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Abstract

Traffic congestion in urban road networks is a condition characterized by slower speeds, longer

trip times, increased air pollution, and driver frustration. Traffic congestion can be attributed

to a volume of traffic that generates demand for space greater than the available street capacity.

A number of other specific circumstances can also cause or aggravate congestion, including

traffic incidents, road maintenance work and bad weather conditions. While construction

of new road infrastructure is an expensive solution, traffic flow optimization using route

planning algorithms is considered a more economical and sustainable alternative. Currently,

well-known publicly available car navigation services, such as Google Maps and Waze, help

people with route planning. These systems mainly rely on variants of the popular Shortest

Path First (SPF) algorithm to suggest a route, assuming a static network. However, road

network conditions are dynamic, rendering the SPF route planning algorithms to perform

sub-optimally at times. In addition, SPF is a greedy algorithm. So, while it can yield locally

optimal solutions that approximate a globally optimal solution in a reasonable amount of time,

it does not always produce an optimal solution. For example, in a limited road capacity, the

SPF routing algorithm can cause congestion by greedily routing all vehicles to the same road
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(towards the shortest path). To address limitations and challenges of the current approach to

solve the traffic congestion problem, we propose a network-aware multi-agent reinforcement

learning (MARL) model for the navigation of a fleet of vehicles in the road network. The

proposed model is adaptive to the current traffic conditions of the road network. The main

idea is that a Reinforcement Learning (RL) agent is assigned to every road intersection and

operates as a router agent, responsible for providing routing instructions to a vehicle in the

network. The vehicle traveling in the road network is aware of its final destination but not

its exact full route/path to it. When it reaches an intersection, it generates a routing query

to the RL agent assigned to that intersection, consisting of its final destination. The RL

agent generates a routing response based on (i) the vehicle’s destination, (ii) the current state

of the network in the neighborhood of the agent aggregated with a shared graph attention

network (GAT) model, and (iii) routing policies learned by cooperating with other RL agents

assigned to neighboring intersections. The vehicle follows the routing response from the

router agents until it reaches its destination. Through an extensive experimental evaluation

on both synthetic and realistic road networks we demonstrate that the proposed MARL

model can outperform the SPF algorithm by (up to) 17.3% in average travel time.
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Chapter 1

Introduction

An effective transportation system is essential for the development of large cities. Traffic

congestion in urban road networks is a condition that can adversely affect the transportation

system. Traffic congestion can be attributed to a volume of traffic that generates demand for

space greater than the available street capacity. A number of other specific circumstances

can also cause or aggravate congestion, including traffic incidents, road maintenance work

and bad weather conditions. Traffic congestion is characterised by slower speeds, longer trip

times, increased air pollution, and driver frustration.

While construction of new road infrastructure is an expensive solution, traffic flow

optimization using route planning algorithms is considered a more economical and sustainable

alternative. [32]. Currently, well-known publicly available car navigation services like Google

Maps and Waze help people with route planning. These systems mainly rely on a variant of

the popular Shortest Path First (SPF) [9] algorithm to suggest a route assuming a static
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CHAPTER 1. INTRODUCTION

network.

In a static network, the SPF algorithm is optimal. However, road networks are not always

static. In a dynamic road network, the SPF path is calculated based on the estimated travel

time of roads when the vehicle requests a route. The more accurate the estimated travel times

are, the better the suggested route. Predicting the estimated travel times is part of the Traffic

Prediction Problem. Classical methods such as Historical Average and ARIMA, machine

learning methods such as Support Vector Regression and Random Forest, and more recently,

deep learning methods have been applied to the Traffic Prediction Problem to capture more

accurate estimated travel times [55, 44]. Nevertheless, the estimated travel times, specifically

long-term predictions of the travel time in a road, may be inaccurate. Hence, the SPF working

based on the inaccurately estimated travel times proves sub-optimal.

Since the long-term prediction of estimated travel time is not accurate, other methods

such as probabilistic dynamic programming and ant colony have been proposed to directly

route the vehicles in the dynamic network [50, 43]. More recently, deep reinforcement learning

has also been proposed for direct routing without travel time prediction [39, 24, 16]. Also,

graph convolution networks are proposed to embed the structure of the network to use with

reinforcement learning for routing in large dynamic networks [54].

Moreover, the SPF routing algorithm greedily sends every vehicle to the currently available

shortest path. If the road infrastructure is limited, the current shortest path gets congested

quickly. In other words, the routing algorithm causes congestion by greedily sending every

vehicle to the shortest path.
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To address limitations and challenges of the current approach, we turn to navigate a fleet

of vehicles in a dynamic road network so that not only adapt to the current traffic condition

but also to create collaboration in using the road infrastructure to avoid creating congestion.

The goal is that the fleet of the vehicles together experiences an improved average travel

time. We denote this problem as the Vehicle Navigation Problem and differentiate it from

the Shortest Path Problem. The Vehicle Navigation Problem reduces to the Shortest Path

Problem if the graph is static and the size of the fleet is 1.

The equivalent problem to the Vehicle Navigation Problem in the IP network is called

the Packet Routing Problem. Packet Routing Problem is the problem of routing information

packets through optimal paths from a source IP to a destination IP in a dynamic IP network.

The commonly accepted algorithm for routing in IP networks is OSPF which is a distributed

version of the SPF [36]. To adapt to the dynamics of the network, Boyan and Litman first

introduced Q-routing [3]. In Q-routing, a reinforcement learning agent is assigned per router

node. The agent in each router node is responsible for forwarding the packets to the next

nodes based on their destination. Other similar methods were developed later based on the

work of Boyan and Litman [6, 40]. More recently, deep learning and deep reinforcement

learning are also proposed for adaptive routing in the IP network [17, 51, 57].

From the routing perspective, road networks and IP networks are similar. If all the

vehicles in the road follow a central router server, we can treat vehicles in the road network

as packets in the IP network. One way that we can be sure that vehicles will follow a central

router is with the emergence of connected autonomous vehicles. Autonomous vehicles (AVs)

3
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have a promising future because they can alleviate many of the problems in the current

transportation systems [34]. Based on the current trends of technology development, AVs are

expected to constitute 50% of all the traffic by 2040 [4]. Hence, it is reasonable to assume

that in the imminent future, many vehicles can follow a central router agent.

We propose a network-aware multi-agent reinforcement learning (MARL)model for routing

the AVs in the road network. We use the analogy between road networks and IP networks;

An RL agent is assigned to every intersection as a router agent, and an AV is like a packet in

the IP network. The AV doesn’t previously know its exact route to its destination. When

an AV reaches an intersection, it generates a routing query to the agent at that intersection.

The agent generates a routing response based on the vehicle’s destination and the current

state of the network. The AV follows the routing response from the router agents until it

reaches its destination.

Although we propose our method for navigation of autonomous vehicles, as long as all

the vehicles, including human drivers, can communicate with the router servers, and follow

their routing responses, we can relax the autonomous vehicle constraint. Vehicles may use

the available V2I technologies to communicate with the router servers. Through the V2I

communication, data can be delivered to the vehicles over an ad-hoc-network and vice versa.

V2I uses dedicated short-range communication (DSRC) [22] frequencies to transfer data. One

advantage of using the DSRC technologies is that it does not need GPS location data which

can be inaccurate from time to time.

To the best of our knowledge, we are the first to proposes a network-aware multi-agent

4
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deep reinforcement learning model for navigation in the road network that can adapt to the

dynamics of the traffic and lead to the collaboration in using the road network.

1.1 Research Questions

The SPF algorithm is a widely accepted routing algorithm both in road networks and IP

networks that can provide approximations of the optimal solution by assuming the network

state to be static. The major research questions of this work are the following:

• What is the gap between the performance of the SPF algorithm and an optimal solution

for routing in a dynamic road network?

• For path planning in a geographical environment, humans use the intuition that

geographically near destinations must have similar paths. We call this characteristic of

a geographical environment the locality of access. How can we utilize the locality of

access in the road network to help the routing algorithm find the optimal path?

• How can we model the adaptive navigation problem as a multi-agent deep reinforcement

learning problem that can approximate an optimal routing solution?

• How can we model the routing algorithm to be aware of the dynamic state of the

network (e.g., due to traffic congestion) and learn to adapt to it?

5
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1.2 Contributions

We have systematically studied these research questions and we list below the major contri-

butions of the thesis:

• We motivated and formally introduced the problem of adaptive navigation of a fleet of

vehicles in a dynamic road network.

• We proposed a network-aware multi-agent reinforcement learning method for addressing

the problem.

• We designed a method for using the locality of access in the road network that enables

efficient exploration of the action space for the RL agents.

• We conducted comprehensive empirical studies on both synthetic and realistic road

networks to evaluate the proposed adaptive navigation method.

1.3 Thesis Organization

The remainder of the thesis is organized as follows: Chapter 2 discusses the related work,

specifically, the Traffic Prediction Problem, the Vehicle Navigation Problem, the Vehicle

Routing Problem, the Packet Routing Problem, and the makes a connections of our problem

to the benefits of deploying Autonomous Vehicles. Chapter 3 provides background information

on reinforcement learning and graph attention networks. Chapter 4 provides preliminaries

and formally defines the Adaptive Navigation Problem. Chapter 5 presents our network-aware

6
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multi-agent reinforcement learning method for addressing the Adaptive Navigation Problem.

Chapter 6 discusses the experimental evaluation of the proposed method. Chapter 7 concludes

the work, and provides directions of future work.

