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what Is a network or a graph?
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Network Components

-
-
* Network (or Graph) G (N, E)
— Objects: nodes (vertices) N
— Relationships: links (edges) E

Built on the mathematics of graph theory



networks are ubiquitous
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Networks: Social

Facebook social graph
4-degrees of separation [Backstrom-Boldi-Rosa-Ugander-Vigna,
2011]




Networks: Communication

Graph of the Internet (Autonomous Systems)
Power-law degrees [Faloutsos-Faloutsos-Faloutsos, 1999]
Robustness [Doyle-Willinger, 2005]



Networks: Knowledge Graph
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Networks: Biology
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Metabolic networks:
Nodes: Metabolites and enzymes
Edges: Chemical reactions

Protein-Protein Interaction Networks:
Nodes: Proteins
Edges: ‘physical’ interactions



Networks: Brain

Human brain has between

10-100 billion neurons
[Sporns, 2011]



why should we care

about networks?

IIIIIIIIII



Networks: Common Language

friend

co-worker
Peter

Tom

brothers friend

Albert

Protein 5

Protein 9 .




Network Analysis

network analysis helps to reveal the
underlying dynamics of these systems,

not easily observable before



what do we study in networks?

IIIIIIIIII
IIIIIIIIII




Networks: Structure & Process

 Structure and evolution
— What is the structure of a network?

— Why and how did it become to
have such structure?

 Processes and dynamics

— Networks provide “skeleton”
for spreading of information,
behavior, diseases




how do we reason about networks?
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Reasoning About Networks

« Empirical studies/properties
Study network data to find organizational principles

 Mathematical models
Probabilistic, graph theory

« Algorithms

Methods for analyzing graphs, solving graph-related
problems



Properties

= Six degrees of separ. = Strength of weak ties

= Densif. power law,
Shrinking diameter
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Models
= Erdds-Renyi model = Community model
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= Cascade model




Algorithms

= Decentralized search = Link prediction

= Link analysis = Community detection
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Map of Superpowers

Properties

Small diameter,
Edge clustering

A\ /
'd N\
Scale-free
(G /
'd N\

Strength of weak ties,
Core-periphery

( A

Densification power law,
Shrinking diameters

Information virality,
reproductive number

Models

Small-world model,
Erdds-Renyi model

o /
4 N\

Preferential attachment,
Copying model

Community-affiliation
Graph Model

Microscopic model of
evolving networks

Independent cascade
model, Game theoretic
model, SIR

Algorithms

Decentralized search

PageRank, Hubs and
authorities

Community detection:
Girvan-Newman,
Modularity

Link prediction,
Supervised random
walks

Influence maximization,
Outbreak detection, LIM

CS224W: Social and Information Network Analysis, http://cs224w.stanford.edu




Applying Our Superpowers

« Social media analytics

* Viral marketing




Applying Our Superpowers

* Predicting epidemics:
Ebola

 Drug design

TOP PASSENGER FLOWS:
Number of passengers (weekly)
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Graph Mining

Abstract Methodology
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Research Methodology

Unstructured Structured Entities/
Data Data Relationships
i“ extract @ identify I define
-> -> ->
Graphs/ Graph Applications/
Networks Analytics Decision Making
define




Current Research Focus

7. . .. o "
A. Network Representation Learning B. Trajectory Network Mining
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C. Streaming & Dynamic Graphs

E. City Science / Urban Informatics / loT F. Natural Language Processing



Trajectory Network Mining

Problem 1
Group Pattern Discovery of Pedestrian Trajectories

Problem 2
Mining of Node Importance in Trajectory Networks

28
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Group Pattern Discovery of
Pedestrian Trajectories




Pedestrian trajectories
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what is a group?
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many definitions,
many algorithms

e.g., flock, convoy, evolving-clusters, gathering-pattern, ... [ACM TIST Tutorial 2015]



Finding pedestrian groups

Local Grouping
Intuitive method
Spatial-only

proximity threshold kiﬂ

key idea
find pairs of pedestrians x, y where distance(x, y) <©
expand pairs to discover groups



Local grouping




expand the key idea
to include the
time dimension



Global groups vs. Time-window groups

global time-window
grouping grouping



Trajectolizer

Demo
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Trajectolizer: System Overview

1

Pedestrian .
Pedestrian

Monitoring System Raw (Pedestrian)

|

|

. |
Video Streams Annotation I Trajectory Streams
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|
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e
|11
|
)
N
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l&
Trajectories = Trajectory Refined

Visualization Trajectory Groups Pattern Mining Trajectaries



Trajectolizer: Interactive Demo

descriptive statistics timeline slider area to
about the current frame navigate video frames
Video .o"'".. ot CloecesT 873 f raTes N ...
Frame:1 i. C :: F

Number of pedestrians:70
Average time pedestrians spent:00 Yzl
Pedestrians spom above the average time:

ﬂ ..-"'n.

