Trajectory Data Mining in the Age of Big Data and Al

YORK U

Missouri S&T CS Seminars and Colloquia

Manos Papagelis

Mon, Oct 23, 2023

Background & Motivation

Trajectories

- Trajectory
 - Denoted by τ
 - Represented as:

 $\tau = \langle (x_1, y_1, t_1), \dots, (x_{|\tau|}, y_{|\tau|}, t_{|\tau|}) \rangle$ object's geo-location specific time instance

- Trajectory set
 - Consists of all trajectories of all objects
 - Denoted by \mathcal{T}

YORK

Trajectory Data (or Mobility Data)

- Massive trajectory datasets are collected (spatiotemporal data of moving objects)
- Due to advancement of geolocation tracking devices
- Motivates various trajectory analytics

Trajectories contained within the 5th Ring Road in Beijing

Trajectory Data Mining

trajectory similarity

trajectory clustering

trajectory anomaly detection trajectory network mining trajectory classification

...

challenging computational problems

Trajectory Data Mining in the Age of Big Data and Al

a symbiotic relationship that presents a new strategy for addressing complex problems in trajectory data mining

Plethora of Applications

ridesharing

traffic analysis

trip/POI (point-of-interest) recommendation

route planning and optimization YORK

Our Lab's Journey on Trajectory Data Mining

- Trajectory dataset and resources [ACM SIGSPATIAL '23]
- Trajectory simplification [ACM SIGSPATIAL '23]
- Trajectory classification [IEEE MDM '23]
- Trajectory network analysis [Big Data Research, IEEE MDM '20, GeoInformatica, IEEE BigData '18, 2 x IEEE MDM '18]
- Mobility + epidemics [ACM SIGSPATIAL/SpatialEpi '24, ACM SIGSPATIAL/SpatialEpi '23, IEEE MDM '22]
- Transportation optimization [ACM SIGSPATIAL '22, ACM SIGSPATIAL '22]
- Trajectory prediction [Submitted]
- Trajectory similarity [Submitted]

Today's Focus

Trajectory Pathlet Dictionary Construction (Trajectory Simplification)

Trajectory-User Linking (Trajectory Classification)

Trajectory Pathlet Dictionary Construction

Trajectories

- Trajectory
 - Denoted by τ
 - Represented as:

 $\tau = \langle (x_1, y_1, t_1), \dots, (x_{|\tau|}, y_{|\tau|}, t_{|\tau|}) \rangle$ object's geo-location specific time instance

- Trajectory set
 - Consists of all trajectories of all objects
 - Denoted by \mathcal{T}

YORK

Trajectories on the Road Network

- Road Segment[†]
 - Connects two road intersections/ends
 - Denoted by *r*
 - Collection of all segments **R**
- Modelled as a graph $\mathcal{G}\langle \mathcal{V}, \mathcal{E} \rangle$
 - \mathcal{V} : Nodes (set of road intersections)
 - \mathcal{E} : Edges (set of road segments) [$\mathcal{E} = \mathbf{R} \subseteq \mathcal{V} \times \mathcal{V}$]

Image Source: "Updating Road Networks by Local Renewal from GPS Trajectories" [Wu et al, MDPI '16]

Road Segment-based Representation

- Each trajectory τ can be expressed as a set of road segments $R_s \subseteq R$
- This special representation is denoted by $\mathfrak{N}(\tau)$

Trajectory Pathlet Dictionary (PD) Construction

- Constructing a small set of basic building blocks that can represent a wide range of trajectories
- Many names in the literature

[Panagiotakis et al – TKDE '12, Chen et al – SIGSPATIAL '13, Sankararaman et al – SIGSPATIAL '13, Agarwal et al – PODS '18, Li et al – TSAS '18, Zhao et al – CIKM '18]

- Pathlet
- Subtrajectory
- Trajectory Segments
- Fragments
- ...

