KK
Rl
pavavl ¥ VAR
Vis%A, oA\
e
wfﬂzﬁ
B‘\‘ \" il
i, S Sl
SN W < |
,VN«N«?«'AV [\ 0 =
N e T
5 BN H
w‘. ”_ \ N\ A p

Y

mm_ B/
7 l“lI-V.

Big Data Analytics

Overview

« Data Driven Organizations (DDOs)
« Evaluating DDOs solutions
« Big Data Architectures

* Processing Platforms
— Distributed File System
— The Map-Reduce Programming Model

 Summary

Data Driven Organizations (DDOS)

IIIIIIIIII
IIIIIIIIII

How non-DDOs make decisions?

* Intuition

« Ad-hoc or based on few customers feedback
* Look at competition

* Try to be different

« Based on assumptions (that may be wrong)
« No way to validate if it was the right decision

What do DDO’s do?

« Make decisions based on data not intuition
* More precise on what they want to achieve
« Measure and validate with data

Example 1: Email Marketing AP =

Pre DDO

 Did not measure
campaign effectiveness

* Did not cluster customers

* Did not have tailored
campaigns

Result
 Cannibalized own market

o Offered discounts when
not needed

« Significant loss revenue

Post DDO

« Behavioral clustering
Predictive analytics
Life-time Value Analysis
Targeted campaigns
Measure effectiveness

Result
* Increased revenue

Example 2: Application Feature J__—l E

Pre DDO
* Introduced features on
Intuition
 No measurable goals

Result

« Sometimes features
decreased engagement

« Many features, unknown
value

 Occasional lost revenue

A | B

Post DDO
« A/B testing, measures

Do not launch unless
measurable benefit

Result

« More successful feature
Introductions (increased
engagement)

« Remove features that do
not contribute to metrics

Summary

DDOs

» collect data

 make decisions based on data, not intuition
e use data to drive applications

To be a DDO, you need an efficient way of
storing and retrieving data

Evaluating DDO Solutions

IIIIIIIIII
IIIIIIIIII

Challenge

« Avariety of solutions/technologies available

« There is no one solution/technology that solves all
possible data analytics problems

« Most solutions solve a range of problems, but are
outstanding on a specific type

How to map problems to DDO solutions?
How to compare alternative DDO solutions?

To be able to evaluate DDO solutions you need
to understand your needs

DDOs Evaluation

Data dimension

What characteristics should be
considered with respect to
data?

e Structure

* Size

* Sink Rate

e Source Rate

« Quality

« Completeness

Processing dimension

What characteristics should be
considered with respect to
processing?

« Query Selectivity

* Query Execution Time
« Aggregation

* Processing Time

« Join

* Precision

Other dimensions: cost, implementation complexity, ...

Example DDO Solutions

RDBMS: Relational model with powerful
guerying capabilities

HDFS+M/R: Batch orie_nted system for i@hadg_a_p
processing and storing large data sets [Naplhiediee

Storm: A stream processing system that 55 STORM
computes in real-time over large streams

BlinkDB: Experimental system for
approximate guery answering over large Eq/}. I s
data that trade error over response time inkDB

Big Data Architectures

IIIIIIIIII
IIIIIIIIII

Data Analytics Pipeline

_

Data
Collection

J

r

Data

N

Transformation

_

J

Data

Storage

_

Data

Processing

J

_

Data
Publishing

J

Traditional Approach

Indices/Cache etc

Data Models

(@)
C
k%)
9]
| S
Logical Storage o
o
> &
| o .£
Physical Storage a L%’

« Handles certain type of data well
« Handles certain ranges of data size well
« Performs certain types of queries and computations well

Traditional Business Warehouse

Data Staging

Sources Area Warehouse Users
Operational
System n
6_'@ S“E“ET:WI | Raw Data
Operational
System I
Extract FIELt Files X
Transform

Load Analytlcs Reporting

A Big Data Approach

Index/Serving Index/Serving
Technology Technology

Index/Serving
Technology

Index/Serving
Technology

Processing Technology

Fundamental Data Store Technology
System of Record

Big Data Analytics Architecture

Example: Lambda Architecture

Batch Layer Serving Layer

All data

Precomputed
information

Batch
recompute
Incoming
Data .
Speed Layer
- o real time view
‘
mfo rmatoon

Other examples: Kappa Architecture, Netflix Architecture

Difference in Approach

Traditional Approach
Structured & Repeatable Analysis

Business Users

Determine what
question to ask %

.\

Structures the data to
answer that question
Monthly sales reports |

Profitability analysis
Customer surveys

Big Data Approach

lterative & Exploratory Analysis

4(.@

4

b Delivers a platform to
enable creative
discovery

%

|

Business

Explores what questions
could be asked
Brand sentiment
Product strategy
\ Maximum asset utilization
. Preventative care

Notice the difference!