Proximity distance:Min 10 v Mm{ D :
Neighbors of pedestrian 38 are *eeaeess
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[ grouping analysis current frame with pedestrian

Live DemO IDs and trajectories



http://sg01.eecs.yorku.ca/Trajectolizer/demo/
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Node Importance in Trajectory
Networks




Trajectories of moving objects

every moving object, forms a trajectory —in 2D it is a sequence of (X, y, t)
there are trajectories of moving cars, people, birds, ...



Trajectory data mining

trajectory similarity trajectory clustering

trajectory anomaly detection
trajectory pattern mining
trajectory classification
...more

we care about network analysis of moving objects



Proximity networks
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Distance can represent
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line of sight wifi / bluetooth

signal range



Trajectory networks

0

| .
.

The Problem
Input: logs of trajectories (X, v, t) in time period [0, T]
Output: node importance metrics



Node Importance
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Node importance in static networks
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Betweenness centrality

Closeness centrality Eigenvector centrality



Node importance in TNs

KR

node degree over time triangles over time

P

connected components over time
(connectedness)



Applications

~
= i =
. A o)
Infection spreading security in autonomous
vehicles
X

rich dynamic network analytics



Evaluation of Node Importance

In Trajectory Networks
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Nalve approach

0

.

For every discrete time unit t:

1. obtain static snapshot of the proximity network

2. run static node importance algorithms on snapshot
Aggregate results at the end



Streaming approach

Similar to naive, but:
- no final aggregation

- results calculated incrementally at every step

Still every time unit



Every discrete time unit
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Sweep Line Over Trajectories

(SLOT)
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Sweep line algorithm

A computational geometry algorithm that given
line segments computes line segment overlaps

pairs = ()

Efficient one pass algorithm that only processes
line segments at the beginning and ending points



SLOT: Sweep Line Over Trajectories
(algorithm sketch)

represent TN edges as time intervals
apply variation of sweep line algorithm

simultaneously compute node degree, triangle
membership, connected components in one pass



Represent edges as time intervals

e;:(Ng,Ny)

edges




SLOT: Sweep Line Over Trajectories

e (n,n,)| ;

edges




At every edge start

e nNode degree

: — nodes u, v now connected
e:(U,V) |+ p— - Increment u, v node degrees

edges

e triangle membership
— did a triangle just form?
> — look for u, v common neighbors
— Increment triangle (u, v, common)

e connected components
— did two previously disconnected
components connect?
— compare old components of u, v
— if no overlap, merge them



At every edge stop

S  node degree
: — nodes u, v now disconnected
e:(u,v) | - e — decrement u, v degree

edges

e triangle membership
— did a triangle just break?
— look for u, v common neighbors
— decrement triangle (u, v, common)

e connected components
— did a conn. compon. separate?
- BFSto see if u, v still connected
— if not, split component to two




SLOT: At the end of the algorithm ...

Rich Analytics

— node degrees: start/end time, duration

— triangles: start/end time, duration

— connected components: start/end time, duration

Exact results (not approximations)



Evaluation of SLOT
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Node degree

20K
—ili— Naive

15K Streaming
—— SLOT

Running Time (s)
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Triangle membership / connected components
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SLOT Scalability
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edges

Takeaway

X'j b

N

trajectory networks network importance over time

01| e SLOT properties:
TR - fast
L= ] - exact

- scalable
SLOT algorithm



Seagull migration trajectories

data from Wikelski et al. 2015



Thank you!



Questions?
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Working with Us
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Data Mining Lab @ YorkU

« Data Mining Lab
— http://[dminer.eecs.yorku.ca/

— focus: data mining / machine learning / graph mining / NLP / big
data analytics/ visualization/ applications

 Mandate
— Conduct basic research and development
— Equip students with both theoretical knowledge and practical
experience
« Members
— Two Faculty (Prof. Aijjun An, Prof. Manos Papagelis)
— ~20 High Quality Personnel (HQP)
= ~5 Postdoc, ~6 PhDs, ~8 MSc, ~3 Undergrads, ~1 staff



http://dminer.eecs.yorku.ca/

What We Are Looking For?
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(solid) (solid) (interest in)
Math & Stat Programming Data Mining & ML
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About you?

Contact:

Manos Papagelis
papaggel@eecs.yorku.ca
www.eecs.yorku.ca/~papaggel
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