This version
was optimized to run entirely on a Nintendo DS handheld
gaming system and it was ported to the iPhone with minimal
effort. The two versions implement the same functionality
with the exception that the PC version can perform stroke
grouping and uses more refined algorithms for soft matching
as explained in Section III-E. Furthermore, despite these minor
differences, the recognition output is consistent. The entire
process of recognition is completed in less than a second with
real-time output even on the the most limited platform.
We demonstrate our method primarily with an application

for posing facial expressions. We created the training set and
the template library using a custom graphical tool. The training
set contains 12 classes that represent the main components of
the face with distinct classes for right and left components.
The full training set contains 123 training vectors and was
generated by drawing 41 different clean sketches (each sketch
contains multiple strokes). The most complex template library
that we used contains 23 distinct templates.
For the PC version we used the Poser animation package

as the output module, which uses blend shapes for posing
facial expressions. The communication between the two is
provided by a short Poser script that translates our description
of the sketch to the parameters required by the software.
We successfully drove four distinct face models within Poser
with our sketch-based interface, one of them being a high
quality third-party face model. Figure 7 shows a user using
our application, and Figure 8 shows the rendered Poser models
and the corresponding sketches.
We also interfaced the PC version with a tool that can

interpolate vector graphics to animate 2D cartoon facial ex-
pressions. Our sketch-based interface drove the 2D cartoons
without modification and with the same data sets for the
training set and the template library. Again, the interface
between the two applications was provided by a short script.
Figure 9 shows an expression generated with this output
module. This result shows the advantage of separating the
analysis of the sketch from the geometry of the target model.
The version for the Nintendo DS was developed from

scratch and highly optimized to work on such limited hard-

Fig. 8. These images were generated by running our framework within Poser.

Fig. 9. Our recognition pipeline used to drive a 2D cartoon.

ware. However, it reads the same training sets and template
libraries that we use on the PC version. We developed a
3D engine for this platform that can animate deformable
models using blend shapes, similarly to the Poser engine
for facial expressions. Nevertheless, we cannot use the same
Poser 3D models on the Nintendo DS, due to their high
polygon count. We use simpler 3D cartoon models on the
DS, but the recognition pipeline operates in the exact same
way. However, we can use Poser models directly on the
iPhone, due to its more capable hardware. To use our interface
with a second face model, we only had to modify the 3D

Fig. 10. A prototype application for posing mushrooms. We emphasize that
our framework was adapted to such radically different application without
having to write any code.

7



assets. Figure 1 and 6 show several examples generated with
this implementation. Figure 10 shows a completely different
prototype application we produced without writing any code.
The included video shows our interface used in real-time on
several distinct platforms and with different output modules.

A. A Major Challenge: Running the framework in real-time
on the Nintendo DS and the iPhone
In this section we discuss the technical challenges that we

had to overcome in order to run the full recognition pipeline on
the Nintendo DS. The Nintendo DS was the the platform with
the most severe hardware limitations in our experiments; thus
we believe that the following discussion makes a good case for
the feasibility of our approach on various mobile device. The
highly optimized version that we developed for the Nintendo
DS was later ported to the iPhone without major difficulties.
The Nintendo DS has 4 MB of user memory and two main
processors: an ARM7 at 33 MHz and and ARM9 at 67 MHZ.
Our application is running entirely on the ARM9 CPU. The
clock rate of this CPU is clearly orders of magnitude less than
what we normally find on commodity computers, including
Palm computers and Tablet PCs, which are the most common
target for sketch-based interfaces.
A critical component of our framework is the Support Vector

Machine we use for classification. Since the overall design
of our recognition pipeline allows us to use a fairly small
training set to get robust yet varied output, the computational
requirements and the memory footprint for running the SVM
are adequate to our needs. The full classification is performed
in 0.2 seconds in average and requires an estimated 300 KB
of memory at its peak. The classification is performed using a
precomputed training model that the Support Vector Machine
extracts from the actual training set. The actual computation of
the training model is much more expensive computationally,
but we can still run it on the Nintendo DS in an average of 51
seconds. This means that designers may devise applications in
which users are allowed to alter the training set interactively.
For the template matcher, each distinctly labeled stroke