Processing Platforms

IIIIIIIIII

Big Data Technology & Analytics

Query & Exploration
SQL, BigQuery, Hive, SparkSQL, Search, ...

Stream Processing Platforms

Data Storm, Spark, .. Data_
Ingestion _ Serving
ETL, Distcp, || Batch Processing Platforms BI, Cubes,
Kafka, MapReduce, Spark, ... RDBMS,
OpenRefine, Key-value
Stores,

Data Definition
SQL DDL, Avro, Protobuf, CSV

Tableau, ...

Storage Systems
HDFS, RDBMS, Column Stores, Graph Databases

Computing Platforms
Distributed Commodity, Clustered High-Performance, Single Node

Processing Platforms

« SQL
— BigQuery (based on Google Dremel, 2010)
— Apache Hive (HiveQL) (2012)
« Streaming Data
— Apache Storm (2011) / Twitter Huron (2015)
« Unified Engine (Streaming, SQL, Batch, ML)
— Apache Spark (2012)

Distributed File System & the

Map-Reduce Programming Model

Slides based on Mining of Massive Datasets. http://www.mmds.org U N!'VERSITTY

Single Node Architecture

CPU

Machine Learning, Statistics

Memory

“Classical” Data Analytics
ji

Motivation: Google Example

« 20+ billion web pages x 20KB =400+ TB

« 1 computer reads 30-35 MB/sec from disk
— ~4 months to read the web

« ~1,000 hard drives to store the web

« Takes even more to do something useful
with the data!

 Today, a standard architecture for such problems is
emerging:
— Cluster of commodity Linux nodes
— Commodity network (ethernet) to connect them

Cluster Architecture

Switch
2-10 Gbps backbone
between racks
Switch Switch
1 Gbps between any
pair of nodes in arack
CPU CPU CPU CPU
Mem e Mem Mem . Mem

Disk Disk Disk Disk

Each rack contains 16-64 nodes

In 2011 it was guestimated that Google had 1M machines, http://bit.ly/ShhORO

http://bit.ly/Shh0RO

‘c. %
e s

-

2

) S ol

asnnrs et
S =

.
A

bk

o

Large-scale Computing Challenges

 How do you distribute computation?
« How can we make it easy to write distributed programs?

« Machines fail:
— One server may stay up 3 years (1,000 days)
— If you have 1,000 servers, expect to loose 1/day
— People estimated Google had ~1M machines in 2011
= 1,000 machines fail every day!

|dea and Solution

Issue: Copying data over a network takes time

ldea:
— Store files multiple times for reliability
— Bring computation close to the data
Storage Infrastructure: Distributed File system
— Google: GFS. Hadoop: HDFS
Programming Model: Map-Reduce
— Google’s computational/data manipulation model
- Elegant way to work with big data

Storage Infrastructure

* Problem:
— If nodes fail, how to store data persistently?

* Answer:
— Distributed File System:
» Provides global file namespace
» Google GFS; Hadoop HDFS
« Typical usage pattern
— Huge files (100s of GB to TB)
— Data reads and appends are common
— Data is rarely updated in place

Distributed File System

 Chunk servers
— File is split into contiguous chunks
— Typically each chunk is 16-64MB
— Each chunk replicated (usually 3x)
— Try to keep replicas in different racks
« Master node
— a.k.a. Name Node in Hadoop’s HDFS
— Stores metadata about where files are stored
— Might be replicated

— Talks to master to find chunk servers
— Connects directly to chunk servers to access data

Distributed File System

* Reliable distributed file system
« Data kept in “chunks” spread across machines

« Each chunk replicated on different machines
— Seamless recovery from disk or machine failure

I'______I I'______I I'_____—I I'______I
' Co C1 I I- Cl I ' Cz C5 l , Co C5 I
I I I I

I I I I
I I I I
e e (e - ElE
i —— e — oo o oo oo oo -
Chunk server 1 Chunk server 2 Chunk server 3 Chunk server N

Chunk servers also serve as compute servers

Bring computation directly to the datal!

