
Effective Density Visualization of Multiple

Overlapping Axis-aligned Objects

York University, Toronto, Canada

MSc. Thesis of Niloy Eric Costa

Background

Density-based visualization

2012 US Election

Activity Map

Many data analytics problems

need to visualize the density of

axis-aligned objects

Observation

Axis-aligned geometric objects

1-D line segments/intervals 2-D rectangles

3-D boxes/cuboids

Need for effective density

visualization of multiple

overlapping axis-aligned

objects

1. How to detect multiple overlaps?

i. How many overlapping elements?

ii. Which rectangles are overlapping?

iii. Size of the overlaps?

Research questions

2. How to evaluate the efficiency of the methods?

3. What are the real-world use cases for these

methods?

Object intersection problem

A

B
C

(A,B)
(B,C)

Input
a set of axis-aligned geometric objects

Output
pairs of intersecting objects

size of overlap

how can we address this problem?

Sweep-line algorithm

L

A

Ax0 x0
B x0

C x1
B Ax1 x1

C

B
C

Sweep direction

Ay0

By0

Cy0

By1

Ay1

Cy1

an efficient one pass computational geometry algorithm

Multiple Object Intersection Problem

The problem

Input
a set of regions in R2

Output
enumeration of all intersecting regions

size of each common region

position of each common region

(A,B)
(A,C)
(A,D)
(B,C)
(B,D)
(C,D)
(D,E)
(A,B,C)
(A,B,D)
(A,C,D)
(B,C,D)
(A,B,C,D)

Many applications

simulationsspatial databases

task scheduling

Baseline Methods

Baseline 1: naive algorithm

iteratively check all possible ways that n objects can intersect

(-) limitation

there are 2n ways, so exponential computational cost

Baseline 2: grid-based approach

create a grid, perform orthogonal queries to find objects intersecting

with each grid cells, assign value based on intersections

(-) limitation

trade-off between accuracy and time-performance based on grid-cell

sizes

Sensible baseline algorithms

1. Use R-tree* to create a grid

2. Search in the tree for finding z-index scores

3. Color each grid-cells based on the corresponding z-

index scores

Grid-based approach

Input data-set 1. 4 X 4 grid 2. z-index scores of

cells

3. 4 X 4 grid heat-

map

*R-tree is a depth balanced tree, provides aid in

faster spatial queries

Grid-based approach trade-off

Trade-off

• 4 X 4 grid is less

accurate, but z-indexes

calculated quickly

• 8 X 8 grid is more

accurate, took longer to

calculate each z-index

score

Our Approach (OverLap-HeatMap)

Observation 1

intersection graph:

⦁ vertex: represents an object

⦁ edge: represents that two objects

intersect

intersections of n-dimensional objects (1-D, 2-D, 3-D, …) can be

universally modeled as an intersection graph

a k-clique in the intersection graph, corresponds to k objects that

are simultaneously intersecting and share a common region

Observation 2

a k-clique is a complete subgraph of size k (i.e., a subset of k

vertices that are all connected to each other)

k-clique

2-cliques: all edges

3-cliques: ABC, ABD, ACD, BCA

4-cliques: ABCD (maximal clique)

OL-HeatMap* algorithm (sketch)

1. Apply sweep-line to find intersecting pairs

2. Construct the rectangle intersection graph (RIG)

3. Apply a clique enumeration algorithm on graph

*OL-HeatMap is an extended version of SLIG -

Sweep-Line (with an auxiliary) Intersection Graph

By Tilemachos et al.

(A,B)
(A,C)
(A,D)
(B,C)
(B,D)
(C,D)
(D,E)
(A,B,C)
(A,B,D)
(A,C,D)
(B,C,D)
(A,B,C,D)

(1) (2) (3)

OL-HeatMap: Other metrics computed

z-index

The number of simultaneously

overlapping objects in a set

size of overlap(|S|)

For more dimensions, |S| is the
product of the common region
lengths in each dimension |So|

zABCD = 4
zDE = 2
… |SABCD|

OL-HeatMap: Final visualization

Coloring the boxes
Each common region S should be colored only once

based on their intersection cardinality. We skip

drawing of rectangles which are completely covered

by another.

Currently ~30% less overlaps are colored

Experimental Evaluation

⦁ Accuracy performance

⦁ Runtime performance

⦁ OL-HeatMap versatility (extension to 1D

objects)

⦁ OL-HeatMap flexibility (real world use-cases)

⦁ OL-HeatMap scalability

Experiment overview

1-D intervals

Randomly generated objects

2-D rectangles –
gaussian distribution

2-D rectangles –
uniform distribution

2-D rectangles – bi-
modal distribution

Accuracy

Measurement of accuracy for different grid sizes

Accuracy

Accuracy performance of OL-HeatMap vs. grid-based

OL-HeatMap is 100% accurate. However, a finer grid can

achieve similar accuracy

Runtime cost

Comparison of time for different data-set sizes

Runtime cost

Comparison of time for different data distributions

Finer grid sizes takes a lot of time to compute in order

to achieve similar accuracy that of OL-HeatMap

Scalability

Execution Time vs OL-HeatMap Scalability

OL-HeatMap can scale up-to a million regions

Real World Use Cases

The Data

⦁ US Airline Carrier Data (1987-present)

⦁ We used John Wayne Airport, Orange County, California

⦁ 1D intervals created by time aircraft spent on runway

Visualization Goal

⦁ Find highest density of runway traffic

⦁ Finding least used time slot for a runway

⦁ Overview of airport usage in a single day (February 1st, 2019)

⦁ Providing aid in Air Traffic Management

Real-world use cases (1D)

Airline carrier data

Overview of the

February 1st, 2019

Time Left to Right –

0000 – 2359 Hours

Airline carrier data

100 Grid. Time - 0000-2359 Hours [24 Minute Intervals]

50 Grid. Time - 0000-2359 Hours [48 Minute Intervals]

OL-HeatMap. Time - 0000-2359 Hours

The Data

⦁ US Storm Events Database, NOAA (1953-present).

⦁ Relevant information regarding significant weather event.

⦁ Begin Long., Lat., and End Long., Lat. Used to create bounding

boxes

Visualization Goal

⦁ Determining storm hot-spots in US during 2017-2019

⦁ Finding states with less severe weather incidents

⦁ Finding the borders of “Tornado Alley”

⦁ Visualize using OL-HeatMap to show the sizes, density and severity

of these events

⦁ Finding all hurricanes in Florida from 1953-2018 {Using a subset of

the entire dataset}

Real-world use cases (2D)

US storm events database

Grid-based visualization

OL-HeatMap

Storms in US [2017-2019]

US storm events database

Overview of Florida [1953-2018]

US storm events database

Grid-based visualization OL-HeatMap

Proof-of-Concept Demo System

System overview

User interface

Input Data UI

User interface

Visualization UI

Faster visualization rendering

Finding multiple axis-aligned
object intersections

OL-HeatMap – a powerful sweep-line
based algorithm for finding density

OL-HeatMap properties:

- fast

- exact

- versatile

Take-away message

Thank you!

Questions?

