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Abstract—The relationship between human mobility and the
spread of an infectious disease has been well documented. At
the same time, availability of mobility data is growing due to
advancements in digital contact tracing mobile applications and
GPS-enabled devices. Motivated by these observations, we have
designed and developed STRIPE (Safe Trips during Epidemics),
a mobility-based recommendation system that can provide safer
trip recommendations to individuals. The recommendation model
considers the risk of infection of alternative trips between an
origin and destination. It also considers the risk of infection of
specific points of interests (POIs) that occur at the microscale. In
this paper, we present a high-level architecture of the system, its
main features and system use cases. The broader impact of our re-
search is that by helping individuals making informed decisions,
we promote more responsible behaviors in the community as a
whole that could effectively alleviate the impact of the epidemic.

Index Terms—mobility data, recommendation systems, risk
maps, safe trips, epidemics

I. INTRODUCTION

Motivation. The COVID-19 pandemic has led to a devastating
social and economic disruption, ranging from a dramatic loss
of human lives to unprecedented challenges to public health
systems1. At the same time, the epidemic outbreak has been
met by an unprecedented response by experts who simulta-
neously focused on pharmaceutical and non-pharmaceutical
interventions to control the spread of the epidemic. Our work
is motivated by recent advanced technological responses to
the problem based on digital contact tracing that have claimed
some success in controlling the epidemic [1].

Our approach. The focus of the current research is on
utilization of GPS-enabled digital traces of individuals (i.e.,
mobility data or trajectories) to inform a more comprehensive
analysis and modeling of disease spreading through methods
of trajectory data mining. These methods can enable evidence-
based data-driven models to support decision-making and
inform public policy of targeted non-pharmaceutical mobility-
related interventions [2]–[4]. In fact, it has been shown that
human mobility has considerable impact on the spread of in-
fectious diseases [5]. However, models have mostly focused on
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Fig. 1. High-level system overview of STRIPE.

higher-level mobility patterns, such as flight connections and
inter-city or inter-neighborhood mobility. Here, we focus on
developing microscopic models to assess the risk of infection
of individuals based on their mobility behavior and evaluate
personalized strategies for mitigating that risk.

Contributions. Towards that end, we designed and developed
a system that can assess the risk of infection based on mobility
patterns. In particular, we present STRIPE (Safe Trips during
Epidemics), a web-based proof-of-concept prototype that can
provide several (alternative) risk-based personalized trip rec-
ommendations in a specified geographic area. The novelty of
our data-driven recommendation system is multifold:

• it provides risk (of infection) assessment of a geographic
area based on mobility dynamics;

• it provides risk (of infection) assessment of points of
interests (POIs) that occur at the microscale;

• it incorporates the heterogeneity of the mobility patterns
of individuals to provide safe trip recommendations.

Our work is based on the assumption that real-time mobility
data of individuals is available, which can be enabled by
mobile applications and location-based services [2].

Organization. The remainder of the paper is organized as
follows. Section II provides a high-level overview of the
system. Section III describes the user interface, and provides
information on the demo scenarios. The related work is
discussed in Section IV. We conclude in Section V.



II. SYSTEM OVERVIEW

A high-level overview of our system can be seen in Fig.
1, where the lower part represents a mobility platform and
the upper part represents services/applications enabled by the
platform that have been developed. In this section, we further
elaborate on these components of our recommendation system.

A. The Mobility Platform

Hexagonal grid map. Our STRIPE system is operating on
top of an arbitrary geographic map that has been tessellated
by a disjoint finite set of blocks B = {bi} in the shape of
regular hexagons. Hexagons are the most “circularly-shaped”
polygons that are able to tessellate and form an evenly-spaced
grid; they are also able to reduce sampling bias that is due to
the edge effects of a grid map’s shape. This is mostly due to the
circularity of hexagons that enables a natural representation
of curvatures in trajectory data, and as such is preferable over
square or triangular grid tessellation when analyzing various
properties of mobility data (e.g., movement paths, connectivity,
etc.) [6]. Fig. 1 (leftmost part of the mobility platform layer)
illustrates how a hexagonal grid overlays an arbitrary input
map for the study of epidemics. The resultant hexagonal grid
map can then be used in two ways: (i) as an input map
where we seek to evaluate the risk of infection associated
with each hexagon block, and (ii) as an input map providing
the primitive units (hexagons) for forming hierarchical multi-
blocks by grouping together contiguous hexagons.

Block infection risk assessment. We have developed methods
which, given as input the hexagonal grid map of a geographic
area and pedestrian mobility data (trajectories) on the same
area for an observation period [0, T ], can assess the risk of
infection of each hexagon block in the map as a function of
time. The risk of infection of a hexagon b ∈ B at a time
t ∈ [0, T ] depends on the number of individuals nt

b that are
found in block b at time t. Fig. 1 (lower right corner) shows
an illustrative example where the value nt

b of each block for
a specific time is depicted in red. More specifically, the risk
of infection in a single hexagon is related to the number of
possible contacts with other individuals. If the size of the
hexagon is small enough (as is the case in our epidemic-
related analysis), then the potential number of contacts ctb
(i.e., pairs of individuals) in a block b at time t is given by
ctb = nt

b(n
t
b−1)/2. The larger the number of individuals found

in a specific block at a specific time, the more the potential
contacts, and thus the higher the infection risk in that block.