needs to be compared against the full set of templates for
its class. This gives an average run-time of O(n ∗ m) where
n is the number of strokes in the input sketch and m is the
average number of templates per class. For the first stage of
the template matcher, we use discrete shape attributes, which
are computed as the user draws each stroke. Thus, the run
time for performing a hard match for each stroke is constant
and the overall run-time for hard matching is extremely small.
Soft-matching is performed using the Euclidean norm. This
norm metric is not as effective as the more expensive shape
metrics we use in our high-end implementation (Section III-E),
but we were able to offset this deficiency by simply removing
problem templates from the template library. The quality of the
results is still very good, since the models on the Nintendo DS
are less expressive in the first place.
The run-time of the refinement stage is linear in the number

of classified strokes and again it does not present any substan-
tial computational problem, since the required shape attributes

are computed as strokes are drawn. The refinement stage also
counter-acts the fact that the template matcher is not able to
perform accurate shape matching on the DS, by still providing
a satisfactory response to nuances.
On the Nintendo DS one major problem is how to fit our

data structures in the limited amount of available memory. We
overcome this problem with highly optimized procedures for
writing and reading data streams to the file system. This way
we limit memory usage by caching data structures in and out
of the file system as needed. This optimization is not needed
on the iPhone, but when used it improves load times by a
factor of a hundred in some cases.

V. DISCUSSION
The framework described in this paper focuses on the recog-

nition of informal drawings and addresses many important
problems of sketch-recognition. Our method also diverges
from existing approaches in several key aspects. One key
challenge of sketch-based interfaces is robustness. A robust
interface is one that behaves in a predictable fashion and
only rarely misinterprets the user input. For sketch-recognition
a satisfactory level of robustness is particularly difficult to
achieve, given the intrinsic ambiguities that affect uncon-
strained sketches. We tackle this problem by pushing the anal-
ysis of the most ambiguous aspects of the sketch to the latter
part of pipeline at the refinement stage. To further this notion,
we designed the entire pipeline so that each stage processes
the sketch at a progressively lower level of granularity. The
critical part of the recognition is performed by the classifier
and the template matcher. We ensure the robustness of the
classifier by choosing carefully the representation space of
the sketch by means of shape attributes. This gives us a good
statistical description of informal drawings. Classical studies
in psychology [10] support our choice and we use quanti-
tative methods to validate our approach against several user
drawn sketches. We further improve the template matcher by
removing unacceptable mismatches upfront discriminatively
with hard matching. The refinement stage accounts for nuances
in the sketch that would be otherwise very hard to detect
robustly with statistical methods.
Another issue of great importance for us is to offer a

framework that is flexible and can be easily adapted to
different application domains. The success of frameworks like
Adobe Flash show that it is very important for interface
designers to have a tool that allows quick experimentation
without time-consuming development work. As demonstrated
in Section IV, our framework can be adapted to different
application domains by merely modifying the training set and
the template library, neither of which require any coding. For
our applications, we had to implement a thin interface layer to
translate the quantitative description of the sketch generated by
our interface to the parameters of the output module. However,
this small burden can be avoided altogether by establishing a
standard for the parameterization of sketches.
Some of the most interesting platforms for deploying

sketch-based interfaces are handheld systems with limited

8



hardware. Therefore, we tried to limit the resources needed
by our recognition pipeline. As a result, we were able to im-
plement the full recognition pipeline on the Nintendo DS and
an iPhone with only minimal modifications in functionality
with respect to the PC counterpart.

VI. CONCLUSION
We have presented a new framework for sketch recognition

that is efficient, robust, flexible and can be easily adapted
to platforms of limited computational power, such as mobile
devices. Furthermore, well-defined stages in our framework
allow a user to intuitively adopt it for different application
domains. Our framework is suitable for educational and enter-
tainment applications for which hand drawn sketches can be
an effective interactive interface. Commodity mobile devices,
such as the IPhone and Nintendo DS, can now support a
wide range of practical applications that could benefit from
our framework.

ACKNOWLEDGMENT
This work was partially supported by the NSF grant CCF-

0429983. Any opinions, findings and conclusions or recom-
mendations expressed in this paper are those of the authors
and do not necessarily reflect the views of NSF. We would also
like to thank Intel Corp., Microsoft Corp. for their generous
support through equipment and software grants.

