
Big Data Analytics

Manos Papagelis

• Data Driven Organizations (DDOs)

• Evaluating DDOs solutions

• Big Data Architectures

• Processing Platforms

− Distributed File System

− The Map-Reduce Programming Model

• Summary

Data Driven Organizations (DDOs)

How non-DDOs make decisions?

• Intuition

• Ad-hoc or based on few customers feedback

• Look at competition

• Try to be different

• Based on assumptions (that may be wrong)

• No way to validate if it was the right decision

4

• Make decisions based on data not intuition

• More precise on what they want to achieve

• Measure and validate with data

Pre DDO

• Did not measure

campaign effectiveness

• Did not cluster customers

• Did not have tailored

campaigns

Result

• Cannibalized own market

• Offered discounts when

not needed

• Significant loss revenue

Post DDO

• Behavioral clustering

• Predictive analytics

• Life-time Value Analysis

• Targeted campaigns

• Measure effectiveness

Result

• Increased revenue

Pre DDO

• Introduced features on

intuition

• No measurable goals

Result

• Sometimes features

decreased engagement

• Many features, unknown

value

• Occasional lost revenue

Post DDO

• A/B testing, measures

• Do not launch unless

measurable benefit

Result

• More successful feature

introductions (increased

engagement)

• Remove features that do

not contribute to metrics

Summary

DDOs

• collect data

• make decisions based on data, not intuition

• use data to drive applications

To be a DDO, you need an efficient way of

storing and retrieving data

Evaluating DDO Solutions

Challenge

• A variety of solutions/technologies available

• There is no one solution/technology that solves all

possible data analytics problems

• Most solutions solve a range of problems, but are

outstanding on a specific type

How to map problems to DDO solutions?

How to compare alternative DDO solutions?

To be able to evaluate DDO solutions you need

to understand your needs

DDOs Evaluation

Data dimension

What characteristics should be
considered with respect to
data?

• Structure

• Size

• Sink Rate

• Source Rate

• Quality

• Completeness

Processing dimension

What characteristics should be
considered with respect to
processing?

• Query Selectivity

• Query Execution Time

• Aggregation

• Processing Time

• Join

• Precision

Other dimensions: cost, implementation complexity, …

RDBMS: Relational model with powerful

querying capabilities

HDFS+M/R: Batch oriented system for

processing and storing large data sets

Storm: A stream processing system that

computes in real-time over large streams

BlinkDB: Experimental system for

approximate query answering over large

data that trade error over response time

Big Data Architectures

Data Analytics Pipeline

Data

Collection

Data
Transformation

Data

Storage

Data

Processing

Data

Publishing

• Handles certain type of data well

• Handles certain ranges of data size well

• Performs certain types of queries and computations well

Physical Storage

Logical Storage

Data Models

Indices/Cache etc

Q
u
e
ry

/P
ro

c
e
s
s
in

g

E
n
g
in

e

Extract

Transform

Load Analytics Reporting

Fundamental Data Store Technology

System of Record

Index/Serving

Technology

Index/Serving

Technology

Index/Serving

Technology

Index/Serving

Technology

Processing Technology

Example: Lambda Architecture

Other examples: Kappa Architecture, Netflix Architecture

Notice the difference!

Processing Platforms

Big Data Technology & Analytics

Computing Platforms
Distributed Commodity, Clustered High-Performance, Single Node

Data

Ingestion
ETL, Distcp,

Kafka,

OpenRefine,

…

Data

Serving
BI, Cubes,

RDBMS,

Key-value

Stores,

Tableau, …

Storage Systems
HDFS, RDBMS, Column Stores, Graph Databases

Data Definition
SQL DDL, Avro, Protobuf, CSV

Batch Processing Platforms
MapReduce, Spark, …

Stream Processing Platforms
Storm, Spark, ..

