
Efficient Mining and Exploration of Multiple
Axis-aligned Intersecting Objects

Tilemachos Pechlivanoglou, Vincent Chu and Manos Papagelis
Lassonde School of Engineering, York University, Toronto, Canada

{tipech, vwchu, papaggel}@eecs.yorku.ca

Abstract—Identifying and quantifying the size of multiple
intersections among a large number of axis-aligned geometric
objects is an essential computational geometry problem. The
ability to solve this problem can effectively inform a number of
spatial data mining methods and can provide support in decision
making for a variety of applications. Currently, the state-of-the-
art approach for addressing such intersection problems resorts
to an algorithmic paradigm, collectively known as the sweep-
line algorithm. However, its application on specific instances
of the problem inherits a number of limitations. With that
mind, we design and implement a novel, exact, fast and scalable
yet versatile, sweep-line based algorithm, named SLIG. Our
algorithm can be employed in a number of problems and
applications involving the efficient computation of numerous
axis-aligned object intersection problems in multiple dimensions.
The key idea of our algorithm lies in constructing an auxiliary
data structure when the sweep line algorithm is applied, an
intersection graph. This graph can effectively be used to provide
connectivity properties among overlapping objects, as well as to
inform the much harder problem of finding the location and size
of the common area defined by multiple overlapping objects. A
thorough experimental evaluation on synthetic data of various
characteristics and sizes, demonstrates that SLIG performs sig-
nificantly faster than classic sweep-line based algorithms. SLIG
is not only faster and more versatile, but also provides a suite of
powerful querying capabilities. To support the reproducibility of
our methods, we make source code and datasets available.

Index Terms—geometric intersection problems, multiple inter-
sections, intersection graph, sweep-line

I. INTRODUCTION

Identifying intersections of a large number of axis-aligned
geometric objects in multiple dimensions is an essential com-
putational geometry problem [1]. The axis-aligned require-
ment describes objects whose shapes are aligned with the
coordinate axes of the space; that includes line segments in
1-D, rectangles or boxes in 2-D, cuboids in 3-D, and so
on (see Fig. 1a, 1b, 1c). A related, but more challenging
problem, is that of identifying multiple intersections of such
objects. The ability to solve this problem can effectively
inform various data mining and querying methods, as well
as various critical applications, such as spatial databases [2],
VLSI physical design [3], spaciotemporal data analysis [4],
computer graphics and simulation collision detection [5].

Currently, the state-of-the-art approach for addressing such
intersection problems is an algorithmic paradigm that employs
a conceptual sweep line to solve various problems in Euclidean
space, collectively known as the sweep-line or plane sweep
algorithm [6]. While this paradigm has been successfully used

(a) 1-D line segments (b) 2-D rectangles

(c) 3-D cuboids (d) Intersection graph

Fig. 1: Example of axis-aligned regions in 1-D, 2-D and 3-D,
and the corresponding intersection graph. A, B, C and D are
all intersecting with each other, forming a common region.

in a number of problems, its application on specific instances
of the intersection problem can be problematic due to its lack
of versatility. Classic sweep-line implementations are typically
designed with definite specifications and cannot easily be
adapted to different problems, such as multiple intersections or
with arbitrary dimensions. With these limitations in mind, we
design and propose Sweep Line Intersection Graph(SLIG), a
sweep-line based algorithm that can be employed in a number
of problems and applications involving the efficient computa-
tion of multiple object intersections in many dimensions. The
key idea of our algorithm lies in constructing an auxiliary data
structure along with the sweep line algorithm, an intersection
graph. This graph can effectively be used to efficiently identify
sets of multiple intersecting objects by utilizing the thoroughly
explored graph theory problem of clique enumeration.

In summary, the major contributions of this work are:
• We present MULTIINTERSECT, a novel challenging prob-

lem related to geometric object intersections in multiple
dimensions. This problem can appear in diverse applica-
tions and domains, but cannot be easily addressed using
traditional implementations of state-of-the-art algorithms.

