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what is a network or
a graph?



Network Components

*
Network (or Graph) G(N,E)
Objects: nodes (vertices) N
Relationships: links (edges) E

Built on the mathematics of graph theory



networks are
ubiquitous



Networks: Social

Facebook social graph
4-degrees of separation [Backstrom-Boldi-Rosa-Ugander-Vigna, 2011]




Networks: Communication
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Graph of the Internet (Autonomous Systems)



Networks: Knowledge Graph
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Networks: Biology
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Protein-Protein Interaction Networks: Metabolic networks:
Nodes: Proteins Nodes: Metabolites and enzymes

Edges: ‘physical’ interactions Edges: Chemical reactions



Networks: Brain

Human brain has between

10-100 billion neurons
[Sporns, 2011]




why should we care
about networks?



Networks: Common Language

friend
co-worker

friend Tom

Protein 5

Protein 9 .




Network Analysis

network analysis helps to reveal the
underlying dynamics of these systems,
not easily observable before



what do we study in
networks?



Networks: Structure & Process

Structure and evolution

What is the structure of a network?

Why and how did it become to
have such structure?

Processes and dynamics

Networks provide “skeleton”
for spreading of information,
behavior, diseases

.....



how do we reason
about networks?



Reasoning About Networks

Empirical studies/properties

Study network data to find organizational principles

Mathematical models
Probabilistic, graph theory

Algorithms

Methods for analyzing graphs, solving graph-related problems



Properties

Six degree
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Erdos-Renyi model Community model
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Cascade model




Algorithms

Decentralized search Link prediction

Community detection




Map of Superpowers

Properties

Small diameter,
Edge clustering

Scale-free

Strength of weak ties,

Core-periphery

Densification power
law,
Shrinking diameters

Information virality,

reproductive number

Models

Small-world model,
Erdds-Renyi model

Preferential
attachment, Copying
model

Community-affiliation
Graph Model

Microscopic model of
evolving networks

Independent cascade
model, Game theoretic
model, SIR

Algorithms

Decentralized search

PageRank, Hubs and
authorities

Community detection:
Girvan-Newman,
Modularity

Link prediction,
Supervised random
WEIS

Influence maximization,
Outbreak detection, LIM

CS224W: Social and Information Network Analysis, http://cs224w.stanford.edu

\




Applying Our Superpowers

Social media )
analytics | Q

Viral marketing . RAXA
P AR



plying Our Superpowers

Predicting epidemics: ;'
Ebola T
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Our Research



Current Research Focus

A. Trajectory Data Mining
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C. Streaming & Dynamic Graphs

E. City Science / Urban Informatics / 0T

B. Network Representation Learning
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D. Social Media Mining & Analysis

F. Natural Language Processing



Trajectory Data Mining




Trajectory Network
Mining



Node Importance

Given a network which
node is more important?



Node Importance

Various notions of node importance (or node centrality)
Degree centrality (= degree of u)
Betweenness centrality (= #shortest paths passing through u)

Closeness centrality (= avg. length of shortest paths from u to all
other nodes of the network)

Eigenvector centrality (= like PageRank)



Trajectories of Moving Objects

Every moving object, forms a trajectory —in 2D it is a sequence of (x, v, t)
There are trajectories of moving cars, people, birds, ...



Trajectories of Moving Objects
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Every moving object, forms a trajectory —in 2D it is a sequence of (x, v, t)
There are trajectories of moving cars, people, birds, ...



Proximity Network at time t

S)

proximity threshold |« "

connect all nodes x, y where distance(x, y) < ©



Trajectory Networks

Trajectories Trajectory Networks

Given a trajectory network which node
IS more important?


https://www.eecs.yorku.ca/~papaggel/example/trajectory-networks-noedges-visualization.html
https://www.eecs.yorku.ca/~papaggel/example/trajectory-networks-visualization.html

what we care
about?



Node Importance iInTNs

Node Importance in Trajectory Networks
Node degrees over time (+ durations)
Triangles over time (+ durations)

Connected components over time (+ durations)
Applications

Rich dynamic network analytics
Disease spreading (influenza)
Security (in Vehicle-to-Vehicle communications)



how to solve the
problem?



Group Pattern Discovery of
Pedestrian Trajectories



Pedestrian Trajectories




what s a
group?



many definitions,
many algorithms

e.qg., flock, convoy, evolving-clusters, gathering-pattern, ... [see ACM TIST Tutorial 2015]



Finding Pedestrian Groups

Local Grouping
Intuitive method
Spatial-only

proximity threshold kiﬂ

key idea
find pairs of pedestrians x, y where distance(x, y) < 0
expend pairs to discover groups



Local Grouping

Group #4
M Group #5
Group #6




Challenge: Projection into Ground Plane

High perspective distortion - pedestrians closer to the camera
appear larger than the ones farther away

Estimated Homography to overcome this distortion




expand the key idea
to include the
time dimension



Global Grouping vs. Time-window Grouping

Global Time-window
Grouping Grouping



Trajectolizer




Trajectolizer: System Overview
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Trajectolizer: Interactive Demo

descriptive statistics tlm.ellne sl_l:j:ler ?rea to
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http://sg01.eecs.yorku.ca/Trajectolizer/demo/
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Back to Our Long-term Goal



end-to-end graph
analytics



End-to-end Graph Analytics

Unstructured Structured Entities/
Data Data Relationships
extract identify |I define
-> -> ->
Graphs/ Graph Applications/
Networks Analytics Decision Mak|ng
define AU~
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Working with Us




What We are Looking For?
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Thanks!



Questions?



About you?

Contact:

Manos Papagelis
papaggel@eecs.yorku.ca
www.eecs.yorku.ca/~papaggel
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