Query & Exploration
SQL, BigQuery, Hive, SparkSQL, Search, …

Processing Platforms

• Batch Processing

− Google GFS/MapReduce (2003)

− Apache Hadoop HDFS/MapReduce (2004)

• SQL

− BigQuery (based on Google Dremel, 2010)

− Apache Hive (HiveQL) (2012)

• Streaming Data

− Apache Storm (2011) / Twitter Huron (2015)

• Unified Engine (Streaming, SQL, Batch, ML)

− Apache Spark (2012)

Distributed File System & the

Map-Reduce Programming Model

Slides based on Mining of Massive Datasets. http://www.mmds.org

Single Node Architecture

Memory

Disk

CPU

Machine Learning, Statistics

“Classical” Data Analytics

Motivation: Google Example

• 20+ billion web pages x 20KB = 400+ TB

• 1 computer reads 30-35 MB/sec from disk

− ~4 months to read the web

• ~1,000 hard drives to store the web

• Takes even more to do something useful

with the data!

• Today, a standard architecture for such problems is

emerging:

− Cluster of commodity Linux nodes

− Commodity network (ethernet) to connect them

Cluster Architecture

Mem

Disk

CPU

Mem

Disk

CPU

…

Switch

Each rack contains 16-64 nodes

Mem

Disk

CPU

Mem

Disk

CPU

…

Switch

Switch

1 Gbps between any

pair of nodes in a rack

2-10 Gbps backbone

between racks

In 2011 it was guestimated that Google had 1M machines, http://bit.ly/Shh0RO

http://bit.ly/Shh0RO

Large-scale Computing Challenges

• How do you distribute computation?

• How can we make it easy to write distributed programs?

• Machines fail:

− One server may stay up 3 years (1,000 days)

− If you have 1,000 servers, expect to loose 1/day

− People estimated Google had ~1M machines in 2011

 1,000 machines fail every day!

Idea and Solution

• Issue: Copying data over a network takes time

• Idea:

− Store files multiple times for reliability

− Bring computation close to the data

• Storage Infrastructure: Distributed File system

− Google: GFS. Hadoop: HDFS

• Programming Model: Map-Reduce

− Google’s computational/data manipulation model

− Elegant way to work with big data

Storage Infrastructure

• Problem:

− If nodes fail, how to store data persistently?

• Answer:

− Distributed File System:

 Provides global file namespace

 Google GFS; Hadoop HDFS

• Typical usage pattern

− Huge files (100s of GB to TB)

− Data reads and appends are common

− Data is rarely updated in place

Distributed File System

• Chunk servers
− File is split into contiguous chunks

− Typically each chunk is 16-64MB

− Each chunk replicated (usually 3x)

− Try to keep replicas in different racks

• Master node
− a.k.a. Name Node in Hadoop’s HDFS

− Stores metadata about where files are stored

− Might be replicated

• Client library for file access
− Talks to master to find chunk servers

− Connects directly to chunk servers to access data

Distributed File System

• Reliable distributed file system

• Data kept in “chunks” spread across machines

• Each chunk replicated on different machines

− Seamless recovery from disk or machine failure

C0 C1

C2C5

Chunk server 1

D1

C5

Chunk server 3

C1

C3C5

Chunk server 2

…
C2D0

D0

Bring computation directly to the data!

C0 C5

Chunk server N

C2
D0

Chunk servers also serve as compute servers

Programming Model: MapReduce

Warm-up task

• We have a huge text document

• Count the number of times each

distinct word appears in the file

Sample application

• Analyze web server logs to find popular URLs

Task: Word Count

Case 1:

• File too large for memory, but all <word, count> pairs
fit in memory

Case 2:

• Count occurrences of words:
− words(doc.txt) | sort | uniq -c

 where words takes a file and outputs the words in it, one per
line

 uniq’s –c option, --count Prefix lines with a number
representing how many times they occurred.