• We design and implement SLIG, a novel sweep-line
based algorithm that can efficiently address the introduced
problem. The algorithm is utilizing information coming
from an auxiliary data structure, an intersection graph,
and is fast, exact, versatile and scalable.

• We present a thorough experimental evaluation of SLIG
against state-of-the-art algorithms that demonstrate that
our algorithm is superior for a range of conditions.

• We make source code and data publicly available to
encourage reproducibility of results.

The remainder of this paper is organized as follows: Section
II introduces notation and formally defines the problems of
interest in this paper. Our proposed methods, sensible baselines
and the overall computational framework are presented in
Section III. In Section IV we present implementation details of
our algorithms. Section V presents an experimental evaluation
of the methods and algorithms. After reviewing the related
work in Section VI, we conclude in Section VII.

II. PROBLEM OF INTEREST

In this section, we introduce notation and formally present
the problem of interest in this paper.

A. Preliminaries

It is important to note that the methods we present gener-
alize to multiple dimensions. Therefore, for the rest of this
document, we use the term regions to refer to geometric
objects in Rd, where d ≥ 1 (i.e., line segments in 1-D,
rectangles or boxes in 2-D, cuboids in 3-D, etc.). Even though
our implementations are general, we only report values for up
to d = 3 in the experiments, as that should be enough to
demonstrate the behavior of the methods in most scenarios.

Related to the problem we aim to address is the way that
geometric objects are overlapping with each other. Consider
for example the regions A and B in Fig. 1b. As they are
overlapping with each other, they form a common region ZAB

that consists of all points in space that belong to both regions
A and B. In order to generalize the concept of common region
to more than two regions, we need to consider all the different
ways that overlaps can occur. For example, in Fig. 1b, regions
A, D and E have some pairwise overlaps (ZAD, ZDE), but
they do not all overlap with each other forming a single
common region (ZADE). On the other hand, regions A, B, C,
D are all overlapping with each other forming ZABCD, each
point of which belongs to (is covered by) all four regions.
We introduce the concept of intersection cardinality k to
refer to the type of overlapping regions that we are interested
in detecting and reporting. Formally, given a set of regions
S = {s1, s2, . . . , sn} that individually may or may not overlap
with each other, we can construct sets of regions Ii ⊆ S where
all regions in each I fully intersect with each other, forming
a common region Z, while each subset I has cardinality k
equal to its size |I|. For example, when k = 2 there is a pair
of regions that intersect to form a common region, when k = 3
there is a trio of regions, when k = 4 there is a quadruplet,
and so on. A worst-case scenario exists where k = n, where
n = |S| is the total number of objects, meaning that all regions
are overlapping with each other; this, however, is a degenerate
case for most real-world scenarios or applications.

TABLE I: Summary of Notations
Notation Description

d Number of dimensions
si An axis-aligned region in Rd

S A set of regions {s1, s2, . . . , sn}
I A subset of S, whose regions all intersect with each other
Z The common overlap region of all regions in I
k Intersection cardinality of I
l Number of fully intersecting sets Ii in S
lmax Number of maximal cliques in RIG

TABLE II: Computational Complexity of MULTIINTERSECT

NAIVE O(d2m)
SWEEPLINE O(d · n logn+ d(l log l)k)

SLIG O(d · n logn+ n · lmax)

B. Problem

We are now in position to formally define the problem of
interest in this paper.

MULTIINTERSECT: Given a set S = {s1, s2 . . . , sn} of n
regions in Rd, d ≥ 1, enumerate all the sets of intersecting
regions Ii ⊆ S, and their respective common regions Zi.

For example, given the set of regions S = {A,B,C,D,E}
of Fig. 1b, we seek to find the intersecting sets AB, AC, AD,
BC, BD, CD, DE, ABC, ABD, ACD, BCD, ABCD.

