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Trajectories

• Trajectory

• Denoted by 𝜏

• Represented as:

𝜏 = 𝑥1, 𝑦1, 𝑡1 , … , 𝑥 𝜏 , 𝑦 𝜏 , 𝑡 𝜏

  object’s geo-location specific time instance   

• Trajectory set 

• Consists of all trajectories of all objects

• Denoted by 𝒯
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Trajectory Data (or Mobility Data)

• Massive trajectory datasets are collected 
(spatiotemporal data of moving objects)

• Due to advancement of geolocation tracking 
devices

• Motivates various trajectory analytics

Trajectories contained within the 5th Ring Road in Beijing

Image source: https://www.microsoft.com/en-us/research/publication/t-drive-trajectory-data-sample/
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Trajectory Data Mining

trajectory anomaly detection
trajectory network mining

trajectory classification
...

trajectory similarity trajectory clustering

challenging computational problems
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Trajectory Data Mining in the Age of Big Data and AI

a symbiotic relationship that presents a 
new strategy for addressing complex 

problems in trajectory data mining

Image source: This image was created with the assistance of DALL·E 3
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Plethora of Applications

P1

P2

…

?

?

?

?

ridesharing

traffic analysis route planning and optimization

trip/POI (point-of-interest) recommendation
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• Trajectory dataset and resources [ACM SIGSPATIAL ’23]

• Trajectory simplification [ACM SIGSPATIAL ’23]

• Trajectory classification [IEEE MDM ’23]

• Trajectory network analysis [Big Data Research, IEEE MDM '20, GeoInformatica, IEEE BigData '18, 2 x IEEE MDM ’18]

• Mobility + epidemics [ACM SIGSPATIAL/SpatialEpi '24, ACM SIGSPATIAL/SpatialEpi '23, IEEE MDM ’22]

• Transportation optimization [ACM SIGSPATIAL '22, ACM SIGSPATIAL ’22]

• Trajectory prediction [Submitted]

• Trajectory similarity [Submitted]

Our Lab’s Journey on Trajectory Data Mining
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Today’s Focus

Trajectory Pathlet Dictionary Construction

(Trajectory Simplification)

Trajectory-User Linking

(Trajectory Classification)

7:03 AM

7:11 AM

7:14 AM

7:01 AM



Trajectory Pathlet
Dictionary Construction
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Trajectories

• Trajectory

• Denoted by 𝜏

• Represented as:

𝜏 = 𝑥1, 𝑦1, 𝑡1 , … , 𝑥 𝜏 , 𝑦 𝜏 , 𝑡 𝜏

  object’s geo-location specific time instance   

• Trajectory set 

• Consists of all trajectories of all objects

• Denoted by 𝒯
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Trajectories on the Road Network

• Road Segment †

• Connects two road intersections/ends

• Denoted by 𝑟

• Collection of all segments 𝑹

• Modelled as a graph 𝒢 𝒱, ℰ

• 𝒱 : Nodes (set of road intersections)

• ℰ : Edges (set of road segments)

 [ℰ = 𝑹 ⊆ 𝒱 × 𝒱]
Image Source: “Updating Road Networks by Local 
Renewal from GPS Trajectories” [Wu et al, MDPI ‘16]

† 
“Road”, “segment” and “road segment” are terms used interchangeably.
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Road Segment-based Representation

• Each trajectory 𝜏 can be expressed as a set of road segments 𝑹𝑠 ⊆ 𝑹

• This special representation is denoted by 𝔑 𝜏

𝔑 𝜏 = 𝑟1, 𝑟5, 𝑟9, 𝑟13, 𝑟16, 𝑟17, 𝑟5𝑟1 , 𝑟13, 𝑟9 , 𝑟16 , 𝑟17
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Trajectory Pathlet Dictionary (PD) Construction

• Constructing a small set of basic building blocks that can represent a wide range of 
trajectories

• Many names in the literature
[Panagiotakis et al – TKDE ‘12, Chen et al – SIGSPATIAL ‘13, Sankararaman et al – SIGSPATIAL ‘13, Agarwal et al – PODS ‘18, Li et al – 

