.} .
-«
TR
ik 8
aVAVAY A‘\&
pavavl ¥ VAR
WAEA, o\
AV iy
AN\
s AV avaVia
sy Vi
vl JVipe
s Vi _
NN\ AN YN

Fast and Accurate Mining of
Evolving & Trajectory Networks

sy V-

VA 4’40‘\4 4‘4’4»! 4
. DS B
\/~ - V!ﬁ»ﬂ &

N

\/ N\

J & x|

e i

7= % >> | .
21> .
-~ z|z ..n‘.\l‘\u.:
- BB [

v

|

|

)

AV AV ¢
NS

m'w.%wﬂ = §

]

R
e
.W-

N .L \'%
Al Iy
L ,.“.,r.m.,,{

- =

H‘Il‘
b Y

.l_ P . ’ -
6 - o
| - __ |

4 T IRE

Current Research focus

7. . .. o "
A. Network Representation Learning B. Trajectory Network Mining

g R

?\‘.‘}
1, Fﬁ“ L)
(x,.v)(x,.z) A ‘ \-\w‘ 9 '

~

C. Streaming & Dynamic Graphs

E. City Science / Urban Informatics / loT F. Natural Language Processing

UNIVERSITE
UNIVERSITY -

Representation Learning Based

on Random Walks

networks

(universal language for describing complex data)

Classical ML Tasks in Networks

1 Ayl U _

community detection link prediction node classification

N N </ %

triangle count graph similarity anomaly detection

Limitations of Classical ML.:
« expensive computation (high dimension computations)
« extensive domain knowledge (task specific)

Network Representation Learning (NRL)

> -

Network Low-dimension space

several network structural properties can be learned/embedded
(nodes, edges, subgraphs, graphs, ...)

Premise of NRL:

« faster computations (low dimension computations)
« agnostic domain knowledge (task independent)

Random Walk-based NRL

~

1 [3587645
2 |1358765
Inbut network Obtain a set of
P random walks
87 18543567
.2 8 |4 5 6 78 9
1 S 89 2135678
o 90 | 7421356
..5 Treat the set of random walks
| as sentences
6
o ©
9.7 J
o
Learn a vector representation Feed sentences to a Statl C N R L
for each node Skip-gram NN model (DeepWalk, node2vec, ...)

but real-world networks are
constantly evolving

Evolving Network

Representations Learning

IIIIIIIIII
IIIIIIIIII

Nalve Approach

3
[

5

2

Impractical (expensive, incomparable representations)

EVONRL Key Idea

Input network

2
'4
1
® [
3
® 5
[
8 6
o
o®
[

Learn a vector representation

for each node

dynamically maintain a valid
set of random walks for
every change in the network

Obtain a set of
random walks

Treat the set of random walks

/ as sentences

Feed sentences to a
Skip-gram NN model

Example: Edge Addition

addition of edge (1, 4)

>

/ simulate the rest of the RW

| 214356738 |
1 /3587645 \ 13587645
2 11358765 - | 2 (1358765

' need to update the RW set

87 [8543567 87 |8 54356 7
884567898 88 /4567898
89 |2135678 89 |2.1)356 7 8
90 | 7421356 90 | #74:2:1 35 6

similarly for edge deletion, node addition/deletion

Efficiently Maintaining a

Set of Random Walks

IIIIIIIIII
IIIIIIIIII

EVONRL Operations

2 (1358765 - 2 /11358765 P

S Search a node
. Delete a RW

87 |8543567 87 [8543567 Insert a new RW

88 |4 56 78 9 884 5 6 78 9

80 (2135678 89 |201:35678

90 (7421356 90 [7 4 291356

need for an efficient indexing data structure

EvONRL Indexing

1[3587645
21358765 Q

— @°
87 8543567
884 56 78 9 elastic
892135678
907421356

each node is a keyword
each RW is a document
a set of RWs is a collection of documents

o
3

Frequency

Postings and Positions

<2,1><89,2><90,4>

<89, 1>, <90, 3>

<1, 1>, <2, 1>, <87, 3>, <89, 3>, <90, 5>

<1, 6>, <87, 3>, <90, 2>

<1, 2> <1,7> <2,3> <2, 7>, <87, 5>, <88, 2>, <89, 4>, <90, 6>

<1, 5>, <2, 6>, <87, 6>, <88, 3>, <89, 3>, <90, 5>

<1, 4>, <2, 5>, <87, 7>, <88, 4>, <89, 6>, <90, 7>

<1, 3>, <2, 4>,<87, 1>, <88, 6>, <89, 7>

Ol |No|a|~|W[IN|F

RO |O|R|OTIN|W

<88, 7>

Evaluation of EVONRL

IIIIIIIIII
IIIIIIIIII

Evaluation: EVONRL vs StaticNRL

Accuracy
EVONRL = StaticNRL

Running Time
EVONRL << StaticNRL

Accuracy:. edge addition

0.25
A BEvoNEL

staticNRL

>

0.24
0.23 *
0.22 A

0.21 *

b e

0.20

Macro-F1 score

*p

0.19 A

0.18 * A
. A

017

¥

0.00 0.02 0.04 0.06 0.08 0.10 012 0.14
Fraction of edges added sequentially

EvVoNRL has similar accuracy to StaticNRL

(similar results for edge deletion, node addition/deletion)

Time Performance

104

i T
2 20x
£
ER IR W ---- PR
E ﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂ
E ----------------------------
5 1{]2
—=- EvoMRL (|V|= 104]
—-= StaticNRL |:|'I,|"| = lﬂﬂf}
10!

..... EvoNRL (|v| = 107)

—— StaticNRL (V| = 107)

400 600 800 1000
new edges

EVONRL performs orders of time faster than StaticNRL

Takeaway

how can we learn representations of an
evolving network?