Note that this problem is difficult to compute using the
classic state-of-the-art algorithms. Although it’s possible to use
modified versions of the sweep-line algorithm to accommodate
a specific instance of the problem, it won’t be versatile enough
to accommodate other versions of the problem, or an arbitrary
number of dimensions. Furthermore, any possible solutions to
the presented problem are inherently expensive even for 2- and
3-D cases [7], let alone for more dimensions.

III. METHODOLOGY

In this section, we describe different methods for address-
ing the MULTIINTERSECT problem defined in the previous
section. We present a naive implementation to address the
problem and its limitations, and we follow by describing in
detail of how one would utilize the state-of-the-art sweep-
line paradigm instead; this is used as a sensible baseline to
compare against our more sophisticated algorithm. Finally,
we outline our proposed algorithm, SLIG, a sweep-line based
algorithm that constructs and utilizes an intersection graph to
greatly simplify and speed up the solution to the problem.
As all methods described below compute exact results (not
approximated in any way), discussion about the accuracy of
the methods isn’t necessary. Table II provides a summary of
the computational complexities for the different methods.

A. The NAIVE Method
Finding whether a pair of regions in Rd intersect or not is

straightforward, as it’s only necessary to compare the corner
points of both regions in all dimensions. There are, however,
different methods to select which of the possible regions
should be compared with each other, resulting in different
numbers of unnecessary comparisons. The simplest approach
is comparing every region in S with every other, finding

Fig. 2: Illustrative example of a sweep-line algorithm that can
determine intersections of 1-D regions (line segments).

intersecting pairs, and then proceed to compare the common
region defined by every intersecting pair with every other
region to find triple intersections, and so on. This iterative
process has to be continued until no more intersections are
found or the maximum cardinality k = n has been reached. As
is apparent, the computational cost of such a method increases
exponentially with the number of regions in S. For a specific
k, the k combinations of the n regions in S are given by(
n
k

)
and enumerating all k-combinations (i.e., k = {2, 3, ..n})

would be
∑

2≤k≤n

(
n
k

)
= 2n. Moreover, as the same process

has to be followed for every dimension, the computational cost
of NAIVE becomes O(d2n). Unless the dataset is extremely
small or there are very few intersections occurring, the cost of
that computation would be prohibitively large.

B. The SWEEPLINE Method
While the NAIVE method has several shortcomings, better

alternatives for addressing intersection problems exist in the
literature. The sweep-line, or Bentley-Ottmann, algorithm [8]
is an algorithmic paradigm that uses a conceptual sweep
line to identify and report pairs of intersecting objects in
Euclidean space. Given a set of d-dimensional regions (e.g.,
line segments, rectangles, cuboids, etc.), the first step of the
algorithm is constructing a list that includes the start and
stop points of all regions in each dimension and sorting them.
Then, a conceptual line, L moves (sweeps) from left to right
across the plane, examining the regions, one by one, in order.
During the sweep, the active regions (i.e., the ones that line
L is currently traversing over) are maintained. When a new
region is encountered by L, it is marked as intersecting all
the currently active regions (in the current dimension). The
process consists of a single pass in each dimension. Regions
that are marked as intersecting in all dimensions are actually
intersecting regions. An illustrative example of the process for
1-D regions (line segments) can be seen in Fig. 2.

In order to address the problem of interest, we had to modify
the Bentley-Ottmann algorithm to produce a variant method
that we call SWEEPLINE. Specifically, instead of detecting
only intersecting pairs, SWEEPLINE maintains and returns all
sets of intersecting regions with intersection cardinality of up
to k, in a single pass. The computational cost of the original
algorithm for a single dimension is O((n + l) log n), where
l is the number of intersections found (in non-degenerate
cases, l � 2n). This includes the cost of sorting which
is O(n log n)(for one dimension) and comparisons which is
O(l log l). After modifying the algorithm to support multiple

intersections, the sorting cost is the same while the comparison
cost becomes l log l for a specific k, and therefore to report
all possible k-combinations (i.e., k = {2, 3, ..l}) it would
be
∑

2≤k≤l l log l = l log lk. Therefore, for all dimensions,
the computational cost of our modified SWEEPLINE would
be in the order of O(dn log n + d(l log l)k). Note that since
l � 2n, this represents a significant improvement over the
NAIVE methods, but it still remains significantly expensive.