POI representation as multi-blocks. A point of interest
(POI) in our context is any building that is visited often by
individuals, such as grocery stores, restaurants, pharmacies,
and so on. Given a set of POIs P = {pi} within the specified
geographic area, along with the tessellated hexagonal grid map
(see upper right corner of the mobility platform of Fig. 1),
we can form multi-block entities by grouping together several
contiguous blocks that span the area of a POI. Note that some
hexagons may not be part of any POI. Fig. 2 provides a more
detailed example of the hierarchical multi-block representation

Fig. 2. Hierarchical multi-block representation of POIs.

Fig. 3. An example of two POIs that span the same number of blocks (9
hexes) and have same occupancy (18 individuals), but exhibit different risk
due to different statistical dispersion.

of POIs. In theory, this multi-block grouping scheme can be
further extended to provide a more comprehensive hierarchy
of entities that one can study. For instance, multiple POIs can
belong to the same mall or city neighborhood, and so on.

POI infection risk assessment. The main purpose for rep-
resenting POIs as multi-blocks is to be able to analyze the
risk of infection dynamics within these higher-level entities
(or the POI risk) based on some sensible aggregation of the
risk of infection of block units (hexagons). Note however that
the distribution of individuals to the blocks that make up a
multi-block can have a significant impact on a POI’s risk of
infection. To better conceptualize this, imagine two POIs, say a
grocery store and an open-concept mall, comprising the same
number of hexagon blocks and having the same number of
visitors. In the grocery store people are getting through narrow
or restricted corridors, while in the open-concept mall people
move around more freely. As the risk associated to a block
b at time t has a quadratic relationship with the number of
individuals nt

b in it (as ctb = nt
b(n

t
b−1)/2), it can be concluded

that these two POIs will be associated with a different risk
of infection. Specifically, a higher risk of infection will be at-
tributed to those POIs where more individuals are concentrated
in fewer blocks, for the same amount of time. Fig. 3 shows
an illustrating example, where POIs 1 and 2 are represented
by the same number of blocks and they have the same total
occupancy at time t. However, due to the different distribution
of individuals in blocks, they are associated with a different
risk of infection. More formally, we model this phenomenon,
using the concept of statistical dispersion metric of individuals
in POIs – in which the standard deviation is deemed as the
natural choice of measure [7]. In particular, our system can
evaluate the risk of infection of a specific POI for varying
values of the standard deviation σ = {0.5, 1.0, 2.0, 3.0,∞}
– where ∞ represents a uniform dispersion. Note that the
uniform dispersion is what is usually captured by studies
that evaluate risk based on building occupancy alone, without
considering the distribution of individuals within the building.
Our system provides quantitative evidence that POIs that lead
to dense concentrations of individuals (i.e. lower values of
dispersion) are associated with a higher risk of infection.



B. Enabled Services/Applications

Given the functionality provided by the mobility platform
component of our STRIPE system, several enabled services
and/or applications open up for use. Below, we elaborate on
three important ones that have already been deployed.

Risk map visualization. This service provides a heatmap
visual of the infection risk in a specific geographic area.
Formally, given a specified map and mobility data defined on
it, each block’s risk is computed. Risk values then inform a
heatmap, where the more red a hex is, the higher the risk.

Safe trip recommendation. This service provides person-
alized safe trip recommendations. Formally, given a query
q(s, d, tdepart), where s and d are source and destination loca-
tions, and tdepart is the departure time, it recommends several
safe alternative trips T = {τ1, τ2, τ3, ...} that minimizes a
trip’s infection risk. As shown in the services and applications
layer of Fig. 1, safe (i.e., low risk) trips from the origin (red
marker) to the destination (purple marker) can be suggested
(blue, green and pink paths in the example).

Safe POI recommendation. This service provides person-
alized safe POI recommendations. Formally, given a query
q(s, r, k, tdepart), where s is the source location, r is the radius
distance around s, and tdepart is the departure time, it returns
a ranked list of the top k safest POIs P = {p1, p2, ..., pk}
that minimizes the infection risk when visited. As illustrated
in the services and applications layer of Fig. 1, safe POIs
(i.e., low risk POIs) that are in the vicinity of the source (red
marker) can be recommended. As our work does not intend
on associating a specifically-named POI to a numerical risk
value, we instead recommend safe POIs (purple markers) and
display their rankings.

III. DEMONSTRATION

Two snapshots of the system’s user interface are shown in
Fig. 4 and Fig. 5. They are both comprised of four panes: (A)
three tabs for choosing between service – POI Recommender,
Trip Recommender, or Searched Results; (B) two tabs for
choosing between third-party routing-services – OSRM or
GraphHopper, which provide paths between two given points,
along with their respective distance and duration; (C) based
on the selection in (A), a customized form relevant to that
query, and (D) visualization of the query result.