Programming Model: MapReduce

Warm-up task
« We have a huge text document

 Count the number of times each
distinct word appears in the file

Sample application
« Analyze web server logs to find popular URLs

Task: Word Count

Case 1:

* File too large for memory, but all <word, count> pairs
fit iIn memory

Case 2:
 Count occurrences of words:
— words (doc.txt) | sort | unig -c
» where words takes a file and outputs the words in it, one per

line
" uniq’s —c option, --count Prefix lines with a number
representing how many times they occurred.

« Case 2 captures the essence of MapReduce
— Great thing is that it is naturally parallelizable

MapReduce: Overview

« Sequentially read a lot of data

- Map: Extract something you care about

« Group by key: Sort and Shuffle

 Reduce: Aggregate, summarize, filter or transform
« Write the result

Outline stays the same, Map and Reduce steps change
to fit the problem

MapReduce: The Map Step

Input key-value pairs (k, v) Intermediate key-value pairs (k’, v’)

- oM
am B o

Al o7 4

MapReduce: The Group by key Step

Intermediate key-value pairs (k’, v’) Key-value groups (k’,<v>¥)

o ©
o .. NN

o 4 —
>y 4

N

MapReduce: The Reduce Step

Key-value groups (k’,<v>*) Output key-value pairs (k’, v”)*

- @
oMy .. o6

7 4

@

More Specifically

* Input: a set of key-value pairs

* Programmer specifies two methods:
- Map(k, v) > <k’, v'>*
» Takes a key-value pair and outputs a set of key-value pairs
o E.g., key is the filename, value is a single line in the file
» There is one Map call for every (k,v) pair
- Reduce(k’, <v’>*) —» <k’, v’>*
= All values v’ with same key k’ are reduced together
and processed in v’ order
» There is one Reduce function call per unique key k’

MapReduce: Word Counting

The crew of the space
shuttle Endeavor recently
retuned to Earth as

a new era of space
exploration. Scientists at
bt iR Gttt
recent assembly of the
Dextre bot is the first step in
_a_lona-term__space-based |
man/mache partnership.

"The work we're doing now
-- the robotics we're doing -
- is what we're going to

| aiibassadurs, fiaibingsis uf

needoovvvvviiinnen,

Big document

Provided by the
programmer

MAP

Read input and
produces a set of
key-value pairs

(The, 1)
(crew, 1)
(of, 1)
(the, 1)
(space, 1)
(shuttle, 1)
(Endeavor, 1)
(recently, 1)

(key, value)

GROUP BY
=

Collect all pairs
with same key

(crew, 1)
(crew, 1)
(space, 1)
(the, 1)
(the, 1)
(the, 1)
(shuttle, 1)
(recently, 1)

(key, value)

Provided by the
programmer

REDUCE

Collect all values
belonging to the
key and output

(crew, 2)
(space, 1)
(the, 3)
(shuttle, 1)
(recently, 1)

(key, value)

<only sequential reads

Word Count Using MapReduce

map (key, value):

// key: document name

// value: text of the document
for each word w 1n value:

emit(w, 1)

reduce (key, values):
// key: a word
// value: an iterator over counts
result = 0
for each count v in values:
result += v
emit (key, result)

Map-Reduce: Environment

Map-Reduce environment takes care of:
« Partitioning the input data

« Scheduling the program’s execution across a
set of machines

« Performing the group by key step
« Handling machine failures
« Managing required inter-machine communication

Map-Reduce: A diagram

Input

MAP
Read input and

produces a set of
key-value pairs

Intermediate

GROUP BY
Collect all pairs

with same key
(Hash merge,
Shuffle, Sort,
Partition)

REDUCE
Collect all values

belonging to the
key and output

Big document

kl:v kl:v k2:v kl:v | k3:vkdv | kdivkdv | kdiv | kl:v k3w
[[Grnup by Keij
Grouped |kl:v,v,v,v v |k3:vv | kdivvy [kSiv

ééé

Output

Map-Reduce: In Parallel

r-—- - -=—-—-=-=-=-== A r--—-- - --=-=-= = r-—--—- - =-=-=-=-= -
| Map Task 1 I | Map Task 2 | | Map Task 3 |
! Lo L '
! Lo L '
! Lo L '
! Lo L '
! Lo L '
! Lo L '
|kl klw k2w klv] | k3w kdw kdw k3w |l I Ry klw k3w |
| Partitioning Funetion | | Partitioning Funetion I | Partitioning Funetion I
-