C. Sweep Line Intersection Graph (SLIG)
Although SWEEPLINE employs a state-of-the-art algorithm

and produces much better results than NAIVE, it still inherits
a number of limitations. For instance, intermediate results
(e.g., the computation of pair-wise intersecting regions), are
not well utilised; they are taken into account in subsequent
computations that could speed up the whole process. Towards
that end, we propose SLIG, a novel method for efficiently
solving the problems of interest. The method we devise is
based on the following two key observations:

• Current best approaches to the problem depend on an
expensive process of sequentially examining regions to
determine if they intersect with previously visited regions
or sets of regions. However, this limitation can be easily
overcome by constructing a region intersection graph.

• The multiple intersection problem can be mapped to the
clique problem (and variants of it) on the region inter-
section graph. This can suggest huge time performance
savings, since it is possible to address the problem of
interest just by operating on the region intersection graph,
without the need to operate on the original regions or to
re-apply a sweep-line algorithm multiple times.

We elaborate on these key observations in the next paragraphs.
Region Intersection Graph (RIG) is a graph where each

vertex represents a region in S and each edge an intersection
between two regions. In the case of 1-dimensional regions,
this is known as an interval graph. With a region intersection
graph in place, it is easy to interpret intersection queries as
connectivity queries in RIG. For example, if two vertices
are connected in RIG, then the corresponding regions are
intersecting; or, obtaining all neighbouring vertices of a vertex
in RIG is equivalent to finding all regions intersecting with a
specific region, and so on. These graph operations are typically
fast, while the construction of the RIG is straightforward,
employing the classic sweep-line algorithm for detecting pair-
wise intersections. Whenever a new region is encountered,
a new node added to the RIG; for a pair-wise intersection,
a new edge is added. The time complexity of this process
is O(n log n) and the space complexity is O(n) (due to the
classic sweep-line). The space complexity of storing RIG in
memory is O(V + E), where V = n is the set of vertices
(regions) and E is the set of edges (intersections).

The clique problem refers to the computational problem of
finding cliques in a graph. A clique is a subset of vertices of
an undirected graph such that every two distinct vertices in the
clique are adjacent; that is, its induced subgraph is complete.
To make a connection to our problem, it is well known that

given a set of 1-dimensional line segments, where they are
all pair-wise intersecting, they would have a common point
or range, a common region, where they all overlap. It can be
easily shown that the same holds true for axis-aligned objects
in more dimensions, by examining each dimension separately.
Effectively, these intersecting regions directly correspond to a
clique in the intersection graph (see also result in [9, Lemma
3.3]). This means that, once a clique has been identified in the
intersection graph, it is possible to quickly identify and report
information about the common region of the multiple intersect-
ing regions. Thus, we can provide a solution to this problem
by implementing an out-of-the-box state-of-the-art algorithm
that enumerates all cliques. The Bron-Kerbosch algorithm [10]
has a worst-case computation cost of O(3n/3), which is better
than the NAIVE method and better than the Sweep-line method
for very large values of l. However, we can take advantage of
significant prior research on the concept of maximal cliques.
A maximal clique is a clique that cannot be extended by
including an additional adjacent vertex (i.e., it isn’t part of a
larger clique). A large number of highly optimized algorithms
exist that can enumerate all cliques, while their computation
cost is only bounded by the much smaller number of maximal
cliques only. Specifically, the algorithm by Tsukiyama et al
[11] has a cost of O(n · lmax), where lmax is the number of
maximal cliques. Notice that the dimensions cost multiplier
d is only included in the sorting; this is because that cost
would only incur during the construction of the intersection
graph, but never again, suggesting large computation time
savings. Therefore, the computational cost of SLIG would be
O(dn log n+ n · lmax).