--- Grey pathlet has two neighbors: orange and blue pathlets

Brief Background: Pathlets

- Pathlet (ho) any sub-path in the road network ${\cal G}$
 - Collection of all pathlets \mathcal{P} (a pathlet set)
 - Edge-disjoint no two pathlets overlap in edges
- Pathlet Length
 - Denoted by ℓ ; the path length in the road network ($\ell \ge 1, \ell \in \mathbb{Z}$)
 - χ -order Pathlet Set All pathlets have length at most χ
- Pathlet Graph derived from the road network \mathcal{G} , denoted by $\mathcal{G}_p(\mathcal{V}_p, \mathcal{E}_p)$
- Pathlet Neighbors share the same start/end points (road intersections)
 - Neighbor set denoted by $\Psi(\rho)$; the collection of all neighbors of ρ

Pathlet-based Representation of a Trajectory

Denoted by $\Phi(\tau) = \left\{ \rho^{(1)}, \rho^{(2)}, \dots, \rho^{(k)} \right\}$

$$\Phi(\boldsymbol{\tau}) = \{\boldsymbol{\rho}_1, \boldsymbol{\rho}_5, \boldsymbol{\rho}_6, \boldsymbol{\rho}_3\}$$

Trajectory Traversal Set

• Denoted by $\Lambda(\rho) = \{\tau \mid \forall \tau \in \mathcal{T}, \rho \in \Phi(\tau)\}$

YORK

• Pathlet Weights – importance in the road network

$$\begin{split} \Lambda(\rho_1) &= \{\tau_5\} & \Lambda(\rho_4) = \{\tau_2, \tau_4, \tau_5\} & \Lambda(\rho_7) = \{\tau_1, \tau_6\} \\ \Lambda(\rho_2) &= \{\tau_2, \tau_3\} & \Lambda(\rho_5) = \{\tau_1, \tau_4\} & \Lambda(\rho_8) = \{\tau_1, \tau_4, \tau_6\} \\ \Lambda(\rho_3) &= \{\tau_2, \tau_3, \tau_5\} & \Lambda(\rho_6) = \{\tau_4\} & \Lambda(\rho_9) = \{\tau_1, \tau_6\} \end{split}$$

Pathlet Dictionary

T

Existing Works

Existing Works and Limitations

• Existing works

[Panagiotakis et al – TKDE '12, Chen et al – SIGSPATIAL '13, Sankararaman et al – SIGSPATIAL '13, Agarwal et al – PODS '18, Li et al – TSAS '18, Zhao et al – CIKM '18]

- Main Limitations
 - Traditional-based (non-learning) methods
 - Overlapping pathlet assumption

Overlapping Pathlets

(Top-down Approach)

(Bottom-up Approach)

Top-down vs Bottom-up Methods

Top-down Methods

- Candidates are all pathlets of various sizes and configurations
- Reduce dictionary size by considering only the top most (popular) ones
- Expensive space complexity: $\Theta(n^2)$

Bottom-up Methods

- Candidates are all length-1 pathlets (road segments)
- Form the dictionary by merging neighbor (adjacent) pathlets
 - Space efficient: $\Theta(n)$

Space complexities can be proven theoretically

YORK

Novel Trajectory Metrics

- Trajectory Representability
 - Denoted by $\mu \in [0\%, 100\%]$
 - The percentage of a trajectory that can be represented using pathlets in the pathlet set
 - $\mu(\tau) = \frac{|\Phi(\tau)|}{\ell(\tau)}$
- Trajectory Loss
 - Denoted by L_{traj}
 - The percentage of all trajectories with representability of 0%

Trajectory Representability and Loss - Example

Pathlet Dictionary Construction - Objectives

Objective	Mathematical Notation	Associated Weight
(O1)	$\min S $	α_1
(O2)	$\min \phi = \min \frac{1}{ \mathcal{T} } \sum_{\tau \in \mathcal{T}} \Phi(\tau) $	$lpha_2$
(O3)	$\min L_{traj}$	$lpha_3$
(O4)	$\max \bar{\mu} = \max \frac{1}{ \mathcal{T} } \sum_{\tau \in \mathcal{T}} \mu(\tau)$	$lpha_4$

(O1) Minimal size of candidate pathlet set \mathbb{S}

(O2) Minimal average number of pathlets representing each trajectory, ϕ (O3) Minimal trajectory loss

(O4) Maximal average representability values for the remaining trajectories, $ar{\mu}$

$$\min_{\alpha_1+\alpha_2+\alpha_3+\alpha_4=1}\left(\alpha_1|\mathbb{S}|+\alpha_2\cdot\frac{1}{|\mathcal{T}|}\sum_{\tau\in\mathcal{T}}|\Phi(\tau)|+\alpha_3L_{traj}-\alpha_4\cdot\frac{1}{|\mathcal{T}|}\sum_{\tau\in\mathcal{T}}\mu(\tau)\right)$$

