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Data Driven Organizations (DDOs)



How non-DDOs make decisions?

• Intuition

• Ad-hoc or based on few customers feedback

• Look at competition

• Try to be different

• Based on assumptions (that may be wrong)

• No way to validate if it was the right decision
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• Make decisions based on data not intuition

• More precise on what they want to achieve

• Measure and validate with data



Pre DDO

• Did not measure 

campaign effectiveness

• Did not cluster customers

• Did not have tailored 

campaigns

Result

• Cannibalized own market

• Offered discounts when 

not needed

• Significant loss revenue

Post DDO

• Behavioral clustering

• Predictive analytics

• Life-time Value Analysis

• Targeted campaigns

• Measure effectiveness

Result

• Increased revenue



Pre DDO

• Introduced features on 

intuition

• No measurable goals

Result

• Sometimes features 

decreased engagement

• Many features, unknown 

value

• Occasional lost revenue

Post DDO

• A/B testing, measures

• Do not launch unless 

measurable benefit

Result

• More successful feature 

introductions (increased 

engagement)

• Remove features that do 

not contribute to metrics



Summary

DDOs

• collect data

• make decisions based on data, not intuition

• use data to drive applications

To be a DDO, you need an efficient way of 

storing and retrieving data



Evaluating DDO Solutions



Challenge

• A variety of solutions/technologies available

• There is no one solution/technology that solves all 

possible data analytics problems

• Most solutions solve a range of problems, but are 

outstanding on a specific type

How to map problems to DDO solutions?

How to compare alternative DDO solutions? 

To be able to evaluate DDO solutions you need 

to understand your needs



DDOs Evaluation

Data dimension

What characteristics should be 
considered with respect to 
data?

• Structure

• Size

• Sink Rate

• Source Rate

• Quality 

• Completeness

Processing dimension

What characteristics should be 
considered with respect to 
processing?

• Query Selectivity

• Query Execution Time

• Aggregation

• Processing Time

• Join

• Precision

Other dimensions: cost, implementation complexity, …



RDBMS: Relational model with powerful 

querying capabilities

HDFS+M/R: Batch oriented system for 

processing and storing large data sets

Storm: A stream processing system that 

computes in real-time over large streams

BlinkDB: Experimental system for 

approximate query answering over large 

data that trade error over response time



Big Data Architectures



Data Analytics Pipeline

Data 

Collection

Data
Transformation

Data 

Storage

Data 

Processing

Data 

Publishing



• Handles certain type of data well

• Handles certain ranges of data size well

• Performs certain types of queries and computations well

Physical Storage

Logical Storage

Data Models

Indices/Cache etc
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Extract

Transform

Load Analytics Reporting



Fundamental Data Store Technology

System of Record

Index/Serving

Technology

Index/Serving

Technology

Index/Serving

Technology

Index/Serving

Technology

Processing Technology



Example: Lambda Architecture

Other examples: Kappa Architecture, Netflix Architecture



Notice the difference!



Processing Platforms



Big Data Technology & Analytics

Computing Platforms
Distributed Commodity, Clustered High-Performance, Single Node

Data 

Ingestion
ETL, Distcp, 

Kafka, 

OpenRefine, 

…

Data 

Serving
BI, Cubes, 

RDBMS, 

Key-value 

Stores, 

Tableau, …

Storage Systems
HDFS, RDBMS, Column Stores, Graph Databases

Data Definition
SQL DDL, Avro, Protobuf, CSV

Batch Processing Platforms
MapReduce, Spark, …

Stream Processing Platforms
Storm, Spark, ..

Query & Exploration
SQL, BigQuery, Hive, SparkSQL, Search, … 



Processing Platforms

• Batch Processing

− Google GFS/MapReduce (2003)

− Apache Hadoop HDFS/MapReduce (2004)

• SQL

− BigQuery (based on Google Dremel, 2010)

− Apache Hive (HiveQL) (2012)

• Streaming Data

− Apache Storm (2011) / Twitter Huron (2015)

• Unified Engine (Streaming, SQL, Batch, ML)

− Apache Spark (2012)



Distributed File System & the 

Map-Reduce Programming Model

Slides based on Mining of Massive Datasets. http://www.mmds.org 



Single Node Architecture

Memory

Disk

CPU

Machine Learning, Statistics

“Classical” Data Analytics



Motivation: Google Example

• 20+ billion web pages x 20KB = 400+ TB

• 1 computer reads 30-35 MB/sec from disk

− ~4 months to read the web

• ~1,000 hard drives to store the web

• Takes even more to do something useful 

with the data!