TSAS ‘18, Zhao et al – CIKM ’18]

• Pathlet

• Subtrajectory

• Trajectory Segments

• Fragments

• …
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Brief Background: Pathlets

• Pathlet (𝜌) - any sub-path in the road network 𝒢

• Collection of all pathlets 𝒫 (a pathlet set)

• Edge-disjoint – no two pathlets overlap in edges

• Pathlet Length

• Denoted by ℓ; the path length in the road network (ℓ ≥ 1,ℓ ∈ ℤ)

• 𝜒-order Pathlet Set – All pathlets have length at most 𝜒

• Pathlet Graph – derived from the road network 𝒢, denoted by 𝒢𝑝 𝒱𝑝, ℰ𝑝

• Pathlet Neighbors – share the same start/end points (road intersections) 

• Neighbor set - denoted by Ψ 𝜌 ; the collection of all neighbors of 𝜌 

Grey pathlet has two neighbors: 
orange and blue pathlets
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Pathlet-based Representation of a Trajectory

(a) (b)

𝜏

(c)

𝜌1

𝜌2

𝜌3 𝜌4 𝜌5𝜌6

Φ 𝜏 = 𝜌1, 𝜌5, 𝜌6, 𝜌3

Denoted by Φ 𝜏 = 𝜌 1 , 𝜌 2 , … , 𝜌 𝑘
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Trajectory Traversal Set

• Denoted by

Λ 𝜌 = 𝜏 | ∀𝜏 ∈ 𝒯, 𝜌 ∈ Φ 𝜏

(a) (b)

Λ 𝜌3 = 𝜏2, 𝜏3, 𝜏5

Λ 𝜌2 = 𝜏2, 𝜏3 

Λ 𝜌1 = 𝜏5 Λ 𝜌4 = 𝜏2, 𝜏4, 𝜏5

Λ 𝜌5 = 𝜏1, 𝜏4 

Λ 𝜌6 = 𝜏4

Λ 𝜌7 = 𝜏1, 𝜏6 

Λ 𝜌8 = 𝜏1, 𝜏4, 𝜏6

Λ 𝜌9 = 𝜏1, 𝜏6 

• Pathlet Weights – importance in the road network

𝓣
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Pathlet Dictionary

(a) (b)

𝓣

𝜌1

𝜌2

𝜌3

𝜌4

𝜌5

𝜌6

𝜌7

𝜌8

𝜌9

𝜏5

𝜏2, 𝜏3 

𝜏2, 𝜏3, 𝜏5

𝜏2, 𝜏4, 𝜏5

𝜏1, 𝜏4 

𝜏4

𝜏1, 𝜏6 

𝜏1, 𝜏4, 𝜏6

𝜏1, 𝜏6 

pathlets

trajectory traversal set

(keys)

(values)



Existing Works
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Existing Works and Limitations

• Existing works
[Panagiotakis et al – TKDE ‘12, Chen et al – SIGSPATIAL ‘13, Sankararaman et al – SIGSPATIAL ‘13, Agarwal et al – PODS ‘18, Li et al – 

TSAS ‘18, Zhao et al – CIKM ’18]

• Main Limitations

• Traditional-based (non-learning) methods

• Overlapping pathlet assumption

  

          Overlapping Pathlets            Edge-disjoint Pathlets
                        (Top-down Approach)                              (Bottom-up Approach)

overlap!
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Top-down vs Bottom-up Methods

• Candidates are all pathlets of various 
sizes and configurations

• Reduce dictionary size by considering 
only the top most (popular) ones

• Expensive space complexity: Θ 𝑛2

Top-down Methods Bottom-up Methods

• Candidates are all length-1 pathlets (road 
segments)

• Form the dictionary by merging neighbor 
(adjacent) pathlets

• Space efficient: Θ 𝑛

the number of road segments

Space complexities can 
be proven theoretically
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Novel Trajectory Metrics

• Trajectory Representability

• Denoted by 𝜇 ∈ [0%, 100%]