YORK

Problem Statement

Problem Statement

- Trajectory Pathlet Dictionary Construction
 - Given: Trajectory set *T*

Road Network G of map \mathcal{M} Maximum pathlet length $\chi \ge 1$ Maximum trajectory loss M

Average trajectory representability threshold $\hat{\mu}$

- Construct a trajectory pathlet dictionary denoted by
- Constraints:

All pathlets in § are edge-disjoint and have lengths $\ell \leq \chi$ Achieve the maximum possible utility based on our objective Trajectory loss constraint $L_{traj} < M$ Trajectory representability constraint $\bar{\mu} \geq \hat{\mu}$

Methodology - PathletRL

PathletRL - Overview

- Extracting candidate pathlets
- Deep Reinforcement Learning framework

Extracting Candidate Pathlets - Example

Checky in the state of the sta

	ρ _{merge}	Utility
	$MERGED(\rho,\rho_1)$	+0.7
	MERGED(ρ, ρ_2)	+1.8
	MERGED(ρ, ρ_3)	-1.6
	MERGED(ρ, ρ_4)	+5.5
	MERGED(ρ, ρ_5)	-3.2
	MERGED(ρ, ρ_6)	+2.9

Deep Reinforcement Learning

Deep Reinforcement Learning (DRL) Framework and Components

- Desirable actions
 - Lead to higher rewards
- Unfavorable actions
 - Lead to punishment (Lower-valued rewards)
- Idea
 - Learn the best sequence of actions that yield the maximum possible reward value
- Components
 - The Environment and the Agent
 - The States and Actions
 - The Reward Function (Utility)
 - The Reinforcement Learning Policy
 - The Experience Replay Buffer

DRL Components: The Environment and the Agent

- Environment
 - The pathlet graph G_p
 - It is where the algorithm will be operating on
- Agent
 - Our agent is trained to learn which pathlets in the pathlet graph are to be merged/kept unmerged
 - The agent is trained to learn the most optimal sequence of actions that yield the highest possible utility in the form of rewards

DRL Components: The State and Action Spaces

- The State Space $s_t = (S_1, S_2, S_3, S_4) \in \mathcal{S} = \mathbb{R}^4_{\geq 0}$
 - S_1 the number of pathlets in the current pathlet graph
 - S_2 the average number of pathlets to represent the trajectories
 - S_3 the trajectory loss
 - S₄ the average trajectory representability
- The Action Space
 - $a_t \in \mathcal{A} = \{KEEP, MERGE\}$
 - Merge action requires the agent to merge the current pathlet ρ with one of its $|\Psi(\rho)|$ neighbors
 - Write our action space as:

$$\mathcal{A} = \bigcup_{\forall \widehat{\rho} \in \Psi(\rho)} MERGE(\rho, \widehat{\rho}) \cup \{KEEP(\rho)\}$$

DRL Components: The Reward Function

• The Reward Function

$$\max_{a_t} \mathbb{E}\left[\left(-\alpha_1 |\mathbb{S}| - \alpha_2 \frac{1}{|\mathcal{T}|} \sum_{\tau \in \mathcal{T}} |\Phi(\tau)| - \alpha_3 L_{traj} + \alpha_4 \frac{1}{|\mathcal{T}|} \sum_{\tau \in \mathcal{T}} \mu(\tau) \right) \right]$$
(*)

• Instantaneous Rewards

$$r_t = -\alpha_1 \Delta |\mathbb{S}| - \alpha_2 \Delta \phi - \alpha_3 \Delta L_{traj} + \alpha_4 \Delta \bar{\mu}$$

The change in value between the previous and current timesteps

- Discount Rate Factor
 - Realize the importance of both immediate and long-term rewards
 - $\gamma \in [0,1]$

DRL Components: The Policy and Deep Q Networks (DQNs)

- <u>Goal</u>: learn the most optimal policy π through the selection of $a_t \in A$ while in state $s_t \in S$ that maximizes the Q-index
- *Q*-learning
 - Agent records and keeps track of all possible (s_t, a_t) pairs and the associated Q-values in a lookup table
 - The *Q*-table is updated at each timestep recursively:

$$Q^{\pi}(s_t, a_t) \leftarrow Q^{\pi}(s_t, a_t) + \alpha_{lr} \left[\gamma \max_{a_{t+1}} Q^{\pi}(s_{t+1}, a_{t+1}) - Q^{\pi}(s_t, a_t) \right]$$

Non-linear approximator

The learning rate

- State-space is continuous
- Unable to maintain large state-action tables
- Deep Q Networks!