7



Chapter 2

Related Work

In this chapter, we first review the Traffic Prediction problem that deals with predicting

various traits of the traffic such as travel time, and speed of a road. We next present another

problem called the Vehicle Navigation Problem, and discuss why traffic prediction is important

for vehicle navigation. We also introduce a well-known problem in the operation research

named Vehicle Routing Problem (VRP) and we discuss how it is different form the Vehicle

Navigation Problem. We next introduce a closely related problem to the Vehicle Navigation

Problem but in the IP network, named Packet Routing Problem. Finally, we discuss the

future of autonomous vehicles and why we think that autonomous vehicles have a promising

future. We then explain how connected autonomous vehicles can provide an analogy between

road networks and IP networks.

8
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2.1 Traffic Prediction Problem

Traffic Prediction Problem is the problem of prediction various features of the traffic such

as speed, flow, and travel time in a rode network. Traffic prediction can improve route

planning, vehicle dispatching, and traffic congestion. Due to the dynamic spatio-temporal

dependencies between different regions in the road network, accurate traffic prediction problem

is challenging [55].

Classically, statistical methods and traditional machine learning methods were used for

solving the traffic prediction problem. The most representative classic statistical algorithms

are Historical Average (HA), Auto-Regressive Integrated Moving Average (ARIMA) [49] and

Vector Auto-Regressive (VAR) [61]. Also, traditional machine learning methods like Support

Vector Regression (SVR) [5] and Random Forest Regression(RFR) [20], are proposed for

traffic prediction problem. More recently, deep learning has been proposed for travel time

prediction in a dynamic road network. Deep learning models can achieve higher performance

since they can build complex nonlinear models capable of capturing the spatial-temporal

dependencies in the road network.

We next discuss deep learning methods for spatial dependency modeling, temporal depen-

dency modeling, and the joint spatio-temporal dependency modeling for traffic prediction.

2.1.1 Spatial Dependency Modeling

There are two major methods for capturing the spatial dependency, Convolutional Neural

Network (CNN), and Graph Convolutional Network (GCN). We next discuss each of these

9



2.1. TRAFFIC PREDICTION PROBLEM CHAPTER 2. RELATED WORK

methods.

Convolutional Neural Network Convolutional Neural Network (CNN) is a special Neural

Network architecture capable of capturing local correlations and hence is commonly used in

computer vision for feature extraction [25]. Li Y, and C Shahabi, survey a number of studies

that apply CNN to capture spatial dependencies in traffic networks from two-dimensional

spatio-temporal traffic data [27]. Since 2D matrices can not fully describe the traffic network,

one method is to convert the traffic network structure at different times into images and

divide the images into standard grids, with each grid representing a region. In this way,

CNNs can be used to learn spatial features among different regions [55].

Graph Convolution Network Graph Convolution Network (GCN) is a Neural Network

architecture that can capture graph-structured data correlations [23]. Due to the structure of

the CNN architecture, CNN is limited to modeling Euclidean data. However, road network

data structure has non-Euclidean dependencies that CNNs can not capture. Hence, the GCN

is used to model non-Euclidean spatial structure data of traffic networks [55].

Modeling the traffic network as a general graph rather than a simple grid can allow full

utilization of the spatial information [58]. In this graph, the nodes are the monitoring stations

in the traffic network, the edges are the connections between stations, and the adjacency

matrix is the distances between stations. In [58], graph convolution approximation strategies

based on spectral methods are used to extract patterns and features in the spatial domain.

Geng et al. encode the non-Euclidean pair-wise correlations among regions into multiple

graphs and then explicitly model these correlations using multi-graph convolution [15]. Then

10
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they uses ChebNet [8] based GCN to model spatial correlations. Li et al. model the traffic

network as a directed graph and define a new process named Diffusion Convolution Operation

which can capture the influence of upstream and downstream traffic in the dynamics of the

traffic [28]. Song et al. are the first to introduce an aggregation function as a linear combination

of the features of the neighboring nodes and use this function for graph convolution. The

weights of the aggregation function are equal to the weights of the edges between the node

and its neighbors [41].

However, the impacts of the traffic of the neighboring nodes on the traffic of a road are not

all the same. Moreover, these impacts change over time. The spatial attention mechanism is

utilized to capture these dependencies. This mechanism learns to assign appropriate weights

to different regions at every time step [38, 29, 60, 56].

2.1.2 Temporal Dependency Modeling

The well-known architecture for temporal dependency modeling is the Recurrent Neural

Network (RNN). RNN predicts the traffic as a time series depending on the order of the data

in the sequence. Moreover, a particular type of CNN is also used for temporal dependency

modeling. We next review RNN and CNN for temporal dependency modeling.

Recurrent Neural Network Recurrent Neural Network (RNN) is commonly used for

learning the sequential data dependencies, e.g., in NLP or time series prediction applications

[31]. Li Y, and Shahabi C review some RNN based methods for traffic prediction [27]. In

these methods, RNN is used for modeling the non-linear temporal dependency of traffic data.

11
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These models depend on the order of the data in the sequence.

In RNN sequence learning for traffic prediction, an encoder-decoder structure is used

to encode the source sequence as a fixed-length vector and use the decoder to generate the

prediction [28, 38, 26, 60].

The major drawback of the RNN methods is that the ability of the model to remember the

captured older patterns in the data decreases as the model sees newer data in the sequence.

Hence, these models fail when applied to long sequences [55]. An attention mechanism on

the previous time states can be utilized similar to the attention in the spatial methods.

This mechanism allows for adaptive selection of the relevant hidden states of the encoder to

produce the output sequence [60].

Convolutional Neural Network In temporal dependency modeling with CNN methods,

dilated causal convolution is adopted to capture the temporal trends of a node [13, 53].

Dilated causal convolution is a one-dimensional convolution that adjusts the size of the

receptive field by changing the dilation rate. This convolution allows for capturing the

long-term periodic dependence in the traffic data.

One benefit of CNN compared to RNN is that CNN does not rely on the previous time

steps for training. As a result, the CNN computations can be done in parallel, while RNN

needs sequential computation to maintain a valid hidden state of the past [55].
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2.1.3 Spatio-temporal Joint Dependency Modeling

Both spatial and temporal dependencies are usually considered in traffic prediction models.

However, these models assume that spatial and temporal information are independent; hence,

they do not consider mutual relations.

To solve this limitation, Yin et al. have attempted to integrate spatial and temporal

information into an adjacency graph matrix [55]. Song et al. first construct a localized spatio-

temporal graph that includes both temporal and spatial attributes and use the proposed

spatial-based GCN method to model the spatio-temporal correlations simultaneously [41].

More recently, Fu et al. use GCN to capture the spatio-temporal dependencies in the road

network and create a rich feature vector which is then used for predicting the travel time

from the origin to the destination along a given travel path [14].

2.2 Vehicle Navigation Problem

Vehicle Navigation Problem is the problem of finding the optimal path between a given source

and destination for a fleet of vehicles in a dynamic road network. In traffic navigation, the

optimal path is equivalent to the fastest path with the shortest travel time. The goal for

Vehicle Navigation Problem is that the whole fleet experiences a better average travel time.

In a deterministic scenario, when the traffic condition does not change, e.g., at 2 a.m,

when the roads are empty, we can consider the road network to be static. The Vehicle

Navigation Problem reduces to the Shortest Path Problem if the graph is static, and the size
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of the fleet is smaller than it can affect the travel time in the road network. Conventionally,

Dijkstra Algorithm [9], or shortest path first (SPF), is used to find the shortest path. SPF

algorithm is a greedy algorithm that is granted to find the optimal path in a static network.

Also, heuristic aided algorithms like A* [19] are proposed to improve the performance of the

SPF. A* uses a heuristic function to prune the search space. Under certain conditions, A* is

also granted to find the optimal path. However, road networks are not always static. The

SPF path is calculated based on the estimated travel time of roads when the vehicle requests

a route. The more accurate the estimated travel times are, the better the suggested route.

Although there is a vast literature on traffic prediction and estimating the travel time,

since the traffic prediction problem is intrinsically complex, the resulting traffic predictions,

specifically the long-term predictions are not accurate. As a result the suggested routes of

the SPF algorithm prove sub-optimal in a dynamic road network. Hence, other methods

have been proposed to directly route the vehicles in the dynamic network. Lin X and Hong K

developed a probabilistic dynamic programming problem and solved it through a backward

recursive procedure for the adaptive vehicle navigation with stochastic traffic information

[50]. Tatomir et al. propose an end-to-end travel time prediction and adaptive routing using

the Ant Colony algorithm [43]. More recently, Panov et al. show some preliminary results

on the problem of path planning in a grid using deep reinforcement learning [39]. Koh et al.

assign a separate RL agent to every vehicle for routing it according to the dynamic traffic

without predicting the travel times [24]. Geng Y et al. develop a route planning algorithm

based on DRL for pedestrians using travel time consumption as the metric to plan the route
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by predicting the pedestrian flow in the road network [16].

2.3 Vehicle Routing Problem

The Vehicle Routing Problem (VRP) [7] is an important problem in transportation, distri-

bution, manufacturing, and many other real-world applications. In its basic version, the

problem of Capacitated VRP (CVRP) is to find the set of routes for a fleet of similar vehicles

(trucks) to service all the locations that demand the service with the minimum route cost.

All the vehicles begin and terminate at a central location, e.g., a warehouse. Each customer

that demands a service should be visited exactly once and by exactly one route. The loading

capacity and traveling distance for each vehicle are limited to a constant number. We can

think of VRP as a Multi-Agent TSP problem. VRP is an NP-hard problem, and its real-life

applications are relatively large in scale [11]. There are many metaheuristic approaches for

solving the VRP [11]. Among these methods, there are several articles that try solving the

VRP using reinforcement learning [21, 37].

