

Large-scale Mining of Dynamic Networks

Manos Papagelis NSERC CreateDAV Summer School 2019

what is a network or a graph?

Network Components

E

- **Network** (or **Graph**) G(N, E)• N
 - Objects: nodes (vertices)
 - Relationships: links (edges)

Built on the mathematics of graph theory

networks are ubiquitous

Networks: Social

Facebook social graph

4-degrees of separation [Backstrom-Boldi-Rosa-Ugander-Vigna,

2011]

Networks: Communication

Graph of the Internet (Autonomous Systems) Power-law degrees [Faloutsos-Faloutsos-Faloutsos, 1999] Robustness [Doyle-Willinger, 2005]

Networks: Knowledge Graph

Understand how humans navigate Wikipedia

Get an idea of how people connect concepts

[West-Leskovec, 2012]

Networks: Biology

Protein-Protein Interaction Networks:

Nodes: Proteins Edges: 'physical' interactions

Metabolic networks:

Nodes: Metabolites and enzymes Edges: Chemical reactions

Networks: Brain

Human brain has between 10-100 billion neurons [Sporns, 2011] why should we care about networks?

Networks: Common Language

Network Analysis

network analysis helps to reveal the underlying dynamics of these systems, not easily observable before

what do we study in networks?

Networks: Structure & Process

Structure and evolution

- What is the structure of a network?
- Why and how did it become to have such structure?

Processes and dynamics

 Networks provide "skeleton" for spreading of information, behavior, diseases

how do we reason about networks?

Reasoning About Networks

• Empirical studies/properties

Study network data to find organizational principles

Mathematical models

Probabilistic, graph theory

Algorithms

Methods for analyzing graphs, solving graph-related problems

Properties

Six degrees of separ.

Power-law degrees

Strength of weak ties

 Densif. power law, Shrinking diameter

Models

Erdös-Renyi model

Small-world model

Community model

Cascade model

Algorithms

Decentralized search

Link analysis

Link prediction

Community detection

Map of Superpowers

CS224W: Social and Information Network Analysis, http://cs224w.stanford.edu

Applying Our Superpowers

Social media analytics

• Viral marketing

Applying Our Superpowers

 Predicting epidemics: Ebola

Drug design

Graph Mining Abstract Methodology

Research Methodology

Current Research Focus

A. Network Representation Learning

C. Streaming & Dynamic Graphs

E. City Science / Urban Informatics / IoT

D. Social Media Mining & Analysis

F. Natural Language Processing

Trajectory Network Mining

Problem 1

Group Pattern Discovery of Pedestrian Trajectories

Problem 2

Mining of Node Importance in Trajectory Networks

Group Pattern Discovery of Pedestrian Trajectories

Joint work with Sawas Abdullah et al.

Pedestrian trajectories

what is a group?

many definitions, many algorithms

e.g., flock, convoy, evolving-clusters, gathering-pattern, ... [ACM TIST Tutorial 2015]

Finding pedestrian groups

Local Grouping

Intuitive method Spatial-only

proximity threshold $\overset{\theta}{\longleftarrow}$

key idea

find **pairs** of pedestrians **x**, **y** where **distance(x, y)** < θ expand **pairs** to discover **groups**

Local grouping

expand the key idea to include the time dimension

Global groups vs. Time-window groups

global grouping time-window grouping
Trajectolizer

Demo

Trajectolizer: System Overview

Trajectolizer: Interactive Demo

Node Importance in Trajectory Networks

Joint work with Tilemachos Pechlivanoglou

Trajectories of moving objects

7L13 BL 1

•

• • •

• •

every moving object, forms a **trajectory** – in **2D** it is a sequence of (**x**, **y**, **t**) there are trajectories of moving **cars**, **people**, **birds**, ...