DRL Components: The Experience Replay Buffer

- Learning based on prior experience
- Collection of data
 - Keeping track of all state-action pairs/state-transitions
 - Learn later
- The experience tuple records (s_t, a_t, r_t, s_{t+1}) are stored in a memory buffer (the experience replay buffer)
 - The agent samples a memory minibatch from this replay buffer

Evaluation - PathletRL

Evaluating PathletRL

RQ 1) Quality of Dictionary

• How does PathletRL compare with SotA methods?

RQ 2) Memory Storage Needs

• How much memory does the bottom-up approach save compared to top-down?

RQ 3) Ablation Study

• How much more effective is PathletRL against its ablation versions?

RQ 4) Partial Trajectory Reconstruction

• How effective is the constructed PD in reconstructing original trajectories?

Datasets

- TORONTO
 - Realistic synthetic car traffic dataset generated using SUMO app[†]
- ROME
 - Real world taxi cab trajectories taken from CRAWDAD[‡]

	TORONTO	ROME
# nodes	~1.9K	~7.5K
# edges/initial pathlets	~2.5K	~15.4K
# trajectories	~169K	~3.8M
Observation period	3.7 hours	1 week

• 70% for training (constructing the PD); 30% for testing (evaluating the PD)

[†] SUMO (Simulation of Urban Mobility): https://www.eclipse.org/sumo/ - an application for simulating traffic [‡] CRAWDAD: https://crawdad.org/ - an archive site for wireless network and mobile computing datasets

Baselines

SotA

- Chen et al. [Chen et al, SIGSPATIAL '13]
- Agarwal et al. [Agarwal et al, PODS '18]
- Null Model
 - SGT
- Ablation Versions
 - PathletRL-RND
 - PathletRL-NR
 - PathletRL-UNW

Solvable with dynamic programming Framed as subtrajectory clustering problem

Length-1 pathlets only (no merging occurs)

PathletRL Algorithm	Representability Measure	Weighted Networks	Deep Learning Policy
PATHLETRL-NR	×	✓	1
PATHLETRL-RND	1	1	×
PATHLETRL-UNW	1	×	1
PATHLETRL (OURS)	1	✓	1

Evaluation Metrics

- |\$|, the size of the pathlet dictionary
- ϕ , the average number of pathlets that represent each trajectory
- L_{traj} , the average number of trajectories discarded (%)
- $\bar{\mu}$, the average representability across the remaining trajectories (%)

Notes:

- For the first three metrics lower values are better; for the last one higher values are better
- The third and fourth metrics are not applicable to [Chen et al, SIGSPATIAL '13] and [Agarwal et al, PODS '18]
- The fourth metric is not applicable to PathletRL-NR

RQ 1) Numerical Results and Key Observations

	Baselines		Null PathletRL			% Impr.			
		[26]	[1]	Sgt	Rnd	NR	Unw	(OURS)	/ · · · · · · · · · · · · · · · · · · ·
_	S	13,886	7,982	2,563	$2,\!454$	$1,\!896$	1,801	1,743	+3.22%
NTC	ϕ	7.02	5.97	4.76	3.77	2.89	3.98	3.75	-22.9%
ORC	L_{traj}	N/A	N/A	0%	19.7%	17.6%	15.1%	15.2%	-0.66%
F	$ar{\mu}$	N/A	N/A	100%	79.9%	N/A	80.0%	83.9%	+4.88%
	S	59,396	31,017	$15,\!465$	9,718	7,003	5,804	$5,\!291$	+8.84%
ROME	ϕ	202.91	188.33	230.15	173.04	158.18	146.39	139.89	+4.44%
	L_{traj}	N/A	N/A	0%	24.9%	21.1%	22.9%	20.4%	+3.32%
	$ar{\mu}$	N/A	N/A	100%	82.7%	N/A	86.2%	85.6%	-0.70%