• Case 2 captures the essence of MapReduce

− Great thing is that it is naturally parallelizable

MapReduce: Overview

• Sequentially read a lot of data

• Map: Extract something you care about

• Group by key: Sort and Shuffle

• Reduce: Aggregate, summarize, filter or transform

• Write the result

Outline stays the same, Map and Reduce steps change

to fit the problem

MapReduce: The Map Step

vk

k v

k v
map

vk

vk

…

k v

Input key-value pairs (k, v) Intermediate key-value pairs (k’, v’)

…

k v

MapReduce: The Group by key Step

k v

…

k v

k v

k v

Intermediate key-value pairs (k’, v’)

Group

by key

k v

…

k v

k v v

v v

Key-value groups (k’,<v>*)

MapReduce: The Reduce Step

reduce

k v

k v

k v

…

k v

…

k v

k v v

v v

Key-value groups (k’,<v>*) Output key-value pairs (k’, v’’)*

More Specifically

• Input: a set of key-value pairs

• Programmer specifies two methods:

− Map(k, v) <k’, v’>*

 Takes a key-value pair and outputs a set of key-value pairs

o E.g., key is the filename, value is a single line in the file

 There is one Map call for every (k,v) pair

− Reduce(k’, <v’>*) <k’, v’’>*

 All values v’ with same key k’ are reduced together

and processed in v’ order

 There is one Reduce function call per unique key k’

MapReduce: Word Counting

The crew of the space

shuttle Endeavor recently

returned to Earth as

ambassadors, harbingers of

a new era of space

exploration. Scientists at

NASA are saying that the

recent assembly of the

Dextre bot is the first step in

a long-term space-based

man/mache partnership.

'"The work we're doing now

-- the robotics we're doing -

- is what we're going to

need ……………………..

Big document

(The, 1)

(crew, 1)

(of, 1)

(the, 1)

(space, 1)

(shuttle, 1)

(Endeavor, 1)

(recently, 1)

….

(crew, 1)

(crew, 1)

(space, 1)

(the, 1)

(the, 1)

(the, 1)

(shuttle, 1)

(recently, 1)

…

(crew, 2)

(space, 1)

(the, 3)

(shuttle, 1)

(recently, 1)

…

MAP
Read input and

produces a set of

key-value pairs

GROUP BY

KEY
Collect all pairs

with same key

REDUCE
Collect all values

belonging to the

key and output

(key, value)

Provided by the

programmer

Provided by the

programmer

(key, value)(key, value)

o
n
ly

 s
e
q
u
e
n
ti
a
l
re

a
d
s

Word Count Using MapReduce

map(key, value):

// key: document name

// value: text of the document

for each word w in value:

emit(w, 1)

reduce(key, values):

// key: a word

// value: an iterator over counts

result = 0

for each count v in values:

result += v

emit(key, result)

Map-Reduce: Environment

Map-Reduce environment takes care of:

• Partitioning the input data

• Scheduling the program’s execution across a

set of machines

• Performing the group by key step

• Handling machine failures

• Managing required inter-machine communication

Map-Reduce: A diagram

Big document

MAP
Read input and

produces a set of

key-value pairs

GROUP BY
Collect all pairs

with same key
(Hash merge,

Shuffle, Sort,

Partition)

REDUCE
Collect all values

belonging to the

key and output

Map-Reduce: In Parallel

All phases are distributed with many tasks doing the work

Map-Reduce

• Programmer specifies:
− Map and Reduce and input files

• Workflow:
− Read inputs as a set of key-value-

pairs

− Map transforms input kv-pairs into
a new set of k'v'-pairs

− Sorts & Shuffles the k'v'-pairs to
output nodes

− All k’v’-pairs with a given k’ are
sent to the same reduce

− Reduce processes all k'v'-pairs
grouped by key into new k''v''-pairs

− Write the resulting pairs to files

• All phases are distributed with
many tasks doing the work

Input 0

Map 0

Input 1

Map 1

Input 2

Map 2

Reduce 0 Reduce 1

Out 0 Out 1

Shuffle

Data Flow

• Input and final output are stored on a distributed file

system (FS):