Trajectory data mining

trajectory similarity

trajectory clustering

trajectory anomaly detection trajectory pattern mining trajectory classification ...more

we care about network analysis of moving objects

Proximity networks

Distance can represent

line of sight

wifi / bluetooth signal range

Trajectory networks

The Problem

Input: logs of trajectories (**x**, **y**, **t**) in time period [0, T] **Output:** node importance metrics

Node Importance

Node importance in static networks

Degree centrality

Closeness centrality

Betweenness centrality

Eigenvector centrality

Node importance in TNs

node degree over time

triangles over time

connected components over time (connectedness)

Applications

infection spreading

security in autonomous vehicles

rich dynamic network analytics

Evaluation of Node Importance in Trajectory Networks

Naive approach

For **every** discrete time unit **t**:

1. obtain static **snapshot** of the proximity network

2. run static node importance algorithms on snapshot Aggregate results at the end

Streaming approach

Similar to naive, but:

- no final aggregation
- results calculated incrementally at every step

Still every time unit

Every discrete time unit

time

Sweep Line Over Trajectories (SLOT)

Sweep line algorithm

A computational geometry algorithm that given line segments computes line segment overlaps

Efficient **one pass** algorithm that only processes line segments at the **beginning** and **ending** points

SLOT: Sweep Line Over Trajectories

(algorithm sketch)

represent TN edges as time intervals

apply variation of sweep line algorithm

simultaneously compute *node degree*, *triangle membership*, *connected components* in **one pass**

Represent edges as time intervals

time

SLOT: Sweep Line Over Trajectories

time

At every edge start

- node degree
 - nodes u, v now connected
 - increment **u**, **v** node degrees
- triangle membership
 - did a triangle just form?
 - look for u, v common neighbors
 - increment triangle (u, v, common)
- connected components
 - did two previously disconnected components connect?
 - compare old components of u, v
 - if no overlap, merge them

At every edge stop

- node degree
 - nodes **u**, **v** now disconnected
 - decrement u, v degree
- triangle membership
 - did a triangle just break?
 - look for u, v common neighbors
 - decrement triangle (u, v, common)
 - connected components
 - did a conn. compon. separate?
 - BFS to see if **u**, **v** still connected
 - if not, split component to two

SLOT: At the end of the algorithm ...

Rich Analytics

- **node degrees**: start/end time, duration
- triangles: start/end time, duration
- connected components: start/end time, duration

Exact results (not approximations)

Evaluation of SLOT

Node degree

Triangle membership / connected components

SLOT Scalability

Takeaway

trajectory networks

network importance over time

SLOT properties:

- fast
- exact
- scalable

SLOT algorithm

Seagull migration trajectories

Thank you!

Questions?

References

[Geoinformatica 2019] A Versatile Computational Framework for Group Pattern Mining of Pedestrian Trajectories. Abdullah Sawas, Abdullah Abuolaim, Mahmoud Afifi, Manos Papagelis. GeoInformatica (Vol. X, No. X, 2019)

[IEEE Big Data 2018] Fast and Accurate Mining of Node Importance in Trajectory Networks. Tilemachos Pechlivanoglou and Manos Papagelis. (IEEE Big Data 2018)

[IEEE MDM 2018] Tensor Methods for Group Pattern Discovery of Pedestrian Trajectories. Abdullah Sawas, Abdullah Abuolaim, Mahmoud Afifi, Manos Papagelis. Proceedings of the 19th IEEE International Conference on Mobile Data Management (IEEE MDM 2018, **best paper award**)

[IEEE MDM 2018] Trajectolizer: Interactive Analysis and Exploration of Trajectory Group Dynamics. Abdullah Sawas, Abdullah Abuolaim, Mahmoud Afifi, Manos Papagelis. Proceedings of the 19th IEEE International Conference on Mobile Data Management (IEEE MDM 2018, demo)

Working with Us

Data Mining Lab @ YorkU

Data Mining Lab

- http://dminer.eecs.yorku.ca/
- focus: data mining / machine learning / graph mining / NLP / big data analytics/ visualization/ applications

Mandate

- Conduct basic research and development
- Equip students with both theoretical knowledge and practical experience

Members

- Two Faculty (Prof. Aijun An, Prof. Manos Papagelis)
- ~20 High Quality Personnel (HQP)
 - ~5 Postdoc, ~6 PhDs, ~8 MSc, ~3 Undergrads, ~1 staff
What We Are Looking For?

(solid) Math & Stat (solid) Programming

(interest in) Data Mining & ML

About you?

Contact: Manos Papagelis papaggel@eecs.yorku.ca www.eecs.yorku.ca/~papaggel