• The percentage of a trajectory that can be represented using pathlets in the pathlet 
set

• 𝜇 𝜏 =
|Φ(𝜏)|

ℓ(𝜏)

• Trajectory Loss

• Denoted by 𝐿𝑡𝑟𝑎𝑗

• The percentage of all trajectories with representability of 0%
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Trajectory Representability and Loss - Example

𝜏

Φ 𝜏 = 𝜌2, 𝜌3, 𝜌4, 𝜌7

𝜇 𝜏 = 100%

After the merging-based algorithm

𝜌2, 𝜌7 

50%

Notice that 𝜇 is monotonically non-
increasing at each step of the iteration

Trajectory is lost/discarded once 𝜇 
reaches zero! 

Pathlet 𝜌3 and 𝜌4 are no 
longer part of Φ 𝜏 , since it 
merged with 𝜌134 and 𝜌1  are 
not in Φ 𝜏   
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Pathlet Dictionary Construction - Objectives

(O1) Minimal size of candidate pathlet set 𝕊 

(O2) Minimal average number of pathlets representing each trajectory, 𝜙

(O3) Minimal trajectory loss

(O4) Maximal average representability values for the remaining trajectories, ҧ𝜇

min
𝛼1+𝛼2+𝛼3+𝛼4=1

𝛼1 𝕊 + 𝛼2 ⋅
1

𝒯


𝜏∈𝒯

Φ 𝜏 + 𝛼3𝐿𝑡𝑟𝑎𝑗 − 𝛼4 ⋅
1

𝒯


𝜏∈𝒯

𝜇 𝜏



Problem Statement

25



26

Problem Statement

• Trajectory Pathlet Dictionary Construction

• Given: Trajectory set 𝒯

           Road Network 𝒢 of map ℳ

           Maximum pathlet length 𝜒 ≥ 1

           Maximum trajectory loss 𝑀

           Average trajectory representability threshold Ƹ𝜇

• Construct a trajectory pathlet dictionary denoted by 𝕊

• Constraints:

           All pathlets in 𝕊 are edge-disjoint and have lengths ℓ ≤ 𝜒

           Achieve the maximum possible utility based on our objective

           Trajectory loss constraint 𝐿𝑡𝑟𝑎𝑗 < 𝑀

           Trajectory representability constraint ҧ𝜇 ≥ Ƹ𝜇



Methodology - PathletRL
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PathletRL - Overview

• Extracting candidate pathlets

• Deep Reinforcement Learning framework
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Extracting Candidate Pathlets - Example

𝜌𝜌

𝜌1

𝜌2

𝜌3

𝜌4

𝜌5

𝜌6

𝜌
Choose pathlet 𝜌 uniformly at random  Identify all neighbors of 𝜌Compute utility of 𝜌𝑚𝑒𝑟𝑔𝑒

𝝆𝒎𝒆𝒓𝒈𝒆 Utility

MERGED(𝜌, 𝜌1) +0.7

MERGED(𝜌, 𝜌2) +1.8

MERGED(𝜌, 𝜌3) -1.6

MERGED(𝜌, 𝜌4) +5.5

MERGED(𝜌, 𝜌5) -3.2

MERGED(𝜌, 𝜌6) +2.9

𝝆𝒎𝒆𝒓𝒈𝒆 Utility

MERGED(𝜌, 𝜌1) +0.7

MERGED(𝜌, 𝜌2) +1.8

MERGED(𝜌, 𝜌3) -1.6

MERGED(𝜌, 𝜌4) +5.5

MERGED(𝜌, 𝜌5) -3.2

MERGED(𝜌, 𝜌6) +2.9

Obtain 𝜌∗ with the highest utilityMerge 𝜌 and 𝜌4New current pathlet 𝜌



Deep Reinforcement Learning
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Deep Reinforcement Learning (DRL) Framework and Components

• Desirable actions

• Lead to higher rewards

• Unfavorable actions

• Lead to punishment (Lower-valued rewards)

• Idea

• Learn the best sequence of actions that yield the maximum possible reward value