- PathletRL improves from the null model, SGT
- PathletRL outperforms traditional methods ([Chen et al, SIGSPATIAL '13] and [Agarwal et al, PODS '18])

[1] Agarwal et al, PODS '18

⁴⁴ [26] Chen et al, SIGSPATIAL '13

RQ 2) Memory Efficiency

Bottom-up approaches outperform top-down methods

RQ 3) Ablation Study – Average Returns

PATHLETRL	Representability Weighted Deep Learning				
ALGORITHM	Measure	Networks	Policy		
PathletRL-Nr	×	1	1		
PathletRL-Rnd	✓	1	×		
PATHLETRL-UNW	✓	×	1		
PATHLETRL (OURS)	1	1	1		

- PathletRL-RND has the poorest performance
 - Exhibits random RL policy (no learning)
 - All other methods converge after some iteration
- PathletRL-NR does not do well
 - Missing representability metric
- PathletRL-UNW is only a runner-up
 - Neglect the essence of pathlet weights
- PathletRL (ours) demonstrates the best performance

RQ 4) Partial Trajectory Reconstruction

Conclusions

Take-away Message

Edge-disjoint pathlets

Deep Reinforcement Learning (DQN) Partial trajectory reconstruction ~85%

Trajectory-User Linking using Higher-order Mobility Flow Representations

YORK U

can trajectories help to identify a person?

Trajectory-user Linking (TUL)

trajectory-user linking aims at linking anonymous trajectories to users who generate them

Data for Trajectory-user Linking (TUL)

Check-ins Trajectory

Mobility flow

Limitations of the current approaches

Data Quality

• low accuracy and completeness

Data sparsity

• limited data

Imbalanced Data

• 80% of the data is generated by 20% of the users

Problem Definition

What is a check-in trajectory?

Check-in record/visit

• $r = (u, p, t, \langle x, y \rangle)$

Check-in trajectory set

•
$$Tr = \{r_1, r_2, ..., r_m\}$$

Check-ins Trajectory

Problem Definition

Trajectory-user linking aims at linking anonymous trajectories to users

Given: $\mathcal{U} = \{u_1, u_2, u_3, \dots, u_c\}$ – users $\mathcal{T} = \{Tr_1, Tr_2, \dots, Tr_n\}$ – unlinked trajectories

TUL is defined as a multiclass classification problem

 $\min_{f \in \mathcal{F}} \mathbb{E}[\mathcal{L}(f(Tr_i), ui)] \text{ over } \mathcal{F}$

where \mathcal{F} is the set of all classifiers in the hypothesis space $\mathcal{L}(\cdot)$ is the loss between the predicted label $f(Tr_i) \in \mathcal{U}$ and the true label $u_i \in \mathcal{U}$

Methodology

Overview

Step 1: Generating higher-order mobility flow representations

- generating **mobility flow** data from check-ins
- generating higher-order mobility flow and check-ins

Step 2: Modeling trajectory-user linking

Generating Mobility flow data

Check-ins Trajectory

Mobility flow

Mobility flow of NYC and TKY

NYC

TKY

Generating higher-order check-ins

Check-ins Trajectory

Higher-order check-ins

Translate check-ins to Higher-order

Check-ins

$$Tr = \{r_1, r_2, \dots, r_m\} = \{(p_1, t_1, \langle x_1, y_1 \rangle), (p_2, t_2, \langle x_2, y_2 \rangle), \dots, (p_m, t_m, \langle x_m, y_m \rangle)\}$$

Higher-order
$$\{(p_1, t_1, g_1), (p_2, t_2, g_2), \dots, (p_m, t_m, g_m)\}$$

Each trajectory now represents a sequence of continuous grid cells $\{g_1, g_2, \dots\}$

Generating Higher-order Mobility flow

Mobility flow

Higher-order Mobility flow

FOURSQUARE-NYC Heatmap

Higher-order check-ins

Higher-order Mobility flow

$\begin{array}{c|cccc} p_1 & p_2 & p_3 \\ Alex \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ Bob & 1 & 1 \end{bmatrix}$