- — — 1_ - = — d
Sert and Group
klwvvvy | k3wyw

oXx 6

Reduce Task 1 . Reduce Task E_I

Sort and Group
kd v v v kS

All phases are distributed with many tasks doing the work

Map-Reduce

* Programmer specifies:
— Map and Reduce and input files

 Workflow:

— Read inputs as a set of key-value-
pairs

— Map transforms input kv-pairs into
a new set of k'v'-pairs

— Sorts & Shuffles the k'v'-pairs to
output nodes

— All K'v’-pairs with a given k’ are
sent to the same reduce

— Reduce processes all k'v'-pairs
grouped by key into new K"v"-pairs

— Write the resulting pairs to files

« All phases are distributed with
many tasks doing the work

Data Flow

 Input and final output are stored on a distributed file
system (FS):
— Scheduler tries to schedule map tasks “close” to physical
storage location of input data
« Intermediate results are stored on local FS of Map and
Reduce workers

« Qutput is often input to another MapReduce task

Summary

IIIIIIIIII

Summary: Processing Platforms

Summary: Big Data Analytics

Query & Exploration
SQL, Search, Cypher, ...

Stream Processing Platforms

Data Storm, Spark, .. Data_
Ingestion |'Batch Processing Platforms g.egﬂ)r;g
ETL, Distcp, MapReduce, SparkSQL, BigQuery, Hive, Cypher, RE)BMS, |
CK)afka’ | _ Key-value
penRefine, — Stores
Data Definition Tetlesi

SQL DDL, Avro, Protobuf, CSV

Storage Systems
HDFS, RDBMS, Column Stores, Graph Databases

Computing Platforms
Distributed Commodity, Clustered High-Performance, Single Node

Pointers and Further Reading

IIIIIIIIII
IIIIIIIIII

Implementations

« Google
— Not available outside Google

« Hadoop
— An open-source implementation in Java
— Uses HDFS for stable storage

— Download: http://lucene.apache.org/hadoop/

http://lucene.apache.org/hadoop/

Cloud Computing

 Ability to rent computing by the hour
— Additional services e.g., persistent storage

« Amazon’s “Elastic Compute Cloud” (EC2)

Readings

« Jeffrey Dean and Sanjay Ghemawat: MapReduce:
Simplified Data Processing on Large Clusters

- http://labs.google.com/papers/mapreduce.htmi

« Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung:
The Google File System

- http://labs.qgoogle.com/papers/gfs.html

http://labs.google.com/papers/mapreduce.html
http://labs.google.com/papers/gfs.html

Resources

« Hadoop Wiki
— Introduction
= http://wiki.apache.org/lucene-hadoop/
— Getting Started
= http://wiki.apache.org/lucene-hadoop/GettingStartedWithHadoop
— Map/Reduce Overview
= http://wiki.apache.org/lucene-hadoop/HadoopMapReduce
= http://wiki.apache.org/lucene-hadoop/HadoopMapRedClasses
— Releases from Apache download mirrors
= http://www.apache.org/dyn/closer.cqgi/lucene/hadoop/
— Eclipse Environment
= http://wiki.apache.org/lucene-hadoop/EclipseEnvironment
« Javadoc
— http://lucene.apache.org/hadoop/docs/api/

http://wiki.apache.org/lucene-hadoop/
http://wiki.apache.org/lucene-hadoop/GettingStartedWithHadoop
http://wiki.apache.org/lucene-hadoop/HadoopMapReduce
http://wiki.apache.org/lucene-hadoop/HadoopMapRedClasses
http://www.apache.org/dyn/closer.cgi/lucene/hadoop/
http://wiki.apache.org/lucene-hadoop/EclipseEnvironment
http://lucene.apache.org/hadoop/docs/api/

Further Reading

* Programming model inspired by functional language primitives
 Partitioning/shuffling similar to many large-scale sorting
systems
- NOW-Sort ['97]
* Re-execution for fault tolerance
- BAD-FS ['04] and TACC ['97]
. LOCElity optimization has parallels with Active Disks/Diamond
wor
— Active Disks ['01], Diamond ['04]
« Backup tasks similar to Eager Scheduling in Charlotte system
— Charlotte ['96]

« Dynamic load balancing solves similar problem as River's
distributed queues

- River ['99]