• Today, a standard architecture for such problems is 

emerging:

− Cluster of commodity Linux nodes

− Commodity network (ethernet) to connect them



Cluster Architecture

Mem

Disk

CPU

Mem

Disk

CPU

…

Switch

Each rack contains 16-64 nodes

Mem

Disk

CPU

Mem

Disk

CPU

…

Switch

Switch

1 Gbps between any 

pair of nodes in a rack

2-10 Gbps backbone 

between racks

In 2011 it was guestimated that Google had 1M machines, http://bit.ly/Shh0RO

http://bit.ly/Shh0RO




Large-scale Computing Challenges

• How do you distribute computation?

• How can we make it easy to write distributed programs?

• Machines fail:

− One server may stay up 3 years (1,000 days)

− If you have 1,000 servers, expect to loose 1/day

− People estimated Google had ~1M machines in 2011

 1,000 machines fail every day!



Idea and Solution

• Issue: Copying data over a network takes time

• Idea:

− Store files multiple times for reliability

− Bring computation close to the data

• Storage Infrastructure: Distributed File system

− Google: GFS. Hadoop: HDFS

• Programming Model: Map-Reduce

− Google’s computational/data manipulation model

− Elegant way to work with big data



Storage Infrastructure

• Problem:

− If nodes fail, how to store data persistently? 

• Answer:

− Distributed File System:

 Provides global file namespace

 Google GFS; Hadoop HDFS

• Typical usage pattern

− Huge files (100s of GB to TB)

− Data reads and appends are common

− Data is rarely updated in place



Distributed File System

• Chunk servers
− File is split into contiguous chunks

− Typically each chunk is 16-64MB

− Each chunk replicated (usually 3x)

− Try to keep replicas in different racks

• Master node
− a.k.a. Name Node in Hadoop’s HDFS

− Stores metadata about where files are stored

− Might be replicated

• Client library for file access
− Talks to master to find chunk servers 

− Connects directly to chunk servers to access data



Distributed File System

• Reliable distributed file system

• Data kept in “chunks” spread across machines

• Each chunk replicated on different machines 

− Seamless recovery from disk or machine failure

C0 C1

C2C5

Chunk server 1

D1

C5

Chunk server 3

C1

C3C5

Chunk server 2

…
C2D0

D0

Bring computation directly to the data!

C0 C5

Chunk server N

C2
D0

Chunk servers also serve as compute servers



Programming Model: MapReduce

Warm-up task

• We have a huge text document

• Count the number of times each 

distinct word appears in the file

Sample application

• Analyze web server logs to find popular URLs



Task: Word Count

Case 1:

• File too large for memory, but all <word, count> pairs 
fit in memory

Case 2:

• Count occurrences of words:
− words(doc.txt) | sort | uniq -c

 where words takes a file and outputs the words in it, one per 
line

 uniq’s –c option, --count Prefix lines with a number 
representing how many times they occurred.

• Case 2 captures the essence of MapReduce

− Great thing is that it is naturally parallelizable



MapReduce: Overview

• Sequentially read a lot of data

• Map: Extract something you care about

• Group by key: Sort and Shuffle

• Reduce: Aggregate, summarize, filter or transform

• Write the result

Outline stays the same, Map and Reduce steps change 

to fit the problem



MapReduce: The Map Step

vk

k v

k v
map

vk

vk

…

k v

Input key-value pairs (k, v) Intermediate key-value pairs (k’, v’)

…

k v



MapReduce: The Group by key Step
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MapReduce: The Reduce Step

reduce
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k v
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…

k v

…
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Key-value groups (k’,<v>*) Output key-value pairs (k’, v’’)*



More Specifically

• Input: a set of key-value pairs

• Programmer specifies two methods:

− Map(k, v)  <k’, v’>*

 Takes a key-value pair and outputs a set of key-value pairs

o E.g., key is the filename, value is a single line in the file

 There is one Map call for every (k,v) pair

− Reduce(k’, <v’>*)  <k’, v’’>*

 All values v’ with same key k’ are reduced together 

and processed in v’ order

 There is one Reduce function call per unique key k’



MapReduce: Word Counting

The crew of the space

shuttle Endeavor recently

returned to Earth as

ambassadors, harbingers of

a new era of space

exploration. Scientists at

NASA are saying that the

recent assembly of the

Dextre bot is the first step in

a long-term space-based

man/mache partnership.

'"The work we're doing now

-- the robotics we're doing -

- is what we're going to

need ……………………..