While VRP tries to find an optimal sequence of locations to visit, Vehicle Navigation

Problem tries to find the optimal path between an origin and a destination for a fleet of

vehicles in a dynamic network. We further discuss the Vehicle Navigation Problem in section

2.2, and we formally define it later in Chapter 4.
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2.4 Packet Routing Problem

Packet Routing Problem is the problem of routing information packets through optimal paths

from a source IP to a destination IP in an IP network. Like a road network, the IP network is

also considered a dynamic network since the network conditions change in time. The optimal

path in the IP network can have various goals, e.g., the path with the shortest response

time or the path with the least traffic load. For efficient communication, it is crucial to send

the packets through the optimal path. Hence, the routing algorithm is a critical part of the

IP network. In the following, we review different approaches for routing packets in the IP

network.

2.4.1 Classic Approaches

The standard widely accepted algorithms for Packet routing in IP networks are usually a

variant of the SPF algorithm. However, since there is no central moderator in the IP network,

the algorithm must be distributed so that every router can apply independently. One of the

most common implementations of a distributed SPF is called OSPF, Open Shortest Path

First [36]. In OSPF, each router keeps the whole network state in a database called Link

State Data Base or LSDB. Each router uses LSDB to find the shortest path to all the other

routers.
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2.4.2 Adaptive Approaches

The OSPF algorithm does not adapt to the dynamic loads in the IP network; hence other

works have tried to address this problem. Boyan and Litman are the first to propose

reinforcement learning for packet routing. They proposed Q-routing, a Q-learning based

method that could decide for a router where to forward a packet based on its destination [3].

One big drawback of Q-routing is the hysteresis problem. Hysteresis problem happens when

the network’s traffic load increases for a while to an overload state and then decreases to

the normal. In this condition, Q-routing fails to adapt to the new situation and follows the

previous overload policies. Choi and Yeung proposed a modified version of Q-Routing with a

more detailed model to address the hysteresis problem [6]. While Q-routing is a deterministic

value-search algorithm, Peshkin and Savova propose a stochastic algorithm with gradient

ascent policy search [40].

More recently, with the advances in deep learning, new approaches have emerged for the

same problem. In [17], Geyer and Carle propose Graph Neural Networks for capturing the

dynamics of the IP Network and use a multi layer perceptron (MLP) to learn the routing

tables of the OSPF algorithm. However, they can not address the reliability problem. A

reliable routing algorithm must not create black holes or infinite loops, which are unacceptable

for any routing algorithm. Xiao et al. resolve the reliability problem using a directed acyclic

graph (DAG) structure [51]. You X et al. propose an end-to-end Multi-Agent reinforcement

learning algorithm for adaptive routing in the IP network [57]. They use the history of

the previous routing decisions in their recurrent model architecture. However, they do not
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consider the network state and its dynamics.

2.5 Autonomous Vehicles

In this section, we first discuss why autonomous vehicles have a promising future in the

industry. We then discuss how connected autonomous vehicles can allow further optimization

in traffic management. Finally, we discuss how autonomous vehicles can be seen as a bridge

between routing in the IP network and navigation in the road network.

2.5.1 Motivations and Trends

The continuous increase in vehicles in urban areas has led to serious problems such as

accidents, traffic jams, and air pollution. Human error is a primary reason for all of the

mentioned problems. For example, about 90 % of road crashes root in human errors like

attention drifting and drunk driving [32]. Connected autonomous vehicles (CAVs) are a

potential solution for all of the above problems [34].

Recently Autonomous Vehicles have been a hot topic of research in both academia and

industry [32]. Industry giants like Cruise AV from General Motors (GM), Waymo from

Google, Daimler-Bosch, and Ford have invested in the AVs. The accomplishments are not

limited to research, and the AVs from companies like Tesla, Google, and Volvo are now taking

their baby steps in the streets [2].

Although the industry is growing exponentially, the problem is still too challenging to

want to expect the AVs to replace human drivers anytime soon [4]. Based on the current
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trends of technology development, AVs are expected to constitute 50% of all the traffic by

2040 [4].

2.5.2 Traffic Optimizations

Connected autonomous vehicles can allow various traffic optimization. For example, one

of the main reasons for traffic congestion in metropolitan areas is the intersections and

traffic lights. Dresner and Stone propose a reservation-based intersection management for

Connected Autonomous Vehicles (CAVs) [10]. They simulate the movement of the CAVs in

the intersection and reserve their place in the expected moment. Consequently, they allow

simultaneous use of the intersection for all the vehicles that approach the intersection without

the need for a traffic signal. Moreover, AVs can operate alongside human drivers. As the

portion of the AVs in the road increases, the benefits also increase [12].

Moreover, connected autonomous vehicles (CAVs) enable Vehicle Platooning, improve Lane

Change, and improve vehicle energy management [34]. CAVs also can alleviate car-pooling

costs, which decrease and even eliminates the need for personal vehicles [4].

2.5.3 Autonomous Vehicles as Packets

With autonomous vehicles on the roads, the details of the path can be abstracted away from

the passengers. A passenger requests a pick up at one location and a drop off at another

location, and the AVs take care of the rest. A vehicle in the road network is like a packet

in the IP network. An intersection in the road network acts as a router in the IP network.
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We propose a method that enables a fleet of autonomous vehicles to adapt to the dynamics

of the traffic and cooperate to change the traffic dynamics to their benefit so that all the

vehicles reach a better travel time. We more formally define the problem in Chapter 4.
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Chapter 3

Background

In this chapter, we first review the essential background of reinforcement learning. More

specifically, we provide the background needed for understanding how the Q-learning algorithm

works. Next, we dive into Graph Attention Networks as an instance of Graph Neural Networks.

3.1 Reinforcement Learning (RL)

From a broader perspective, machine learning can be categorized into three major groups:

supervised learning, unsupervised learning, and reinforcement learning (RL). Sutton and

Barto define reinforcement learning as finding suitable actions for an agent to take in a

given situation in order to maximize a reward [42]. One major difference between RL and

supervised or unsupervised learning is the training data. In supervised and unsupervised

learning, the datasets are static and independent of the learning algorithm. However, in RL,

we generate the data by exploring an environment based on a policy; as a result, the training
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data is dependent on the learning algorithm [52].

3.1.1 Reinforcement Learning Objective

At any time step t, the agent observes an observation ot from the state st ∈ S, and takes

the action at ∈ A according to its current policy πt. At time step t + 1, the environment

transitions to the state st+1 based on the action at of the agent and its underlying dynamics,

which are unknown to the agent. The environment creates a reward rt+1 ∈ R and sends

it back to the agent. The agent uses this reward to update its policy to πt+1. The goal

of reinforcement learning is to maximize its cumulative discounted reward. A policy that

generates the maximum reward is called π∗, which is expressed by equation (1).

π∗ = argmax Eπ
[
Σ∞k=0γ

kRt+k+1|St = s, At = a
]

(1)

In (1) γ is the discount factor, where:

0 ≤ γ ≤ 1 (2)

3.1.2 Model-free RL

Many variants of reinforcement learning have been proposed in the literature, and each

serves certain situations. Reinforcement Learning algorithms can be categorized into two

major categories based on how they model the environment: model-based and model-free. A

model-free agent does not need to generate a model for the environment. It can either learn
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a policy (on-policy) or the value of the actions directly (off-policy) from its experiences of

acting in the environment. On the other hand, a model-based agent creates a model of the

dynamics of the environment during its interaction with the environment. In this work, we

only focus on model-free reinforcement learning.

3.1.3 Temporal-difference (TD) Learning

An episodic problem(task) is a problem that finishes within finite number of time steps.

In an episodic problem, the experiences are partitioned into episodes. Independent of the

actions taken, each episode ends up in a terminal state. Monte Carlo methods can be applied

to learn from episodic experiences. However, in Monte Carlo approaches, the learning is

delayed until the end of each episode, leading to a slow learning rate. To address this issue,

temporal-difference (TD) learning approaches are proposed. TD approaches update the

estimates of the values of the states in every time step using the immediate reward from the

environment without waiting for the end of the episode. This process is called bootstrapping,

which leads to a faster convergence for TD learning.

3.1.4 Q-Learning

One of the most well-known TD learning algorithms is Q-Learning [46]. Q-Learning is an

off-policy algorithm meaning that the agent tries to learn the action-values for every state

without constructing a policy. In Q-Learning, the value of an action in a state is called

Quality of the action (Q(a, s)). The Q-values are stored in a table named Q-table. The table
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Figure 3.1: Q-learning

updates every time step with the update rule 3.1:

Q(St, At)← Q(St, At) + α(Rt+1 + γmax
a
Q(St+1, a)−Q(St, At)) (3.1)

where α is the learning rate and γ is the discount factor. Figure 3.1, illustrates the schema

of the Q-learning algorithm with a Q-table containing Q-values for N action in M states.

3.1.5 Deep Q-network (DQN)

The number of (state, action) pairs in an RL problem can grow exponentially as the problem

gets more complicated, leading to memory issues. For example, in continuous domain problems,

the number of states and actions can be uncountable. To overcome this problem [33] proposes

deep Q-networks (DQN). In DQN, a neural network acts as a function approximator that

replaces the Q-table. This network gets the representation of an state as its input and predicts

the action values in that state. The update rule 3.1 for Q-learning is equivalent to minimizing
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Figure 3.2: DQN

the loss for DQN defined in equation3.2:

L(θ) = E[(Rt+1 + γ max
a′∈At+1,ns∈St+1

Q(ns, a′ : θ)−Q(s ∈ St, a ∈ At : θ))2] (3.2)

where θ stands for all the network parameters. Figure 3.2 illustrates the schema for DQN

algorithm. The Neural Network predicts the Q-values for all the possible actions.