APPENDIX
In this appendix we detail the topology and concavity shape

attributes, which are used for template matching (Section
III-E).
Topology: The topology attribute labels a stroke as either

open or closed. We determine the topology using the span
angle αspan which measures the angle subtended by the
centroid and regular sample points on the stroke.

topology =

{

closed if αspan ≥ αthreshold,

open if αspan < αthreshold.

The value of αthreshold should be a around 360 degrees,
signifying that the stroke ”wraps” around the centroid when
its closed. We found in our experiments that a value of 340
degrees accommodates well the expectation of most users.
Concavity: The concavity attribute captures whether a

stroke arches up or down. Thus we say that the concavity
can be either upward or downward. We use the centroid as a
reference for computing this attribute. If most of the points
around the middle of the stroke are below the centroid we
define the concavity to be upward and downward vice versa.
More formally, given a stroke S let C be the centroid of S
and pi be some point in S. The concavity is then computed
as follows

vi = C − pi,

wi = e−influence·‖vi‖,

concavity =
n
∑

i=1

wi sign(viy),

where vi is a vector from the centroid to any given point
of the stroke and sign(x) returns the signum of x. If the y
coordinate of vi is positive then the point pi is below the
centroid, otherwise pi is above the centroid. The contribution
of each point is accounted using a weighted sum. We choose
weights in a way that prioritizes points that lie closer to the
centroid and decays exponentially as the distance with the
centroid increases. We found in our experiments that setting
the influence parameter to 10 produces results that are visually
sound.
The concavity is always well defined for strokes that are

topologically open, but may be ambiguous in this form for
strokes that are topologically closed. Hence, we approximate
closed strokes with their medial axis.

REFERENCES
[1] A. Nealen, T. Igarashi, O. Sorkine, and M. Alexa, “FiberMesh: Design-

ing freeform surfaces with 3D curves,” ACM TOG ’07, vol. 26, no. 3,
p. article no. 41, 2007.

[2] E. Chang and O. C. Jenkins, “Sketching articulation and pose for
facial animation,” in Data-Driven 3D Facial Animation, Z. Deng and
U. Neumann, Eds. Springer, 2007, ch. 8, pp. 132–144. [Online].
Available: http://www.springer.com/978-1-84628-906-4

[3] M. Lau, J. Chai, Y.-Q. Xu, and H.-Y. Shum, “Face poser: interactive
modeling of 3d facial expressions using model priors,” in Proceedings
of the 2007 ACM SIGGRAPH/Eurographics symposium on Computer
animation. Aire-la-Ville, Switzerland, Switzerland: Eurographics As-
sociation, 2007, pp. 161–170.

[4] C. Yang, D. Sharon, and M. van de Panne, “Sketch-based modeling of
parameterized objects,” in SBIM ’05, 2005, pp. 63–72.

[5] D. Sharon and M. van de Panne, “Constellation models for sketch
recognition,” in SBIM ’06, 2006, pp. 19–26.

[6] C. J. Alvarado, “Multi-domain sketch understanding,” Ph.D. dissertation,
Cambridge, MA, USA, 2004, supervisor-Randall Davis.

[7] L. B. Kara and T. F. Stahovich, “Hierarchical parsing and recognition
of hand-sketched diagrams,” in UIST ’04. New York, NY, USA: ACM,
2004, pp. 13–22.

[8] G. Nataneli and P. Faloutsos, “Robust classification of strokes with SVM
and grouping,” in ISVC ’07. Springer-Verlag, 2007, pp. 76–87.

[9] O. Veselova and R. Davis, “Perceptually based learning of shape
descriptions,” in AAAI ’04, San Jose, California, 2004, pp. 482–487.

[10] R. Arnheim, Art and Visual Perception: A Psychology of the Creative
Eye. University of California Press, 1974.

[11] G. Costagliola, V. Deufemia, and M. Risi, “Sketch grammars: a for-
malism for describing and recognizing diagrammatic sketch languages,”
ICDAR ’05, pp. 1226–1230 Vol. 2, 29 Aug.-1 Sept. 2005.

[12] E. M. Arkin, L. P. Chew, D. P. Huttenlocher, K. Kedem, and J. S. B.
Mitchell, “An efficiently computable metric for comparing polygonal
shapes,” in SODA ’90. Philadelphia, PA, USA: Society for Industrial
and Applied Mathematics, 1990, pp. 129–137.

9