Sparsity = % of zeros in User-POI matrix

$$\frac{3}{9} = 30\%$$

Higher-order Sparsity

$$\begin{array}{ccc} g_1 & g_2 \\ \text{Alex} & \begin{bmatrix} 1 & 1 \\ 0 & 1 \\ 1 & 2 \end{bmatrix}$$

$$\frac{1}{6} = 16\%$$

Check-in Sparsity ≥Higher-order Sparsity

Impact of higher-order abstraction on sparsity

Overview

Step 1: Generating higher-order mobility flow representations

- generating **mobility flow** data from check-ins
- generating higher-order mobility flow and check-ins

Step 2: Modeling trajectory-user linking

TULHOR (trajectory-user linking using higher-order representations)

Two stages

Pre-training TULHOR

- Input: higher-order check-ins + masking, higher-order mobility flow
- Output: predicting masked token

Fine-tuning TULHOR

- Input : higher-order check-ins
- **Output:** user who generated the higher-order check-ins

Experiments

Overview

Datasets

• Foursquare NYC and TKY

Experiments

- TULHOR accuracy performance (vs SOTA and baselines)
- TULHOR Ablation study
- Tessellation granularity (grid size) effect

DATASET	$ \mathcal{U} $	$ \mathcal{T} $
FOURSQUARE-NYC	108 209 234	6795 9,637 10,133
FOURSQUARE-TKY	108 209 451	9343 14,151 20,964

Baselines

Conventional ML:

- Decision Tree
- Linear Discriminant Analysis (LDA)
- Linear Support Vector Machine (SVM)

TULER:

- RNN
- LSTM
- GRU

DeepTUL

- RNN (DeepTUL)
- LSTM (Attn-LSTM)
- GRU (Attn-GRU)

TULHOR performance (Foursquare TKY)

FOURSQUARE-TKY																	
	$ \mathcal{U} = 108$						$ \mathcal{U} =209$					$ \mathcal{U} = 451$					
MODEL	Acc@1	ACC@5	Р	R	FI	ACC@1	ACC@5	Р	R	F1	ACC@1	ACC@5	Р	R	F1		
DT	0.789	0.793	0.785	0.777	0.775	0.658	0.664	0.629	0.615	0.613	0.522	0.525	0.446	0.437	0.431		
LDA	0.853	0.912	0.927	0.847	0.874	0.722	0.808	0.778	0.692	0.713	0.574	0.720	0.553	0.501	0.495		
LINEAR-SVM	0.890	0.948	0.923	0.886	0.898	0.769	0.878	0.794	0.736	0.748	0.609	0.761	0.610	0.539	0.550		
TULER	0.870	0.933	0.871	0.860	0.860	0.768	0.864	0.762	0.735	0.736	0.637	0.74	0.588	0.554	0.548		
TULER-L	0.905	0.952	0.904	0.898	0.897	0.848	0.911	0.837	0.825	0.824	0.739	0.827	0.708	0.675	0.675		
TULER-G	0.915	0.954	0.916	0.910	0.909	0.851	0.911	0.842	0.824	0.825	0.738	0.823	0.701	0.672	0.671		
ATT-LSTM	0.908	0.966	0.916	0.901	0.908	0.752	0.871	0.795	0.729	0.760	0.407	0.584	0.362	0.326	0.343		
ATT-GRU	0.933	0.975	0.932	0.928	0.930	0.869	0.937	0.872	0.856	<u>0.864</u>	0.742	0.821	<u>0.715</u>	0.689	0.695		
DEEPTUL	0.922	0.966	0.927	0.913	0.920	0.773	0.904	0.820	0.747	0.782	0.660	0.790	0.631	0.587	0.608		
TULHOR	0.939	0.973	0.937	0.934	0.933	0.893	0.953	0.883	0.877	0.875	0.801	0.888	0.783	0.755	0.752		
Improvement	0.58%	-0.26%	0.59%	0.71%	0.37%	2.7%	1.77%	1.33%	2.53%	1.30%	7.86%	7.47%	9.52%	9.53%	8.11%		

TULHOR outperforms every baseline

TULHOR has better scalability

TULHOR performance (Foursquare NYC)