• Components

• The Environment and the Agent

• The States and Actions

• The Reward Function (Utility)

• The Reinforcement Learning Policy

• The Experience Replay Buffer
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DRL Components: The Environment and the Agent

• Environment

• The pathlet graph 𝒢𝑝

• It is where the algorithm will be operating on

• Agent

• Our agent is trained to learn which pathlets in the pathlet graph are to be 
merged/kept unmerged

• The agent is trained to learn the most optimal sequence of actions that yield the 
highest possible utility in the form of rewards
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DRL Components: The State and Action Spaces

• The State Space 𝑠𝑡 = 𝑆1, 𝑆2, 𝑆3, 𝑆4 ∈ 𝒮 = ℝ≥0
4

• 𝑆1 - the number of pathlets in the current pathlet graph

• 𝑆2 - the average number of pathlets to represent the trajectories

• 𝑆3 - the trajectory loss

• 𝑆4 - the average trajectory representability

• The Action Space

• 𝑎𝑡 ∈ 𝒜 = 𝐾𝐸𝐸𝑃, 𝑀𝐸𝑅𝐺𝐸

• Merge action requires the agent to merge the current pathlet 𝜌 with one of its Ψ 𝜌  
neighbors

• Write our action space as:

𝒜 = ራ

∀ෝ𝜌∈Ψ 𝜌

𝑀𝐸𝑅𝐺𝐸 𝜌, ො𝜌 ∪ 𝐾𝐸𝐸𝑃 𝜌
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DRL Components: The Reward Function

• The Reward Function

• Instantaneous Rewards

•  Discount Rate Factor

• Realize the importance of both immediate and long-term rewards

• 𝛾 ∈ [0,1]

(∗)

The change in value between the 
previous and current timesteps
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DRL Components: The Policy and Deep Q Networks (DQNs)

• Goal: learn the most optimal policy 𝜋 through the selection of 𝑎𝑡 ∈ 𝒜 while in state 𝑠𝑡 ∈ 𝒮 
that maximizes the 𝑄-index

• 𝑄-learning 

• Agent records and keeps track of all possible 𝑠𝑡 , 𝑎𝑡  pairs and the associated 𝑄-
values in a lookup table

• The 𝑄-table is updated at each timestep recursively:

• Non-linear approximator

• State-space is continuous

• Unable to maintain large state-action tables

• Deep Q Networks!

The learning rate
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DRL Components: The Experience Replay Buffer

• Learning based on prior experience

• Collection of data

• Keeping track of all state-action pairs/state-transitions

• Learn later

• The experience tuple records 𝑠𝑡 , 𝑎𝑡 , 𝑟𝑡 , 𝑠𝑡+1  are stored in a memory buffer (the 
experience replay buffer)

• The agent samples a memory minibatch from this replay buffer



Evaluation - PathletRL
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Evaluating PathletRL

RQ 1) Quality of Dictionary

• How does PathletRL compare with SotA methods?

RQ 2) Memory Storage Needs

• How much memory does the bottom-up approach save compared to top-down?

RQ 3) Ablation Study

• How much more effective is PathletRL against its ablation versions?

RQ 4) Partial Trajectory Reconstruction

• How effective is the constructed PD in reconstructing original trajectories?
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Datasets

TORONTO ROME

# nodes ~1.9K ~7.5K

# edges/initial pathlets ~2.5K ~15.4K

# trajectories ~169K ~3.8M

Observation period 3.7 hours 1 week

• TORONTO

• Realistic synthetic car traffic dataset generated using SUMO app
†

• ROME

• Real world taxi cab trajectories taken from CRAWDAD
‡

• 70% for training (constructing the PD); 30% for testing (evaluating the PD)

† 
SUMO (Simulation of Urban Mobility): https://www.eclipse.org/sumo/ - an application for simulating traffic

‡
CRAWDAD: https://crawdad.org/ - an archive site for wireless network and mobile computing datasets 
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Baselines