IV. ALGORITHMS

In order to evaluate the performance of the different meth-
ods, we implemented the NAIVE algorithm, a modified version
of the SWEEPLINE algorithm that is able to accommodate the
problem of interest, and our proposed SLIG algorithm. The
NAIVE algorithm simply consists of a recursive loop where
each object is compared with each other one and, if the two are
intersecting, the intersection is compared with every other, etc.
For the SWEEPLINE and SLIG, the implementation follows
the methods outlined in Section III, and the details are pro-
vided in Alg. 1 and Alg. 2, respectively. The intersects()
function is a simple geometric comparison in all dimensions.

Reproducibility: The source code for these algorithms is
publicly available at: https://github.com/tipech/overlap-graph.

V. EXPERIMENTS

In this Section, we experimentally evaluate the performance
of our proposed method SLIG against SWEEP-LINE’s sensible
baseline method. As the NAIVE method is not sophisticated
enough and shows considerably inadequate performance we
don’t consider it in the experimental evaluation. We also
examine the effect of some critical dataset parameters on the
intersection graph’s density and distribution. Before presenting
the results, we provide details of the computational environ-
ment and the data sets employed.

Algorithm 1: SWEEPLINE

Input: Set S of regions
Output: Set O of intersecting sets of regions, grouped by

intersection cardinality k in the form
O = {k2 : [{s1, s2}, . . .], k3 : [{s1, s2, s3}, . . .], . . .}

Points ← sort(x0, x1 ∀ si, d← 1), O ← [], k ← 2
LastIntersects ← [[region] ∀ region in S]

while O[k-1] not empty do
Intersects ← GetKIntersects(k, LastIntersects)
O[k] ← Intersects
LastIntersects ← Intersects
k ← k + 1

Function GetKIntersects(k, LastIntersects)
Actives ← [], Intersects ← {}
for point in Points do

if point.type = start then
Intersects[point.region] ← []
for activeIntersect in Actives do

if activeIntersect.intersects(point.region) then
intersection ← activeIntersect
intersection.append(point.region)
Intersects[point.region].append(intersection)

for intersection in LastIntersects[point.regions] do
Actives.append(intersection)

else
for intersection in LastIntersects[point.regions] do

Actives.remove(intersection)

1) Environment: All experiments are conducted on a PC
with 8x Intel(R) CoreTM i7-7700 CPU @ 3.60GHz and 64GB
memory using Python 3.7. For each algorithm or parameter ef-
fect evaluation, we execute the algorithm ten (10) independent
times and report the average execution time or other results.

2) Data: In order to evaluate the behavior of the algorithms
under certain conditions, we had to resort to synthetic data.
A data generator was implemented that produces data sets
with specific characteristics thanks to a controlled number
of parameters. We define a d-dimensional space where each
dimension has size T , effectively ranging in [0, T]; unless
otherwise noted T = 1000. Within that space, we uniformly
generate n regions at random. The size of each dimension
(side) of a region is randomly selected from the uniform range
t : [0, tmax], where tmax = r · T and r ∈ [0, 1] represents a
ratio of the total length T . For example, if r = 0.01 and
T = 1000, then the size for each dimension of a region
would be bound by 0 ≤ t ≤ 10. Therefore, the configurable
parameters of the data generator are number of dimensions d,
number of objects n and ratio r. For experimental evaluation
purposes, various datasets were created, ranging from 101 to
105 regions and resulting in 102 to 108 intersections.