FOURSQUARE-NYC																	
		U	= 108				$ \mathcal{U} =209$					$ \mathcal{U} = 234$					
MODEL	Acc@1	Acc@5	Р	R	F1	Acc@1	Acc@5	Р	R	F1	Acc@1	Acc@5	P	R	F1		
DT	0.884	0.892	0.878	0.867	0.868	0.785	0.788	0.753	0.728	0.730	0.778	0.782	0.722	0.712	0.705		
LDA	0.822	0.851	0.962	0.810	0.868	0.746	0.781	0.791	0.687	0.718	0.696	0.752	0.724	0.615	0.650		
LINEAR-SVM	0.873	0.929	0.966	0.878	0.909	0.776	0.839	0.785	0.702	0.727	0.731	0.798	0.724	0.628	0.657		
TULER	0.870	0.929	0.869	0.851	0.852	0.776	0.853	0.749	0.722	0.718	0.768	0.844	0.733	0.707	0.703		
TULER-L	0.903	0.942	0.904	0.890	0.890	0.847	0.898	0.828	0.803	0.807	0.845	0.889	0.821	0.806	0.803		
TULER-G	0.909	0.949	0.914	0.897	0.898	0.854	0.892	0.835	0.811	0.812	0.846	0.891	0.821	0.805	0.803		
ATT-LSTM	0.823	0.896	0.715	0.703	0.709	0.716	0.832	0.554	0.559	0.556	0.712	0.830	0.569	0.557	0.563		
ATT-GRU	0.886	0.933	0.779	0.779	0.791	0.835	0.891	0.663	0.680	0.671	0.889	0.936	0.741	0.738	0.740		
DEEPTUL	0.853	0.923	0.765	0.738	0.751	0.733	0.840	0.614	0.597	0.606	0.789	0.891	0.607	0.617	0.612		
TULHOR	0.940	0.966	0.938	0.931	0.932	0.903	0.943	0.890	0.877	0.876	0.892	0.932	0.876	0.864	0.860		
Improvement	3.42%	1.85%	-2.89%	3.85%	2.53%	5.82%	5.07%	6.58%	7.83%	7.87%	0.35%	-0.49%	6.61%	7.13%	7.19%		

Removing Higher-order significantly reduces the performance

Tessellation granularity (grid size) effect

# OF CELLS	CELL SIZE (km^2)					
334	5.160					
2,003	0.730					
11,036	0.015					
	# OF CELLS 334 2,003 11,036					

Tessellations of Tokyo

Hex@7

Hex@8

Hex@9

Results of grid size study

FOURSQUARE-TKY																
	#USERS = 108					#USERS = 209					#USERS = 451					
Method	Acc@1	Acc@5	Р	R	F1	Acc@1	Acc@5	Р	R	F1	ACC@1	Acc@5	Р	R	F1	
HEX@7	0.923	0.971	0.920	0.911	0.913	0.868	<u>0.943</u>	0.832	0.817	0.815	0.711	0.883	0.734	0.734	0.711	
HEX@8	<u>0.926</u>	0.977	0.925	0.917	<u>0.917</u>	<u>0.868</u>	0.940	0.862	0.849	<u>0.849</u>	<u>0.790</u>	<u>0.884</u>	<u>0.753</u>	<u>0.740</u>	<u>0.733</u>	
HEX@9	0.939	0.973	0.937	0.934	0.933	0.893	0.953	0.883	0.877	0.875	0.801	0.888	0.783	0.755	0.752	

Hex@9 outperforms other sizes as the number of users increases

The smaller the cells are the better the scalability

Conclusions

Take-away Message

TULHOR: model for dealing with sparsity and low data quality of the TUL problem

Credits

Gian Alix

Jing Li

Mahmoud Alsaeed

Nina Yanin

Ali Faraji

Amirhossein Nadiri

PathletRL: Trajectory Pathlet Dictionary Construction using Reinforcement Learning. G. Alix, M. Papagelis. ACM SIGSPATIAL 2023 (In Press).

Trajectory-User Linking using Higher-order Mobility Flow Representations. M. Alsaeed, A. Agrawal, M. Papagelis. IEEE MDM 2023, pp. 158-167

Point2Hex: Higher-order Mobility Flow Data and Resources. A. Faraji, J. Ling, G. Alix, M. Alsaeed, N. Yanin, A. Nadiri, M. Papagelis. ACM SIGSPATIAL 2023 (In Press).

Thank you!