3.2 Graph Attention Networks (GAT)

This section provides the background necessary for understanding how graph attention

networks help summarize the network state. Graph Attention Network (GAT) is a type of

Graph Convolution Networks (GCNs) that brings the attention mechanism to the convolution

over the graph-structured data. GAT first learns a set of attention weights to each node

in a neighborhood. GAT works based on message passing between neighbors and does not

require any costly matrix operation such as inversion. It also doesn’t need to know the graph
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structure in advance [45]. Here we provide a brief review of the method presented in the

original paper [45]. GAT works based on graph attentional layers and can have as many

graph attentional layers as needed. The definition of all the graph attentional layers is the

same.

3.2.1 Graph Attentional Layer

For a graph with N nodes, the input to the graph attentional layer is a set of N node

features, Graph Signal Gs = {h1, ..., hN}, hi ∈ RF . The output of the layer is a new set of

node features, Graph Embedding Ge = {h′1, ..., h′N}, h′i ∈ RF ′ . The dimension of Gs can be

different from the dimension of Ge.

At least one layer of a learnable linear transformation is needed for transforming the input

features into higher-level features. Hence, a shared linear transformation W ∈ RF ′×F is

applied to the input features Gs:

Hi = W.hi

Then a shared layer of self-attention a : RF ′ × RF → R is applied between node features

to compute attention coefficients. For example, a : RF ′ × RF → R can be a single-layer of

feed-forward neural network:

eij = a(Hi, Hj)

The attention coefficient eij indicates the importance of node j to node i. The graph structure

is taken into account by computing eij only for nodes j ∈ Ni, where Ni is the one-hop away

neighborhood of i. Note that i ∈ Ni. The attention coefficients are then normalized over the
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neighbors:

αij = softmax(eij) =
exp(eij)

Σk∈Ni
exp(eik)

Figure 3.3 summarizes how attention scores between nodes is calculated:

Figure 3.3: Attention Mechanism

The normalized attention coefficients are then used to compute a linear combination of

the neighboring features as the output feature vector:

h′i = σ(Σj∈Ni
αijHj) (3.3)

3.2.2 Attentional Heads

GAT uses multi-head-attentions to make the learning process stable. Specifically, K inde-

pendent attention head mechanisms compute the transformation of equation 3.3. The K
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set of embedded features are then aggregated together as the final output of the layer. The

aggregation function for the intermediate layers is concatenation, and for the final layer is

averaging.
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Chapter 4

Problem Definition

In this chapter, we introduce some preliminary definitions and further formally define the

adaptive navigation problem.

Consider a road network represented as a directed graph W = {I, R}, where I = {i1, ..., iN}

is a set of vertices that represent the intersections, and R = {r1, ..., rM} is a set of edges

that represent the roads. A road rj ∈ R is a directed edge from rj1 ∈ I to rj2 ∈ I. Note

that this assumption means that every road connects two intersections. Also, consider a set

of L autonomous vehicles AV s = {av1, ..., avL}, and N router agents U = {u1, ..., uN} each

corresponding to an intersection. We first define a routing query at simulation time t as

following:

Definition 1 q: Routing Query

q =< t, av, u, rc, id, tmax >

A routing query is a query for routing at the simulation time t from autonomous vehicle av
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currently driving in the road rc, to the router u, with the destination intersection id. Router

u is the router agent assigned to the intersection rc2. tmax is the maximum simulation time

allowed for this query.

The adaptive routing server receives a routing query, and produces a response. To define

a routing response, we first define next-hop roads:

Definition 2 NH: Next-Hop Road Set

NHrj = {rk ∈ R|rk1 == rj2 , rk is connected to rj}

The next-hop road set for the road rj, is the set of all the outgoing roads from intersection rj2

that are connected to rj. We say that rk is connected to rj if the road network structure at

intersection rj2 allows the flow of traffic from rj to rk.

In figure 4.1, the next-hop road set of road r2, NHr2 = {r−1, r−3, r−4} is represented in

blue. Note that road r−2 6∈ NH2 since U-turns are not allowed in the next intersection.

Definition 3 rq : Routing Response

rq =



< success >, if q(rc2) == q(id)

< fail >, otherwise if q(tmax) < q(t)

< rn ∈ NHrc >, otherwise

The routing response rq is the response to the routing query q. If the next intersection

of the vehicle sending the query is equal to the destination intersection, the response is
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Figure 4.1: Next-Hop Road Set: the next-hop road set of road r2, NHr2 = {r−1, r−3, r−4} is

represented in blue.
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<success>, and the vehicle exits the simulation. Otherwise, if the current time exceeds the

tmax, the response is <fail>, and the vehicle exits the simulation. Otherwise, the router

server returns one road rn ∈ NHrc as the query response, and the vehicle follows the routing

response.

For an autonomous vehicle av that comes to the simulation at time t, we define a trip

as a tuple containing its origin and destination. The path of the trip is the trajectory of av

following the adaptive navigation server responses.

Definition 4 Tav: Trip of av

Tav = (av, t, r, i, tmax)

is the trip of autonomous vehicle av that comes to the simulation at time step t from road r

and wants to go to the destination intersection i. We denote the set of all the trips as TAVs:

TAV s = {Tav|av ∈ AV s}

Definition 5 PT : Path of T

PT = (rq1 , rq2 , ..., < success > / < fail >)

Path of T is a sequence of routing responses. Specifically

qj =


< t = tj, av = T (av), u = rc2 , rc = rqj−1

, id = T (i), tmax = T (tmax) >, j > 1

< t = t1, av = T (av), u = rc2 , rc = T (r), id = T (i), tmax = T (tmax) >, j == 1

tj is the simulation time for the jth time that av reaches a routing decision point, e.g. a

predefined distance to the next intersection rc2. We denote the length of path P as |P |, and

the tail of path P as P (|P |). We also denote the set of all paths as PAV s = {PT |T ∈ TAV s}.
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Definition 6 tP : Travel Time of P The travel time of path P is the simulation time for

the tail of P , (P (|P |))(t).

We next define the routing failure of an episode of simulation to know about the number

of av that fail to reach their destination. Also, we define the average travel time for all the

avs that reach their destination:

Definition 7 RF and RS: Routing Failure and Routing Success

RF = {P ∈ PAV s|P (|P |) ==< fail >}

The Routing Failure of an episode of the simulation is the set of paths that end up in a

< fail > routing response.

RS = {P ∈ PAV s|P (|P |) ==< success >}

The Routing Success of an episode of the simulation is the the set of paths that end up in

a < success > routing response.

Definition 8 ATT : Average Travel Time

ATT = Σp∈RStp/|RS|

The average travel time of an episode of the simulation is the average travel time of all the

paths that end up in <success> routing response.

Moreover, we formally define a specific characteristic for road networks named locality of

access.
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Definition 9 Locality of Access Assume that D(i, j) represents the geographical (euclidean)

distance between intersection i and j, E(T (i, j)) represents the expected travel time between

i and j. A network has locality of access if for intersections i1, i2, i3 ∈ R with D(i1, i2) >

D(i1, i3), we have E(T (i1, i2)) > E(T (i1, i3)).

Locality of access means that on average the travel time to a nearer destination should

be smaller. We interchangeably call a network with locality of access as a locally accessible

network.

We now formally define the adaptive navigation problem:

Problem 1 Adaptive Navigation Consider a locally accessible road network W , and a set

of routing queries Q in an episode (e.g. a day), our problem is to generate a suitable response

rq for each q ∈ Q, with the two following long-term goals:

1. Completeness: Minimizing |RF | (Maximizing |RS|)

2. Optimality: Minimizing ATT
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Chapter 5

Methodology

In this chapter, we present our methodology for solving the Adaptive Navigation problem.

To optimally solve the Adaptive Navigation problem, we have to generate collaborative

routing responses that can adapt to the dynamic environment of road networks. Multi-agent

reinforcement learning (MARL) is a good candidate for solving the problems that deal with

collaborative decision-making in dynamic environments [59]. To model the problem with

MARL formulation, we assign an RL agent to each router agent at every intersection. The

RL agents keep interacting with the environment and making routing responses. When a

vehicle following the routing response of an RL agent arrives at the next routing decision

point in its trajectory (a predefined distance to the next intersection), it generates a new

routing query. At this point, the environment generates a reward equal to the negative of

the vehicle’s travel time since the last time it generated a routing query. The routing query

is forwarded to the next router agent, and the reward is sent back to the previous router
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agent. The next agent receives the routing query and generates a new routing response. The

previous agent receives the reward and uses it to update its policy.

This chapter formally presents the multi-agent reinforcement learning (MARL) formulation

for the Adaptive Navigation problem. Next, we discuss an example of the collaborative

routing policies. Furthermore, we discuss how the RL agents learn the end-to-end travel

time estimations. We then discuss how we can enable router agents to use the locality of

access in the road network to effectively explore the action space. Moreover, the router agents

should be aware of the network state to adapt to its dynamics. We next discuss how we use

Graph Attention Networks for aggregating the network state. Finally, we present the model

architecture and the pseudo-code of the proposed algorithm.

5.1 MARL Formulation

We first present our MARL formulation for the adaptive navigation problem.