• SotA

• Chen et al. [Chen et al, SIGSPATIAL ‘13] Solvable with dynamic programming

• Agarwal et al. [Agarwal et al, PODS ‘18] Framed as subtrajectory clustering problem

• Null Model

• SGT    Length-1 pathlets only (no merging occurs)

• Ablation Versions

• PathletRL-RND

• PathletRL-NR

• PathletRL-UNW 
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Evaluation Metrics

• 𝕊 , the size of the pathlet dictionary

•  𝜙, the average number of pathlets that represent each trajectory

•  𝐿𝑡𝑟𝑎𝑗, the average number of trajectories discarded (%)

•  ҧ𝜇, the average representability across the remaining trajectories (%) 

Notes:

• For the first three metrics lower values are better; for the last one higher values are better

• The third and fourth metrics are not applicable to [Chen et al, SIGSPATIAL ‘13] and [Agarwal et al, 
PODS ‘18]

• The fourth metric is not applicable to PathletRL-NR
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RQ 1) Numerical Results and Key Observations

[1] Agarwal et al, PODS ‘18

[26] Chen et al, SIGSPATIAL ‘13

• PathletRL improves from the null model, SGT

• PathletRL outperforms traditional methods ([Chen et al, SIGSPATIAL ‘13] and [Agarwal et al, PODS ‘18])
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RQ 2) Memory Efficiency

Bottom-up approaches outperform top-down methods

~
7

,4
0

0
x ~

2
4

,0
0

0
x
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RQ 3) Ablation Study – Average Returns

• PathletRL-RND has the poorest performance

• Exhibits random RL policy (no learning)

• All other methods converge after some iteration

• PathletRL-NR does not do well

• Missing representability metric

• PathletRL-UNW is only a runner-up

• Neglect the essence of pathlet weights

• PathletRL (ours) demonstrates the best performance 
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RQ 4) Partial Trajectory Reconstruction



Conclusions
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Take-away Message

Deep Reinforcement Learning 
(DQN)

Partial trajectory reconstruction 
~85%

Edge-disjoint pathlets



Trajectory-User Linking 
using Higher-order Mobility 
Flow Representations
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can trajectories

help to identify a person?



Trajectory-user Linking (TUL)
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trajectory-user linking aims at linking anonymous 

trajectories to users who generate them



Data for Trajectory-user Linking (TUL)
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Mobility flowCheck-ins Trajectory



Limitations of the current approaches
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Data Quality
• low accuracy and completeness

Data sparsity
• limited data

Imbalanced Data
• 80% of the data is generated by 20% of the users



Problem Definition
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What is a check-in trajectory ?
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Check-in record/visit 
• 𝑟 = (𝑢, 𝑝, 𝑡, ⟨𝑥, 𝑦 ⟩)

Check-in trajectory set

• 𝑇𝑟 = {𝑟1, 𝑟2, … . , 𝑟𝑚}

Check-ins Trajectory



Problem Definition 
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Trajectory-user linking aims at linking anonymous trajectories to users

Given: 
𝒰 = {𝑢1, 𝑢2, 𝑢3, . . , 𝑢𝑐} – users
𝒯 = {𝑇𝑟1, 𝑇𝑟2, … , 𝑇𝑟𝑛} – unlinked trajectories 

TUL is defined as a multiclass classification problem

min
𝑓∈ℱ

𝔼[ℒ(𝑓 𝑇𝑟𝑖 , 𝑢𝑖)] 𝑜𝑣𝑒𝑟 ℱ

𝑤ℎ𝑒𝑟𝑒 ℱ 𝑖𝑠 𝑡ℎ𝑒 𝑠𝑒𝑡 𝑜𝑓𝑎𝑙𝑙 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑟𝑠 𝑖𝑛 𝑡ℎ𝑒 ℎ𝑦𝑝𝑜𝑡ℎ𝑒𝑠𝑖𝑠 𝑠𝑝𝑎𝑐𝑒
ℒ ⋅ 𝑖𝑠 𝑡ℎ𝑒 𝑙𝑜𝑠𝑠 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑡ℎ𝑒 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑙𝑎𝑏𝑒𝑙 𝑓 𝑇𝑟𝑖 ∈ 𝒰 𝑎𝑛𝑑 𝑡ℎ𝑒 𝑡𝑟𝑢𝑒 𝑙𝑎𝑏𝑒𝑙 𝑢𝑖 ∈ 𝒰