EVONRL

time efficient
accurate
generic method

Current Research focus

7. . .. o "
A. Network Representation Learning B. Trajectory Network Mining

g R

?\‘.‘}
1, Fﬁ“ L)
(x,.v)(x,.z) A ‘ \-\w‘ 9 '

~

C. Streaming & Dynamic Graphs

E. City Science / Urban Informatics / loT F. Natural Language Processing

UNIVERSITE

UNIVERSITY

“ K

|

[Sn wgas I \
\

8

'ﬁ]‘”

Node Importance in Trajectory
Networks

Trajectories of moving objects

every moving object, forms a trajectory — in 2D it is a sequence of (X, y, 1)
there are trajectories of moving cars, people, birds, ...

Trajectory data mining

trajectory similarity trajectory clustering

trajectory anomaly detection
trajectory pattern mining
trajectory classification
..more

we care about network analysis of moving objects

Proximity networks

CRCRC
.= .
. " i

proximity
threshold

Distance can represent

'/' ©)

line of sight wifi/bluetooth signal range

Trajectory networks

0

S\

The Problem
Input: logs of frajectories (X, y, 1) in fime period [0, T]
Output: node importance metrics

Node Importance

IIIIIIIIII

Node importance in static networks

)
® ¥ 27
18 L
1
» = 2
29
> 3 e’ [
@}
‘ » 13 26
= 25
12
A I Y
4 s
L s
[

Betweenness centrality

Closeness centrality Eigenvector centrality

Node importance in TNs

KR

node degree over time triangles over time

P

connected components over time
(connectedness)

Applications

. -~
= i =
.) A
infection spreading security in autfonomous
vehicles

rich dynamic network analytics

Evaluation of Node Importance

In Trajectory Networks

IIIIIIIIII
IIIIIIIIII

Naive approach

0

.

For every discrete time unit t:

1. obtain static snapshot of the proximity network

2. run static node importance algorithms on snapshot
Aggregate results at the end

Streaming approach

Similar to naive, but:
- no final aggregation

- results calculated incrementally at every step

Still every time unit

—very discrete time unit

LT
naa T

L
01234

fime

2
»

D AN N

Sweep Line Over Trajectories

(SLOT)

IIIIIIIIII
IIIIIIIIII

Sweep line algorithm

A computational geometry algorithm that given
line segments computes line segment overlaps

pairs = ()

Efficient one pass algorithm that only processes
line segments at the beginning and ending points

SLOT: Sweep Line Over Trajectories
(algorithm sketch)

represent TN edges as time intervals
apply variation of sweep line algorithm

simultaneously compute node degree, friangle
membership, connected componenrsin one pass

Represent edges as time intervals

e;:(Ng,Ny)

edges

SLOT: Sweep Line Over Trajectories

L
e (n,;n) _ .

edges

L] " L] - L] L] L]] L] L] L]] >
0 G P A A t T, 1t 4, ¢ T

At every edge start

 node degree

: — nodes u, v now connected
e:(U,V) |+ p— — Increment u, v node degrees

edges

+ triangle membership
— did a triangle just form?
> — look for u, v common neighbors
— Increment triangle (u, v, common)

e connected components
— did two previously disconnected
components connect?
— compare old components of u, v
— if no overlap, merge them

At every edge stop

A . node degree
: — nodes u, v now disconnected
(U, V) [10— - decrement u, v degree

edges

o triangle membership
— did a triangle just break?
— look for u, v common neighbors
— decrement triangle (u, v, common)

e connected components
— did a conn. compon. separate?
- BFSto see if u, v still connected
— if not, split component to two

SLOT: At the end of the algorithm ...

Rich Analytics

- node degrees: start/end time, duration

— triangles: start/end time, duration

— connected components: start/end time, duration

Exact results (not approximations)

Evaluation of SLOT

IIIIIIIIII
IIIIIIIIII

Node degree

20K
—ili— Naive

15K Streaming
—— SLOT

Running Time (s)
o o
-~ -

-
~

¥

0 1K 2K 3K 4K 5K 6K 7K 8K
of objects

Triangle membership / connected
components

Running Time (s)

60K
———f— [\ 5 ye- Connectedness

50K

= = «f= = = Najye-Triangles H
ADK | s S|LOT- Connectedness
- = wh= = =« S|LOT-Triangles '

30K

20K

10K

OK
0 1K 2K 3K 4K 5K 6K 7K 8K

of objects

SLOT Scalability

A T —
SGGGG
[R S I O) |

—- Degree
Connectedness
—4— Triangle

—_—

Running Time (s)

i
S

i
o
N

10? 10° 10% 10° 10° 107
of objects

edges

Takeaway

X'j b

N

trajectory networks network importance over time

01| e SLOT properties:
P — - fast

tme - scalable
SLOT algorithm

Seagull migration trajectories

data from Wikelski et al. 2015

Farzaneh Heidari

Tilemachos Pechlivanoglou

[Complex Networks 2018] EvoNRL: Evolving Network
Representation Learning Based on Random Walks.
Farzaneh Heidari and Manos Papagelis.

Source code: https://qgithub.com/farzanaO/EvoNRL/

[IEEE Big Data 2018] Fast and Accurate Mining of Node
Importance in Trajectory Networks. Tilemachos
Pechlivanoglou and Manos Papagelis.

Source code: https://qithub.com/tipech/trajectory-networks

For more info visit: Data Mining Lab @ YorkU

https://github.com/tipech/trajectory-networks
https://github.com/farzana0/EvoNRL/
http://dminer.eecs.yorku.ca/

Thank youl!

Questions?