3) Experiments: We aim to evaluate the following aspects:
• Effect of Parameters n and r on RIG How does the

number of regions n and the size of regions (as defined by
the ratio r) affect the properties of the Region Intersection
Graph (RIG)? What is the size (number of edges) of the
RIG obtained, in different dimensions?

https://github.com/tipech/overlap-graph

Algorithm 2: SLIG
Input: Set S of regions
Output: Set O of intersecting sets of regions, grouped by

intersection cardinality k in the form
O = {k2 : [{S1, S2}, . . .], k3 : [{S1, S2, S3}, . . .], . . .}

Points ← sort(x0, x1 ∀ si, d← 1), O ← []
GetIntersectionGraph(S)
GenerateKCliques(CliqueList,Graph)

for clique in CliqueList do
k ← len(clique)
for i in [2,k-1] do

O[i].append(all combinations(clique, i))

Function GetIntersectionGraph(S)
Actives ← [], Graph ← []

for point in Points do
if point.type = start then

for activeRegion in Actives do
if activeRegion.intersects(point.region) then

Graph.addEdge(activeRegion, point.region)

activeRegion.append(point.region)
else

activeRegion.remove(point.region)

• SLIG Comparative Performance How does our pro-
posed SLIG method compare to the SWEEP-LINE method
for the MULTIINTERSECT problem?

• Effect of RIG Topology on SLIG How does the structure
of the RIG influence the performance of SLIG?

A. Effect of Parameters n and r on RIG
In principle, the number of intersections in the data set and

therefore edges in the RIG depend on two parameters: the
number of regions n in the data set and the size of these
regions, as determined by the ratio r. In this experiment, we
aim to examine the effect of these parameters to the RIG. For
the first experiment, we set the ratio to be r = 0.01 and vary
the number of regions n (Fig. 3a). For the second experiment,
we fix n = 1000 and vary the values of the ratio r (Fig.
3b). In all instances, since the generated regions are generated
uniformly at random with a region size t : 0 ≤ t ≤ tmax

in each dimension, the average region size in each dimension
corresponds to tmax

2 . As can be seen in these figures, the size
of the RIG increases linearly with both n and r (O(n · r)).
That is to be expected, as in both cases the probability of any
two regions intersecting is increasing with the relative size
of the region in the d-dimensional space. Similar trends are
demonstrated for all dimensions reported d = {1, 2, 3}. How-
ever, as the available volume increases with more dimensions,
intersections are rarer, and thus the RIG becomes sparser.

B. SLIG Comparative Performance
We evaluated the time performance of SLIG against the

SWEEP-LINE method, as a function of the number of regions n
in the dataset. Based on the parameter sensitivity experiments
presented earlier, we set the parameter values as follows: d =
2, r = 0.01. Fig. 4a displays the results. It is apparent from

(a) #edges × #regions (b) #edges × region size

Fig. 3: Effect of dataset parameters on RIG.

(a) SLIG vs. SWEEP-LINE. (b) RIG Topology Effect

Fig. 4: Comparative performance of SLIG
the results that our SLIG algorithm is multiple orders of
time faster than SWEEP-LINE. Note that the SWEEP-LINE
algorithm would require an estimated 1 day to process the
5·104 regions and 11 days for processing 105 regions, therefore
only estimated times are reported (dashed lines).

C. Effect of RIG Topology on SLIG

Besides parameters n and r, the distribution of regions
in space can have an important effect on the character-
istics and topology of the RIG, and therefore the perfor-
mance of SLIG. In order to evaluate the impact of RIG’s
topology, we designed experiments with networks gener-
ated using the Watts—Strogatz small-world model [12]. This
model employs a re-wiring probability p ∈ [0, 1] that can
control the overall clustering of the network, for a spe-
cific number of nodes and edges. Fig. 4b reports the time
performance of SLIG in networks with the same num-
ber of nodes n = 105, but different numbers of edges
[105, 2x105, 5x105, 106, 2x106, 5x106, 107]), and for varying
values of p = {0.1, 0.5, 0.9}. It can be seen that as p decreases
(i.e., higher clustering), the algorithm requires significantly
more processing time, since more, larger cliques form.