• ui, Router Agent at intersection i: we assign a unique agent ui to intersection

i ∈ I. Agent ui only responds to the queries q ∈ Q with q(rc2) == i.

• sq, State of Query q: the state of query q, is the unique representation of the

destination intersection q(id). We refer to this representation as [q(id)]. The choice

of a suitable representation for [q(id)], is crucial to the performance of the proposed

reinforcement learning algorithm. A poor representation of [q(id)], e.g, an N dimensional

one-hot embedding or even worse a 1-dimensional unique identifier integer value, can
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increase the search space dimension greatly. We will further discuss more efficient

representations for [q(id)] in section 5.4.

sq = [q(id)]

• sti, State of intersection i: State of the intersection i at time t consists of its one-hot

id and the traffic congestion condition in its outgoing roads at time t. We denote the

one-hot id of intersection i as [i]. A road is considered congested if the latest travel time

in that road is smaller than a fixed proportion of the free-flow travel time in the road:

C(r) =


True, travel − time(r) > length(r)

congestion−ratio∗free−flow−speed(r)

False, else

Where, congestion-ratio is a hyper-parameter defined in table 6.2, travel − time(r)

is the travel time of the latest vehicle that has entered the road r, length(r) is the

length of the road r and free− flow− speed(r) is the free-flow speed in the road r. If

a road is congested, its corresponding value in sti is set to 1 otherwise 0:

sti = [[i] | [1 if C(r) == True else 0]] r ∈ R, r1 == i

• stW , State of road network W at time t: The state of the road network W at time

t is the concatenation of the state of all the intersections:

stW = [st1|...|stN ]
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• Stui, Agent ui state set at time t: At time step t, there can be more than one routing

query for agent ui. We concatenate the state of each query with the current state of

the network, and add it to the agent ui state set:

Stui = {stq = [sq|stW ]|q ∈ Q, q(u) == ui}

• a(stq), Action of agent ui for state stq ∈ Stui: selecting one of the outgoing road-

segments of the intersection i.

a(stq) = rq =< rn >, rn ∈ NHq(rc)

• ns(stq), Next State for stq ∈ Stui(Transition from s): Assume that at time t an

autonomous vehicle av generates the routing query q, and receives the routing response

rq. Assume that rq′ is the next routing response in the path PTav after rq. Then,

s
q′(t)
q′ ∈ S

q′(t)
q′(u) is the next state for stq:

ns(stq) = s
q′(t)
q′

• r(a(stq)), Reward: Assume that at time t an autonomous vehicle av generates the

routing query q, and receives the routing response rq. Assume that rq′ is the next

routing response in the path PTav after rq, and t′ = q′(t):

∆T = t′ − t

r(a(stq)) = −∆T (5.1)
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The definition of the reward function is counter-intuitive since it does not explicitly

take into account the distance to the destination. However, in combination with the

dynamic programming nature of Q-learning, this reward function guides the Q-learning

to learn Q-values that are end-to-end estimations for the travel time to the specified

destination in the given network state. We will further discuss why this reward function

leads to end-to-end travel time estimations in section 5.3.

• (stq, a(stq), ns(s
t
q), r(a([stq])), Experience tuple: For the completeness of our formula-

tion, we introduce an experience memory buffer for every agent. Every agent holds an

experience replay memory buffer which contains tuples of previous experiences of the

agent routing decisions in different situations. The agents sample a batch from this

memory and learn from the batch of experiences.

5.2 Collaborative Policies

The Adaptive Navigation algorithm is able to explore collaborative policies. Specifically, in

update rule 3.1, the q-network of an agent updates with the value Q(St+1, a) which comes

from the q-network of the neighboring agent. As a result, the training of the agents is

intertwined, which allows finding collaborative routing policies.

As an example of an effective collaborative policy, consider the network represented

in figure 5.1. Assume that the green nodes (1,2,3) are sources and the red nodes are the

destinations (4,5,6). In this scenario, a flow of vehicles may come from any of the sources and
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Figure 5.1: Collaborative Policies: (1,2,3) are the source nodes while (4,5,6) are the destination

nodes. In a high-load scenario, the SPF algorithm oscillates between using the bridge AB and

CD. Adaptive Navigation can divide the traffic between the bridges and avoid congestion.
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go to any of the destinations (other nodes are not either a source or a destination). There

are two bridges in the network that connect the two sides of the network (AB,CD).

As we discussed in chapter 1, the SPF routing algorithm can cause congestion by greedily

sending every vehicle to the shortest path. When the network is in the under-load state, the

SPF algorithm sends all the vehicles through the CD bridge because it has a shorter travel

time. When the network load goes up, the CD bridge gets congested, and the SPF algorithm

sends all the vehicles through the new shortest path AB, freeing CD and congesting AB. In

this scenario, the SPF algorithm oscillates between the two paths. However, on the other

hand, Adaptive Navigation explores all the possible policies. An optimal policy may choose

to divide the vehicles between the bridges, e.g., all the vehicles with destination 6 may go

through the AB bridge, and all the vehicles with destination 4 or 5 may go through the CD

bridge. Boyan and Litman [3] were the first to observe this collaboration in their Q-routing

algorithm in the IP network.

5.3 End-to-End Travel Time Estimations

Equation 3.1 shows the update rule for the RL agent for the finite horizon case (γ 6= 0).

The finite horizon assumption allows the agent to care more about the earlier rewards in

time, which leads to the convergence of the algorithm. However, to get an insight into the

Q-values, we can consider the infinite horizon (γ = 1) with a learning rate=1. The equation
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3.1 simplifies to equation 5.2:

Q(St, At) = Rt+1 + max
a
Q(St+1, a) (5.2)

RL uses dynamic programming for learning the Q-values. In the beginning of the training,

agents start learning the Q-values for the terminal states. Then, the Q-values for the

non-terminal states are learned based on the Q-values learned for terminal states.

Assuming that St+N is a terminal state, we can expand equation 5.2 as 5.3:

Q(St, At) = Rt+1 +Rt+2 + max
a
Q(St+2, a)

= Rt+1 +Rt+2 + ...+Rt+N

(5.3)

Equation 5.4 is the result of substituting the reward function 5.1 in 5.3:

Q(St, At) = −∆T1 −∆T2 − ...−∆TN (5.4)

Equation 5.4 shows why with the infinite horizon assumption, Q-values are an end-to-end

estimation of the travel time to a given destination in a given network state. Moreover,

equation 5.4 shows that a next-state (St+1) which is further away from the destination, has

smaller Q-values in expectation than a next-state which is nearer to the destination. Hence,

a fast step away from the destination is not preferred to a slow step toward the destination,

although the immediate reward for the former is bigger.
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5.4 Preserving the Locality of Access

Intuitively, we know that road networks are locally accessible. Assume that D(i, j) denotes the

euclidean distance between intersection i and j, E(T (i, j)) denotes the expected travel time

between i and j, and De(i, j) represents the distance between the representation of i and j in

the embedding space. Assume that for intersections i1, i2, i3 ∈ I we have D(i1, i2) > D(i1, i3),

then, local accessibility of the road network requires that E(T (i1, i2)) > E(T (i1, i3)). A

representation for [qt(id)] can preserve the locality of access if De(i1, i2) > De(i1, i3) in the

embedding space.

With a representation that preserves the locality, the intersections that fall into the same

geographical location get similar IDs and are embedded together in the embedding space. As

a result, a cluster of intersections in the road network should be clustered together in the

embedding space. Similar destination intersection IDs activate similar nodes in the neural

network of the agents leading to similar output actions. This functionality matches human

intuition toward navigation in a road network, and hence, can help the agents to search the

action space more efficiently.

We propose to use the Z-order curve, or Morton space ordering curve [35] for preserving the

locality of access. The Z-order curve maps multi-dimensional data to a one-dimensional array

while trying to preserve the locality of the data points. The Z-order curve first computes a Z-

value for every multi-dimensional point. The algorithm interleaves the binary representations

of the coordinate values of the multi-dimensional point to compute the Z-value. Figure 5.2

shows the Z-values for the two dimensional case with integer coordinates [48]. The Z-order
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curve algorithm then sorts the points according to their z-value and creates a one-dimensional

array. Note that the Z-order algorithm looses part of the locality information, however, it

can still work well enough for our training purposes.

For example, figure 5.3 shows five intersections and how the Z-order curve works for

these intersections. The array of these five intersections in order of the computed Z-values is

i4, i5, i1, i2, i3. We use the binary representation of the intersection index in the Z-order array

as the ID representation of that intersection. For example, in the previous Z-order array the

ID of intersection i1 is binary(2) = [0, 1, 0].

Note that we need log2(N) bits to represent the intersection ID, where N is the number

of the intersections. This representation while preserves the locality of access to some extent

it also substantially reduces the state dimension.

5.5 Aggregating the Network State

Since the travel time in the road network is a function of the network state stW , the router

agents should be aware of the network state to be able to make informed routing decisions.

However, the routing decision of the agent ui is more dependent on its intersection state at

the current time sti and probably its neighboring intersections states. The whole network

state stW , contains a lot of unrelated information that is irrelevant to a single agent. Moreover,

even for an average size network, the representation of the whole network’s state might be of

a prohibitively high dimension (i.e., very large). As a result, using the whole network state

increases the model complexity of the agents, which makes the training harder and more
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Figure 5.2: Z-values for 2D case with integer coordinates [48]
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Figure 5.3: Z-order Curve: The Z-order for intersections i1−5 is i4, i5, i1, i2, i3. The represen-

tation for intersection i1 is [i1]=binary(2)=[0,1,0]
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time-consuming. Hence, passing the whole network state stW directly to the agents is not a

good choice.