Big document
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Word Count Using MapReduce

map(key, value):

// key: document name 

// value: text of the document

for each word w in value:

emit(w, 1)

reduce(key, values):

// key: a word 

// value: an iterator over counts

result = 0

for each count v in values:

result += v

emit(key, result)



Map-Reduce: Environment

Map-Reduce environment takes care of:

• Partitioning the input data

• Scheduling the program’s execution across a 

set of machines

• Performing the group by key step

• Handling machine failures

• Managing required inter-machine communication



Map-Reduce: A diagram

Big document

MAP
Read input and 

produces a set of 

key-value pairs

GROUP BY
Collect all pairs 

with same key
(Hash merge, 

Shuffle, Sort, 

Partition)

REDUCE
Collect all values 

belonging to the 

key and output



Map-Reduce: In Parallel

All phases are distributed with many tasks doing the work



Map-Reduce

• Programmer specifies:
− Map and Reduce and input files

• Workflow:
− Read inputs as a set of key-value-

pairs

− Map transforms input kv-pairs into 
a new set of k'v'-pairs

− Sorts & Shuffles the k'v'-pairs to 
output nodes

− All k’v’-pairs with a given k’ are 
sent to the same reduce

− Reduce processes all k'v'-pairs 
grouped by key into new k''v''-pairs

− Write the resulting pairs to files

• All phases are distributed with 
many tasks doing the work

Input 0

Map 0

Input 1

Map 1

Input 2

Map 2

Reduce 0 Reduce 1

Out 0 Out 1

Shuffle



Data Flow

• Input and final output are stored on a distributed file 

system (FS):

− Scheduler tries to schedule map tasks “close” to physical 

storage location of input data

• Intermediate results are stored on local FS of Map and 

Reduce workers

• Output is often input to another MapReduce task



Summary



Summary: Processing Platforms

• Batch Processing

− Google GFS/MapReduce (2003)

− Apache Hadoop HDFS/MapReduce (2004)

• SQL

− BigQuery (based on Google Dremel, 2010)

− Apache Hive (HiveQL) (2012)

• Streaming Data

− Apache Storm (2011) / Twitter Huron (2015)

• Unified Engine (Streaming, SQL, Batch, ML)

− Apache Spark (2012)



Summary: Big Data Analytics

Computing Platforms
Distributed Commodity, Clustered High-Performance, Single Node

Data 

Ingestion
ETL, Distcp, 

Kafka, 

OpenRefine, 

…

Data 

Serving
BI, Cubes, 

RDBMS, 

Key-value 

Stores, 

Tableau, …

Storage Systems
HDFS, RDBMS, Column Stores, Graph Databases

Data Definition
SQL DDL, Avro, Protobuf, CSV

Batch Processing Platforms
MapReduce, SparkSQL, BigQuery, Hive, Cypher, 

...

Stream Processing Platforms
Storm, Spark, ..

Query & Exploration
SQL, Search, Cypher, … 



Pointers and Further Reading



Implementations

• Google

− Not available outside Google

• Hadoop

− An open-source implementation in Java

− Uses HDFS for stable storage

− Download: http://lucene.apache.org/hadoop/

http://lucene.apache.org/hadoop/


Cloud Computing

• Ability to rent computing by the hour

− Additional services e.g., persistent storage

• Amazon’s “Elastic Compute Cloud” (EC2)



Readings

• Jeffrey Dean and Sanjay Ghemawat: MapReduce: 

Simplified Data Processing   on Large Clusters

− http://labs.google.com/papers/mapreduce.html

• Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung: 

The Google File System

− http://labs.google.com/papers/gfs.html

http://labs.google.com/papers/mapreduce.html
http://labs.google.com/papers/gfs.html


Resources

• Hadoop Wiki
− Introduction

 http://wiki.apache.org/lucene-hadoop/

− Getting Started
 http://wiki.apache.org/lucene-hadoop/GettingStartedWithHadoop

− Map/Reduce Overview 
 http://wiki.apache.org/lucene-hadoop/HadoopMapReduce

 http://wiki.apache.org/lucene-hadoop/HadoopMapRedClasses

− Releases from Apache download mirrors
 http://www.apache.org/dyn/closer.cgi/lucene/hadoop/

− Eclipse Environment
 http://wiki.apache.org/lucene-hadoop/EclipseEnvironment

• Javadoc
− http://lucene.apache.org/hadoop/docs/api/

http://wiki.apache.org/lucene-hadoop/
http://wiki.apache.org/lucene-hadoop/GettingStartedWithHadoop
http://wiki.apache.org/lucene-hadoop/HadoopMapReduce
http://wiki.apache.org/lucene-hadoop/HadoopMapRedClasses
http://www.apache.org/dyn/closer.cgi/lucene/hadoop/
http://wiki.apache.org/lucene-hadoop/EclipseEnvironment
http://lucene.apache.org/hadoop/docs/api/


Further Reading

• Programming model inspired by functional language primitives

• Partitioning/shuffling similar to many large-scale sorting 
systems
− NOW-Sort ['97]

• Re-execution for fault tolerance
− BAD-FS ['04] and TACC ['97]

• Locality optimization has parallels with Active Disks/Diamond 
work
− Active Disks ['01], Diamond ['04]

• Backup tasks similar to Eager Scheduling in Charlotte system
− Charlotte ['96]

• Dynamic load balancing solves similar problem as River's 
distributed queues
− River ['99]