− Scheduler tries to schedule map tasks “close” to physical

storage location of input data

• Intermediate results are stored on local FS of Map and

Reduce workers

• Output is often input to another MapReduce task

Summary

Summary: Processing Platforms

• Batch Processing

− Google GFS/MapReduce (2003)

− Apache Hadoop HDFS/MapReduce (2004)

• SQL

− BigQuery (based on Google Dremel, 2010)

− Apache Hive (HiveQL) (2012)

• Streaming Data

− Apache Storm (2011) / Twitter Huron (2015)

• Unified Engine (Streaming, SQL, Batch, ML)

− Apache Spark (2012)

Summary: Big Data Analytics

Computing Platforms
Distributed Commodity, Clustered High-Performance, Single Node

Data

Ingestion
ETL, Distcp,

Kafka,

OpenRefine,

…

Data

Serving
BI, Cubes,

RDBMS,

Key-value

Stores,

Tableau, …

Storage Systems
HDFS, RDBMS, Column Stores, Graph Databases

Data Definition
SQL DDL, Avro, Protobuf, CSV

Batch Processing Platforms
MapReduce, SparkSQL, BigQuery, Hive, Cypher,

...

Stream Processing Platforms
Storm, Spark, ..

Query & Exploration
SQL, Search, Cypher, …

Pointers and Further Reading

Implementations

• Google

− Not available outside Google

• Hadoop

− An open-source implementation in Java

− Uses HDFS for stable storage

− Download: http://lucene.apache.org/hadoop/

http://lucene.apache.org/hadoop/

Cloud Computing

• Ability to rent computing by the hour

− Additional services e.g., persistent storage

• Amazon’s “Elastic Compute Cloud” (EC2)

Readings

• Jeffrey Dean and Sanjay Ghemawat: MapReduce:

Simplified Data Processing on Large Clusters

− http://labs.google.com/papers/mapreduce.html

• Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung:

The Google File System

− http://labs.google.com/papers/gfs.html

http://labs.google.com/papers/mapreduce.html
http://labs.google.com/papers/gfs.html

Resources

• Hadoop Wiki
− Introduction

 http://wiki.apache.org/lucene-hadoop/

− Getting Started
 http://wiki.apache.org/lucene-hadoop/GettingStartedWithHadoop

− Map/Reduce Overview
 http://wiki.apache.org/lucene-hadoop/HadoopMapReduce

 http://wiki.apache.org/lucene-hadoop/HadoopMapRedClasses

− Releases from Apache download mirrors
 http://www.apache.org/dyn/closer.cgi/lucene/hadoop/

− Eclipse Environment
 http://wiki.apache.org/lucene-hadoop/EclipseEnvironment

• Javadoc
− http://lucene.apache.org/hadoop/docs/api/

http://wiki.apache.org/lucene-hadoop/
http://wiki.apache.org/lucene-hadoop/GettingStartedWithHadoop
http://wiki.apache.org/lucene-hadoop/HadoopMapReduce
http://wiki.apache.org/lucene-hadoop/HadoopMapRedClasses
http://www.apache.org/dyn/closer.cgi/lucene/hadoop/
http://wiki.apache.org/lucene-hadoop/EclipseEnvironment
http://lucene.apache.org/hadoop/docs/api/

Further Reading

• Programming model inspired by functional language primitives

• Partitioning/shuffling similar to many large-scale sorting
systems
− NOW-Sort ['97]

• Re-execution for fault tolerance
− BAD-FS ['04] and TACC ['97]

• Locality optimization has parallels with Active Disks/Diamond
work
− Active Disks ['01], Diamond ['04]

• Backup tasks similar to Eager Scheduling in Charlotte system
− Charlotte ['96]

• Dynamic load balancing solves similar problem as River's
distributed queues
− River ['99]