On the other hand, the state of the neighboring intersections can have an important role

in the routing decisions of an agent. Hence, we want the agent to be aware of the state of its

neighboring intersections. The importance of the state of different neighbors in the routing

decision of the agent are not all the same. Moreover, the importance of different neighbors

varies in different situations.

With the mentioned goals in mind, we use Graph Attention Networks (GAT) to capture

the network state embedding for the neighborhood of an agent. Graph Attention Networks

use an attention mechanism to capture the importance of the neighboring intersections states

to the agent for making the routing decision. Based on the attention values, GAT aggregates

the state of an intersection neighborhood.

The number of GAT layers indicates the range of the neighborhood that GAT aggregates.

One layer of GAT aggregates the immediate neighbors of an intersection and the second GAT

layer is capable of capturing information from two-hop-away neighbors of an intersection.

We pass the network state stW as a graph signal through the GAT model. The network

state embedding for the agent ui neighborhood at time t is the corresponding embedded

representation of the intersection state sti in the embedded network state :

[stW,i] = (GAT (StW ))[i]
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5.6 Model Architecture

Figure 5.4 shows the architecture of the Adaptive Navigation algorithm. The number of GAT

layers is a hyper-parameter we can tune. For example figure 5.4, assumes two GAT layers.

The network state StW is passed to the GAT model as a graph signal and produces

intersection state embeddings:

[StW,i] = (GAT (StW ))[i]

On the other hand, the state of the routing queries Sq, goes through a linear layer (one linear

layer per agent), and produces embeddings of the destination IDs ([Sq]):

[Sq] = ReLU(Lineari(Sq))

The concatenation of [Sq] and [StW,i] is passed to the Q-network of agent ui to get the Q-values

of the actions:

Q-valuesui = Qi([[Sq]|[StW,i]])

The routing response of the agent is the action with the highest Q-value.

To train the neural networks, we follow the conventional MSE loss in the Q-learning

algorithm per agent:

L(θ) = E[(r + γmax
a′

Q(ns, a′ : θ)−Q(s, a : θ))2]

Back-propagating the loss leads to end-to-end optimization of all the network parameters θ

(Q-networks, and GAT learnable parameters). Note that all agents contribute to the training

of the Graph Attention Network model while only optimizing their own Q-network.
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Figure 5.4: Adaptive Navigation Model Architecture
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5.7 Algorithm Sketch

Algorithm 1 shows the procedure for the proposed methodology. The inputs of the algorithm

1 are the network state (stW ) and the set of all the routing queries at the current time step

(Q). The algorithm generates appropriate routing responses rq for q ∈ Q.

At every simulation time step, the algorithm 1 is called once. In line 4 of algorithm 1, the

previous experience tuple is pushed into the experience replay memory buffer of the agent.

The contents of the memory are later used for the training of the agent.

In line 5 of the algorithm 1, a linear transformation is applied to the state of the query q

to create intersection ID embedding [sq]. In line 6, the GAT module aggregates the network

state for the neighborhood of the agent u to create the network state embedding [stW,i]. In

line 7, the aggregation of the network state embedding and the intersection ID embedding

is passed to the Q-network of agent u. The routing response for query q is the action with

maximum Q-value. Line 10 calls the training procedure, which is shown in the algorithm 2.

Algorithm 2 is responsible for the training of all the agents. In line 2, it checks if it is

time for the training of the agent u. The agent has to have enough new experiences and also

the total number of its experiences should be more than the batch size. Line 3, uniformly

samples a training batch from the experience memory of the agent u. Lines 4 and 5 do the

optimization for agent u. Note that the optimization of the GAT module happens during the

optimization of the agents.
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Algorithm 1 Adaptive Routing at time t
Input: state of the road network stW , set of all the routing queries Q at time t,
Ensure: optimal rq for q ∈ Q

1: for all q ∈ Q do
2: sq ← state of query q
3: u← q(u) , the router agent
4: u.memory.push(previous experience tuple of agent u)
5: [sq]← ReLU(Linearu(sq))
6: [stW,i]← GAT ((stW ))[i], the embedded network state for the agent u with index i
7: rq ← argmax Q− netu([[sq]|[stW,i]])
8: end for
9: U = {q(u)|q ∈ Q}

10: train(U)

Algorithm 2 Training
Input: set of all router agents U
Ensure: training of RL agents

1: for all u ∈ U do
2: if time-to-learn(u) then
3: training-batch=u.memory.sample()
4: loss=MSE-loss(training-batch)
5: loss.backward()
6: end if
7: end for
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Chapter 6

Experimental Evaluation

In this chapter, we present our experimental evaluation of the Adaptive Navigation algorithm.

We first overview the experimental setup, including, baselines, datasets, and the evaluation

metric. Then we evaluate the performance of the algorithm by following the online-training

and offline-testing paradigm for reinforcement learning. We also investigate how effective

our method is in preserving the locality of access. Next, we take a deeper look into how the

Graph Attention Network aggregates the network state of the neighborhoods.

6.1 Experimental Setup

6.1.1 Simulator

The RL agents learn by interacting with an environment. To create an environment, we

have to simulate the road network and the traffic. For traffic simulation purposes, we used

Simulation of Urban Mobility (SUMO), an open-source, portable, microscopic, and continuous

multi-modal traffic simulation package designed to handle large networks [30]. We used the

SUMO-provided python API, TraCI, for interacting with the simulation.
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6.1.2 System Specifications

All the experiments were conducted on the Data Mining Lab Tiger GPU server at Lassonde

School of Engineering, York University. The specification of the server is presented in table

6.1

System Specifications
System CPU Memory GPUs

Tiger
2 x Intel Xeon E5-2687W v4
3.0 GHz 12-Core Processor,

30 MB L3 Cache
8 x 64 GB RAM

8 x NVIDIA MSI
GeForce GTX

1080Ti 11 GB Aero OC

Table 6.1: List of systems used for the experiments

6.1.3 Datasets

We use both synthetic and realistic network data with synthetic traffic demands for our

evaluation purposes.

Networks

Grid Network: We used NetEdit which is a part of the SUMO package to generate a 5x6

grid network. Figure 6.1 shows the schema of the network. In this network all the roads are

identical. The 4-way intersections are set to have traffic signals. This network is controlled by

26 router agents (the 4 corners don’t need agents). The small yellow squares, are the routing

zones, where the autonomous vehicles get their next routing response (a predefined distance

to the next intersection).

Downtown Toronto: Since a grid network is a regular network, it is not comprehensive for

showcasing the potentials of the Adaptive Navigation algorithm. To have a more realistic
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Figure 6.1: Synthetic network, 5x6 grid
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experiment, we used WebWizard which is also a part of the SUMO package to extract the

Downtown Toronto network structure (from Bathurst Street (west) to Don Valley Highway

(east) and from Gardiner Expressway (south) to Bloor Street (north)) from Open Street

Maps [1]. We abstracted the network by removing the less important roads (the roads with

one lane only, the alleys,...), and their associated network structure. Figure 6.2 shows the

abstracted network plotted over the real network from Google Maps. We are left with 52

intersections that need to be assigned a routing agent. The connecting edges after abstracting

the network, include different types of roads, e.g. one highway.

Traffic Demand, and Network State

Since we don’t have access to the detailed real-world traffic demands, we turn to use synthetic

traffic demands. The hyper-parameters used for creating the synthetic traffic demands and

network state are presented in table 6.2.

To further approximate the real-world traffic demands, the synthetic demand consists of

a uniform demand and a biased demand.

Uniform Demand: the Uniform Demand is a set of origin-destination tuples distributed

uniformly in the road network. More formally:

Uniform Demand = {(r, i)|r ∈ R, i ∈ I}

Where r is selected uniformly at random from set of all roads R, and i is selected uniformly

at random from set of all intersections I. With the fixed period uniform-demand-period, we

select from the Biased Demand set and create a trip for the selected demand at the current
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Figure 6.2: Abstracted network, Downtown Toronto, The black roads are the abstracted
roads. The abstracted network is plotted over the real network from Google Maps.
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simulation time. We denote the total number of trips created from the Uniform Demand set

as uniform-demand-dispatched.

Biased Demand: the Biased Demand is a set of user-defined origin-destination tuples.

More formally:

Biased Demand = {(r∗, i∗)|r∗ ∈ R, i∗ ∈ I}

Where r∗ and i∗ are predefined user-selected roads and intersections. We randomly select five

tuples for the Biased Demand (|Biased Demand| = 5). We denote the total number of trips

created from the Biased Demand set as biased-demand-dispatched, and the ratio of the total

number of trips created from the Biased Demand set to the total number of trips created

from the Uniform Demand set as current-b2u:

current− b2u =
biased− demand− dispatched
uniform− demand− dispatched

Whenever we create a trip from a tuple selected from the Uniform Demand set, if

current − b2u is smaller than biased-2-uniform-ratio we select a tuple randomly from

the Biased Demand set and create a trip for that tuple. Hence, the current− b2u remains

constantly equal to biased-2-uniform-ratio during the simulation.

Network State To further simulate the dynamic nature of the road network, we simulate

congestion in the road network by reducing the maximum allowed speed in a road.

Specifically, with the fixed period traffic-state-change-period, we apply a network

state change. In a network state change, every out-going road of an intersection is prone to

congestion with the predefined probability congestion-epsilon. If a road is selected for

congestion, its maximum allowed speed is set to the fraction of its initial maximum allowed
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speed. This fraction is a hyper-parameter named congestion-speed-factor.