Methodology
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Overview
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Step 1: Generating higher-order mobility flow representations

• generating mobility flow data from check-ins

• generating higher-order mobility flow and check-ins

Step 2: Modeling trajectory-user linking



Generating Mobility flow data
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Check-ins Trajectory Mobility flow



Mobility flow of NYC and TKY
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NYC TKY



Generating higher-order check-ins
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Check-ins Trajectory Higher-order

check-ins



Translate check-ins to Higher-order
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Check-ins

𝑇𝑟 = {𝑟1, 𝑟2, … . , 𝑟𝑚} = {(𝑝1, 𝑡1, ⟨𝑥1, 𝑦1 ⟩), (𝑝2, 𝑡2, ⟨𝑥2, 𝑦2 ⟩), … , (𝑝𝑚, 𝑡𝑚, ⟨𝑥𝑚, 𝑦𝑚 ⟩)}

Higher-order
{(𝑝1, 𝑡1, g1), (𝑝2, 𝑡2, g2), … … . , (𝑝𝑚, 𝑡𝑚, gm)}

Each trajectory now represents a sequence of continuous grid cells {𝑔1, 𝑔2, … . }



Generating Higher-order Mobility flow
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Mobility flow Higher-order

Mobility flow



FOURSQUARE-NYC Heatmap
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Higher-order check-ins Higher-order Mobility flow



How to calculate Sparsity ?
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Alex Eve Bob

{1,3} {2} {1,2,3}

1 0 1
0 1 0
1 1 1

Alex

Eve

Bob

Sparsity = % of zeros in User-POI matrix

3

9
= 30%

𝑝1 𝑝2 𝑝3



Higher-order Sparsity

68

Alex Eve Bob

{1,3} {2} {1,2,3}

1 1
0
1

1
2

Alex

Eve

Bob

1

6
= 16%

{𝑔1, 𝑔2} {𝑔2} {𝑔1, 𝑔2, 𝑔2}

𝑔1 𝑔2
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Check-in Sparsity ≥Higher-order Sparsity



Impact of higher-order abstraction on sparsity
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Overview
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Step 1: Generating higher-order mobility flow representations

• generating mobility flow data from check-ins

• generating higher-order mobility flow and check-ins

Step 2: Modeling trajectory-user linking



TULHOR (trajectory-user linking using higher-order representations )

72



Two stages

81

Pre-training TULHOR

• Input: higher-order check-ins + masking, higher-order mobility 
flow

• Output: predicting masked token

Fine-tuning TULHOR

• Input : higher-order check-ins 

• Output: user who generated the higher-order check-ins



Experiments
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Overview

83

Datasets

• Foursquare NYC and TKY

Experiments

• TULHOR accuracy performance (vs SOTA and baselines)

• TULHOR Ablation study

• Tessellation granularity (grid size) effect
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Baselines
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Conventional ML:

• Decision Tree

• Linear Discriminant Analysis (LDA)

• Linear Support Vector Machine (SVM)
TULER:

• RNN

• LSTM

• GRU
DeepTUL

• RNN (DeepTUL)

• LSTM (Attn-LSTM)

• GRU (Attn-GRU)



TULHOR performance (Foursquare TKY)
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TULHOR outperforms every baseline

TULHOR has better scalability  



TULHOR performance (Foursquare NYC)
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Ablation study
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Removing Higher-order significantly reduces the performance
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Tessellation granularity (grid size) effect
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Tessellations of Tokyo

Hex@8Hex@7 Hex@9



Results of grid size study
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Hex@9 outperforms other sizes as the number of users increases 

The smaller the cells are the better the scalability



Conclusions
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Take-away Message
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Higher-order mobility flow data generation

TULHOR: model for dealing with sparsity 

and low data quality of the TUL problem
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