In the case of safe trip recommendation (Fig. 4), pane
(C) depicts a form requesting information regarding the point
of origin, destination and time of departure. Then, pane (D)
provides the visual output, where the blue marker represents
the origin, the red marker represents the destination, and
possible trips are represented with semi-transparent blue; the
suggested safest trip is represented with a bold blue color. The
intensity of the red hexagons represent the relative risk of that
area, where the more opaque the area is, the higher the risk.

In the case of safe POI recommendation (Fig. 5), pane (C)
depicts a form requesting information regarding the origin,
POI category (e.g., grocery store), number of results, distance
from the origin (in km), sorting criteria (such as nearest, fastest

Fig. 4. A screenshot depicting safe trip recommendations.

Fig. 5. A screenshot depicting safe POI recommendations.

or safest), mode of transit and time of departure. Then, pane
(D) visualizes the results, where the blue marker is the origin
and the red markers are the suggested POIs within r km from
the origin. The red hexagons’ intensity represents their relative
risk, and the trips are represented with semi-transparent blue.
The safest trip is represented with a bold blue color. The sorted
results can be viewed in the Searched Results tab of pane (A).

Implementation details. Our work makes use of synthetic
mobility traffic data of individuals generated by SUMO (Sim-
ulation of Urban MObility) [8], an open-source package that
can simulate individual mobility. Routing information of trip
recommendations rely on two third-party routing services,
OSRM2 and GraphHopper3. Our mobility platform uses visu-
alization from Leaflet4, an open-source JavaScript library that
can display interactive visualizations of maps. Furthermore,
our system makes use of OpenStreetMap5 that contains free-
to-use map data of the world under an ODbL license.

Demonstration scenarios. During the demonstration, end-
users will be able to use our system, with preprocessed
trajectories, risk map and POIs, in order to observe a risk
map, and evaluate the risk associated with trips and POIs. In
particular, they will be able to: (i) project the time-varying
risk map on a pre-defined geographical area, (ii) query about
safe trips from source to destination and be informed about
their associated risk value, (iii) query about safest, nearest and
fastest POIs under a varying set of constraints, such as place
of origin, radius and departure time.

2http://project-osrm.org/
3https://www.graphhopper.com/
4https://leafletjs.com/
5https://www.openstreetmap.org/



IV. RELATED WORK

Utilizing mobility data has been an entrancing research
direction due to a plethora of useful applications [9]–[11]; as
such we review some works relevant to this research direction.

Human mobility and epidemics. The relationship between
mobility and the spread of infectious diseases has been well
documented. For example, Hazarie et al. [12] studied 163
global cities and noted a positive correlation between COVID-
19 infection risk and human mobility, where infection risk
is higher in relatively denser places. Pechlivanoglou et al.
[13] studied infectious disease spreading in mobility networks
and suggested network targeted interventions that mitigate the
spread without imposing strict mobility restrictions.

Personalized trip recommendation models. Providing per-
sonalized trip recommendations is an optimization problem
that aims to maximize a trip-related objective, while satisfying
various constraints. Closer to our work is a popular variation
that seeks to provide POI recommendations. For instance, Deb-
nath et al. [14] considered preference-aware context with tem-
poral influence in travel route recommendation and location-
based social networking problems. Qian et al. [15] utilized
spatiotemporal context-aware recommendation frameworks to
model third-order relations among users for large-scale POI
recommendation.

Trajectory data mining. With a substantial amount of work
done in the area, surveys such as [16], [17] compiled and
summarized the significant contributions.

V. CONCLUSIONS & DISCUSSION

Motivated by the global pandemic and the availability
of mobility data becoming available through digital contact
tracing devices and mobile applications, we have developed
a mobility platform that encapsulates advanced computational
methods to evaluate the risk of infection associated with (i)
specific trips, and (ii) visiting specific POIs of a geographic
area. Based on this mobility data analysis, we designed and
developed an interactive web-based recommender service that
allows users to submit queries and obtain vital information
regarding the associated risk of specified origin-destination
trips, or risk of visiting specific POIs in their vicinity. The
broader impact of our work is that the system helps individuals
to make informed decisions and promote responsible behavior
in the community that can effectively control the epidemic.

Inherent system limitations. An inherent limitation of the
system is that it assumes availability of mobility data. Al-
though these data are available and can be obtained by third-
parties, in this work we relied on realistic synthetic mobility
data (trajectories). Another assumption is that information
about POIs’ occupancy levels over time is available. Again,
these data can be easily obtained by third-party services, such
as SafeGraph6, but in this work we relied on simulated data to
represent POIs’ different levels of occupancy (as %) to ensure
actual risk of visiting a specific POI is kept private.

6Places Data & Foot Traffic Insights – https://www.safegraph.com

Mobility platform extensibility. While our platform was
designed with epidemic-specific services in mind, it is general
and can thus be easily adopted to serve other domain-specific
applications. For instance, the risk map could be informed by
public data related to traffic incidents to inform about safe
trips in road networks. Similarly, we can extend the safe POI
recommendation model to other risk models, such as building
code violations or neighborhood crime rates.
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