With sim-step-per-episode=5000 and traffic-state-change-period=500, the traffic

state changes 10 times in an episode. In a traffic state change, every road is prone to congestion

with a relatively high probability of congestion-epsilon=0.25. In event of congestion, the

congestion is set to be heavy with congestion-speed-factor=0.1, so that a sub-optimal

routing response has a substantially worse travel time. The more dynamic the network

state, the more room for Adaptive Navigation algorithm to further improve the performance.

Changing these hyper-parameters can lead to various scenarios, however, without the loss

of generality we set the hyper-parameters in a way to allow a highly dynamic scenario. For

simplicity, we keep the congestion-epsilon and congestion-speed-factor similar among

all the roads, however, in a more realistic scenario, these hyper-parameters can be various.

6.1.4 Baselines

We compare our method with the two well-known baselines in path planning, and one RL

based path planning in the IP network:

• Travel Time Shortest Path First (SPF): a path is calculated based on the current

travel time in each road segment when the vehicle starts its trip from the origin to the

destination road segment. This method finds the path with the shortest travel time in

the current situation of the network. This baseline is available in SUMO as predefined

path planning algorithms [30]

• Travel Time Shortest Path First with Rerouting (SPFWR): this method is
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similar to the previous method, however, every time that the vehicle changes road, a

new route based on the new situation of the network is calculated. We use the shortest

path planning algorithm of SUMO every time a vehicle reaches an intersection and

update the path.

• Q-routing (QR) [3] As another baseline, we consider the work in [3] which uses

reinforcement learning for packet routing in the IP network. We implemented a deep

learning version of their work and applied it to the road network. This baseline is not

aware of the network state.

We also compare different versions of our Adaptive Navigation algorithm:

• AN(0hop) In this version we short circuit the graph attention module and directly

feed the intersection state to the router agent.

• AN(1hop) In this version we apply one layer of message passing in the graph attention

network and create a layer-1 embedding for the network state. We pass the layer-1

embedding to the router agent.

• AN(2hop) In this version we apply two-layer of message passing in the graph attention

network and create a layer-2 embedding for the network state. We pass the layer-2

embedding to the router agent.

6.1.5 Evaluation Metric

Following the previous works in traffic optimizations, we use the average travel time as an

evaluation metric. The average travel time is frequently used as an evaluation metric in the
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transportation field. For a given period and a selected area, it calculates the average travel

time of all the vehicles between their origin and destination in the selected area [47]. In our

experiments the average travel time is defined as definition 8 in chapter 4:

ATT = Σp∈RStp/|RS|

6.1.6 Hyper-parameters Settings

Tables 6.2, 6.3, and 6.4 summarize the Hyper-parameter Settings.

Parameter Value Parameter Value
Max-number-vc 200 uniform-demand-period 5

biased-2-uniform-ratio 0.1 traffic-state-change-period 500
sim-step-per-episode 5000 congestion-epsilon 0.25

congestion-speed-factor 0.1

Table 6.2: Simulation Hyper-parameters

Parameter Value Parameter Value
Optimizer Adam Optimizer eps 1e-4

learning rate 0.01 batch-size 64
batch-norm False gradient-clipping-norm 5
buffer-size 10000 num-new-exp-to-learn 1

tau 0.01 discount rate 0.99
epsilon-decay-rate-denom num episodes/100 stop-exploration-episode num-eps-10
linear-hidden-units-size

AN(0hop) [8,6] linear-hidden-units-size
AN(1hop) [10,6]

linear-hidden-units-size
AN(2hop) [12,9,6]

Table 6.3: Q-Learning Agents Hyper-parameters
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Parameter Value Parameter Value
Optimizer Adam num-heads-per-layer 3

Optimizer eps 1e-4 learning rate 0.01
add-skip-connection False bias True

dropout 0.6 layer-0 output dimension 7
intersection state dimension 4 layer-1 output dimension 10

Table 6.4: Graph Attention Network Hyper-parameters

6.2 Performance

6.2.1 Training

In the training phase, we define an episode as a fixed number of simulation time steps

specified as the hyper-parameter sim-step-per-period. We don’t set a deadline for arrival

(tmax =∞). Also, to avoid over-populating the network during the training which can cause

a deadlock, we limit the number of vehicles in the simulation to a fixed number specified as

the hyper-parameter Max-num-vehicles. For every episode we report, the Routing Success

(number of vehicles that reached their destination during this episode), and Average Travel

Time (for vehicles that reached their destination).

Figures 6.3 and 6.4, show the training results for 800 episodes of training for Downtown

Toronto and 5x6 network respectively. In figures 6.3a,6.3b,6.4a,6.4b the Y-axis shows the

average travel time in seconds, and the X-axis shows the episode number. Figures 6.3b, 6.4b

show the average travel time in the final episodes. In figures 6.3c, and 6.4c the Y-axis shows

the number of vehicles that have successfully arrived at their destination in that episode

(|Routing Success|), and the X-axis shows the episode number.

All the versions of the algorithm and the Q-routing baseline converge in 800 episodes.
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Note that SPF and SPFWR baselines do not need training hence are not plotted in the

figures. The AN(2hop) and AN(1hop), converge in fewer episodes, however, their training

time is higher due to the higher complexity of their models. The training curves suggest that

the Q-routing baseline is performing sub-optimally as expected. AN(1hop) performs better

than the other versions of the algorithm. The gap in Routing Successes between different

baselines is not comparatively big. However, these curves are not conclusive about how

the algorithms truly perform. Note that this experiment setup allows infinite loops for the

routing. If a vehicle turns around in an infinite loop it never reaches a point to affect the

average travel time (AVTT). Hence, we further need to evaluate the algorithms in a setting

that detects if infinite loops exist.

6.2.2 Testing

For testing purposes, to avoid the random noises, instead of having a flow, we predefined

2000 uniform trips. We also set a similar random seed for network state changes so that the

congestion patterns are identical between the baselines. An episode in the testing phase lasts as

long as all the vehicles reach their destination (tmax =∞). In the testing phase, the Routing

Success is equal between episodes = 2200 vehicles with biased-2-uniform-ratio==0.1.

Table 6.5 shows the average results of running 5 episodes in the testing phase.

In the Downtown Toronto experiment, SPFWR has the best performance, and AN(1hop)

marginally stands in second place. However, SPFWR is computationally heavy since it needs

to compute all-pairs shortest path in every time-step. For example, 5 episodes of testing with

SPFWR takes 23 minutes while with AN(1hop) only takes 5 minutes. AN(1hop) is fast since
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(a) Average Travel Time

(b) Average Travel Time (Last 100 Episodes) (c) Routing Success

Figure 6.3: Training Results for Downtown Toronto: Average Travel Time (AVTT) and
Routing Success during 800 training episodes
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(a) Average Travel Time

(b) Average Travel Time (Last 100 Episodes) (c) Routing Success

Figure 6.4: Training Results 5x6 Network: Average Travel Time (AVTT) and Routing Success
during 800 training episodes
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the forward pass of neural networks is quick. In this experiment, Q-routing fails to route

all the vehicles successfully due to the infinite loops. The reason for the existence of infinite

loops in Q-routing is that the algorithm does not have a way to capture the dynamics of the

network, hence the estimated Q-values are expected values for all the network states. As a

result the algorithm can get confused and generate infinite loops.

In the 5x6 experiment, AN(1hop) outperforms the other algorithms. Note that, counter-

intuitively, SPFWR has the worst performance in this case. There can be several reasons

for this observation. The network structure and its traffic capacity, e.g. number of lanes per

road, number of intersections, number of traffic lights, and length of all the network roads,

play an important role in the performance of the SPFWR algorithm. In this case, every

road has only one lane, hence, a road can easily get congested. SPFWR greedily sends all

the vehicles to the current shortest path and congests it so that it is no longer the shortest

path. Moreover, SPFWR does not consider the waiting times in the traffic lights queues.

Hence, the more the number of intersections and traffic lights the worse the performance of

the SPFWR. On the other hand, all the versions of Adaptive Navigation, and also Q-routing,

take into account all the waiting times that contribute to the final travel time.

Current experiments show that adding an extra layer of GAT does not necessarily improve

the results. The reason for this observation is that AN(1hop) already hits a performance

wall, hence adding another GAT layer only increases the model parameters. As a result, the

performance decreases.
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Experiment AN(2hop) AN(1hop) AN(0hop) QR SPF SPFWR
D.T. Toronto 479.3 476.4 477.6 ∞ 551.7 475.6
5x6 Network 145.4 138.4 143.7 159.6 173.4 205.1

Table 6.5: Testing Results: Average Travel Time in Seconds(AVTT)

6.3 Locality of Access

As we discussed in section 5.4, the representation for intersection IDs is important in

preserving the locality of access information and the effective search of the action space.

If a representation preserves the locality of access, a cluster of intersections in the road

network should be clustered together in the embedding space. In this section, to evaluate the

effectiveness of the proposed intersection id representation in preserving the locality of access

we turn to investigate how clusters of intersection in the road network are distributed in the

embedding space.

We take the abstracted network of Downtown Toronto and apply a 4x4 grid upon it to

create clusters of intersections. Note that, the portions of the map that reside outside of the

grid do not contain any agents. We denote all the intersections that fall into a grid cell as a

cluster of intersections, and give them the same label. Figure 6.5a shows how the deployed

grid creates 16 clusters of intersections in Downtown Toronto network. Figure 6.5b shows the

histogram of the number of intersections that reside in each cluster (cardinality of clusters)

in figure 6.5b.

To investigate how clusters of intersections in the road network are distributed in the

embedding space we need to visualize the intersection ID embeddings. Since the intersection

ID embeddings have more than 3 dimension, we have to use diminsionality reduction methods
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(a) 16 clusters in Downtown Toronto: 4x4 grid
upon Downtown Toronto network

(b) Histogram of the number of intersections in
each cluster (cardinality of clusters)

Figure 6.5: Clustering the intersections

to visualize them. Dimensionality reduction enables us to visualize the data in a lower

dimension space. We use Principal Component Analysis (PCA), a linear algebra technique

for dimensionality reduction with minimum information loss.

Specifically, we want to investigate how the output embeddings of the Z-order-curve

method presented in section 5.4 alongside the intersection ID embedding layer of the agents

(the linear layer) is distributed in the embedding space. For instance, we take the linear

transform layer of the agent residing in the top right corner of grid cell 14 and apply it to all

the intersection-id representations. We then pass the output of the linear layer through the

ReLU activation function to capture the output embeddings for intersection IDs. We then

apply PCA to the output embeddings alongside the label of the intersection. The explained

variation per principal component for the first two components of PCA is 0.987 and 0.005

accordingly. The first two components together account for 0.992 of the explained variation.
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Figure 6.6: Locality of Access Evaluation: first two components of PCA on intersection-id-
embeddings
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Figure 6.6 shows the first two components of PCA applied to the output embeddings. As the

figure 6.6 suggests, the clusters of intersections in the road network are clustered together in

the embedding space with a similar first principal component.

Moreover, since the Z-order curve is a lossy algorithm, our method for preserving the

locality of access can not be perfect. However, our evaluations show that the Z-order-

representation and the intersection ID embedding layer together have well preserved the

locality of access information. For example, using this embedding, the router agent at the

top right corner of grid cell 14 has an inductive bias toward making similar routing responses

for destination intersections that reside in grid cell 0. Similar results achieved on the 5x6

network are not presented to avoid redundancy.

6.4 Attention

In this section we want to evaluate how well the GAT model is capturing the network state.

After training the GAT, we want to investigate how the attention weights are distributed for

a given network state.

Figure 6.7 shows the input network state to the GAT. Figure 6.8 illustrate the attention

scores for some agents. We can see that GAT model has learned non-trivial attention

score patterns. For instance, at intersection gneJ21, most of the attention is paid to the

intersection gneJ22. Looking at the network state we can see that the intersection gneJ22

has no congestion at any of its out going roads. It seems that the GAT model finds such an

intersection state more important than the other neighbors of gneJ21 for making a routing

decision. Interesting attention scores for some other intersections are also plotted in 6.8. To
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avoid redundancy, similar results achieved on Downtown Toronto network are not presented.

Figure 6.7: GAT Layer-0 evaluation, 5x6 network: red=congested, purple=free

Furthermore, to evaluate how much information the GAT model is capturing from the

network state, we use entropy histograms [18]. We can think of the attention weights in the

neighborhood of a node as a probability distribution. The null model probability distribution

is uniform (equal attention). Figure 6.9 shows entropy histograms for 5x6 and Toronto

networks. The orange boxes show the null model distribution and blue boxes show the
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Figure 6.8: GAT Layer-0 evaluation, 5x6 network: attention scores, the score is proportional
to the lane width
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(a) 5x6 network (b) Downtown Toronto network

Figure 6.9: Entropy Histograms for Attention Weights

GAT model distribution. As the figure 6.9 suggests, GAT model has well learned non-trivial

attention patterns that allows router agents to make informed decisions. We don’t present

the similar results for the layer-1 attentional head to avoid redundancy.
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Chapter 7

Conclusion and Future Works

7.1 Conclusion

Finding the optimal path between a source and a destination in a network is an important

problem with many applications, such as vehicle route planning in the road network and

packet routing in the IP network. The shortest path first (SPF) algorithm is the widely

accepted algorithm for routing, providing an optimal solution in a static network. In a static

network, the travel time of the edges remains constant. However, considering networks to be

always static is an unrealistic assumption.

In this thesis, we introduced the Adaptive Navigation Problem, the problem of navigating

a fleet of vehicles in a dynamic road network with the objective of minimizing the average

travel time of the whole fleet.

We used the analogy between road networks and IP networks to propose a multi-agent

reinforcement learning (MARL) method for the navigation of the vehicles in the road network.

Specifically, we assigned a Q-learning agent to every intersection. When a vehicle approaches

an intersection, it generates a routing query. The routing query is forwarded to the agent
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assigned to the intersection. The router agent at the intersection is responsible for generating

suitable routing responses forwarding its approaching vehicles to a neighboring intersection.

The action space size of each agent is the size of the outgoing roads of the intersection they

are assigned to. The RL router agent uses the destination ID of the approaching vehicle for

predicting Q-values for each action. The reward for each action is set to be equal to the

negative of the travel time to the next intersection. With this reward function, the predicted

Q-values are an end-to-end estimation of the travel time from the intersection to the given

destination. The agent chooses the best-predicted travel time as its routing response.

The locality of access is one important characteristic of road networks. The locality of

access means that, on expectation, the travel time to a geographically near destination is

shorter than the travel time to a geographically further destination. We proposed a method

based on a Z-order-curve space-filling filter for creating intersection IDs that can inform the

Q-learning agents of the locality of access information. This method allows the agents to

explore the action space more effectively.

Since in a dynamic network, the traffic state of the network changes continuously, the

router agents should be aware of the network state to generate informed routing responses.

However, the whole network state is both prohibitively large and mainly unrelated to a single

agent. The routing response of an agent depends more on the traffic state of its intersection

and its neighborhood. Since the importance of different neighbors is different from time to

time, we used Graph Attention Networks to adaptively assign different attention scores to

each neighbor. Graph Attention Network uses the attention scores to aggregate the network
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state of the neighborhood of the agent into a highly dense feature space. The router agent

uses the aggregated network state to make informed adaptive routing responses.

We conducted comprehensive empirical evaluations of the Adaptive Navigation algorithm

in both synthetic and realistic network structures. The results show substantial improvements

of up to 17.3% in average travel time in comparison with the SPF baseline. We used Principal

Component Analysis to investigate how the Z-order-curve method, together with the linear

layer, are able to inform the agents of the locality of access in the road network. Furthermore,

we investigated how the Graph Attention model generates non-trivial attention patterns that

enable the agents to make informed routing decisions.

7.2 Limitations

The major limitations of the current work can be discussed as, reliability issues, scalability

issues, and network state capturing issues.

7.2.1 Reliability

In general, one major problem with machine learning models is the reliability problem.

Specifically, for the task of routing, a reliable solution must avoid generating infinite loops. An

infinite loop happens when a vehicle following the routing decisions is stuck in a never-ending

cycle in the graph. Although our model has proved reliable in the empirical experiments,

there is no analytical guarantee on the reliability of the method.
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7.2.2 Scalability

Although the current version of the algorithm, due to its multi-agent nature and the locality

of access preservation mechanism, is functional on relatively large network scales, scaling to

real-world networks is a potential limitation to this work. Every intersection requires a new

agent, and every agent requires GPU-hungry neural networks. Hence, in a realistic network,

we soon run out of GPU memory. We further discuss methods to address this limitation in

section 7.3.

7.2.3 Network State Capturing

Knowing the accurate traffic state of the network is critical for the optimal performance of

the Adaptive Navigation algorithm. In its current version, the Adaptive Navigation algorithm

assumes that at every moment, the traffic congestion state in all the roads is known. However,

in a realistic scenario capturing such information, although possible, is not straightforward.

Furthermore, for simplicity, we assume every road is either congested or not congested. In a

realistic scenario, the congestion in a road can have more than two states such as heavily

congested, congested, and free. The more accurate the traffic modeling, the better the

performance of the Adaptive Navigation algorithm.

7.3 Future Work

As discussed in section 7.2, there are too many intersections in a real-world road network,

and it is impractical to train a separate agent for every intersection. Potentially, we can

suggest two orthogonal directions for addressing this issue, Shared Policies between agents and
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Hierarchical Routing. Moreover, as another orthogonal future work, the Adaptive Navigation

algorithm can be coupled with other smart traffic optimizations, e.g., Traffic Signal Control.

7.3.1 Shared Policies

Although there are many intersections in the road network, the policy for neighboring

intersections that reside in similar geographical locations is probably similar. One potential

direction is to explore other multi-agent reinforcement learning algorithms that allow policy

sharing, e.g., Actor-Critic algorithms.

7.3.2 Hierarchical Routing

It is not a reasonable design to assign router agents for every intersection when the scale of

the network increases. A reasonable design is to divide the network into hierarchical levels.

For example, consider Down Town Toronto network in 6.5a. In the hierarchical level zero, we

assign agents to every intersection, and in level one, we assign agents to the grid cells. If a

vehicle is driving in grid cell 0 and has a destination in grid cell 5, the grid cell 0 agents decide

which of the outgoing roads of the grid cell should be the next destination of the vehicle.

Then the routing to the intermediate destination is passed to level 0 routers (intersection

routers).

7.3.3 Traffic Signal Control

One of the major causes of congestion in road networks is traffic signals. Currently, the adap-

tive router agents consider traffic signals as a part of the environment, and they simply adapt

to their cycles. Another parallel research question in the literature of smart transportation
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systems and traffic optimization is adaptive traffic signal control. As future work, one can

consider adaptive routers and adaptive signal controllers to work alongside each other to

achieve further optimal utilization of the road network infrastructure.
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