VI. RELATED WORK

Here we present a more comprehensive coverage of topics
related to our research, specifically the computational geome-
try problems of object intersection, spatial data structures,
as well as the problem of clique enumeration from graph
theory. A great number of data structures and algorithms
have been developed that deal with identifying intersecting
objects [1], [13], and specifically axis-aligned rectangles in
Rd [14]. The objective is often to identify and report pairs
of intersecting objects with speed and accuracy, usually for
collision detection in simulations [5] or object placement
problems [15]. In our research, we deal with the task of
identifying multiple object intersections. Some methods exist
for problems conceptually similar but fundamentally different
from ours, such as a proposed technique to pre-process data

in order to quickly find intersecting pairs that overlap a
query rectangle, i.e. triple intersections (k = 3) [16]. The
existing state-of-the-art methods used for this problem belong
to one of two families of algorithms: either a sweep-line (also
known as plane sweep) or a divide-and-conquer algorithm,
which have been shown to be computationally equivalent [17].
These are commonly used to identify pair-wise intersections
while constructing data structures that can accommodate spa-
tial access queries [18]. While these algorithms have been
extensively studied, improved and optimized, [19], they can be
problematic when applied to identify more than just pairs of
intersections, or arbitrary numbers of dimensions. Applications
involving spatial access queries commonly utilize hierarchical
data structures for indexing information and significantly re-
ducing computation costs. Tree-based data structures, such as
interval trees in 1-D problems, and bounding volume hierarchy
trees, or R-trees and their variants [20] for more than one
dimensions, are very effective for answering access queries,
which effectively require the traversal of the tree from the root
to the leaves. However, they are inadequate to answer queries
related to the intersections between groups of objects, since
they require traversing along the leaf nodes of the tree. A data
structure more capable of answering these types of queries is
an intersection graph (a.k.a. an interval graph for 1-D regions)
[21]. In intersection graphs, each vertex represents a single
rectangle or interval and each edge represents an intersection
between two of these objects. As this data structure maintains
information on the intersections between individual objects,
it is possible to use it in order to answer queries involving
groups of objects [22].

Our work also relates to the problem of clique enumera-
tion [23], a widely studied, NP -hard combinatorial problem
with significance in real applications [10]. In relation to our
problem, we explained how existing algorithms can be directly
employed to report sets of intersecting regions. As such, clique
enumeration algorithms are orthogonal to our methods and
improvements can be adapted as needed.

VII. CONCLUSIONS

We have introduced MULTIINTERSECT, a novel and com-
putationally challenging problem that arises in the context
of identifying multiple intersections of a large number of
axis-aligned multi-dimension geometric objects (regions). To
address this problem we designed and implemented an efficient
algorithm, named SLIG. SLIG is based on the sweep-line
method and operates with the help of an auxiliary graph-based
data structure, a region intersection graph (RIG). The RIG
provides fast access to information regarding whether regions
intersect or not, which is otherwise difficult to obtain directly
from the data. As a result, our proposed method SLIG, is able
to address the problem of interest with grater performance and
versatility than sensible state-of-the-art approaches. Extensive
experiments were performed to demonstrate the effectiveness
of our algorithm in a wide range of conditions, demonstrating
it is scaleable to very large amounts of regions. We are confi-
dent that the novel problem and method presented will prove

useful and find interesting application in a number of real-
world applications and solutions. To encourage reproducibility
we provide details of our data generator and methods’ pseudo-
code, while we make the source code publicly available.
Acknowledgments: This work was funded by the Natural Sci-
ences and Engineering Research Council of Canada (NSERC).

REFERENCES

[1] Bentley and Wood, “An optimal worst case algorithm for reporting
intersections of rectangles,” IEEE Transactions on Computers, vol. C-29,
no. 7, pp. 571–577, July 1980.

[2] J. M. Patel and D. J. DeWitt, “Partition based spatial-merge join,”
SIGMOD Rec., vol. 25, no. 2, pp. 259–270, Jun. 1996.

[3] J. Fang, J. Wong, K. Zhang, and P. Tang, “A new fast constraint
graph generation algorithm for vlsi layout compaction,” 1991., IEEE
International Sympoisum on Circuits and Systems, 1991.

[4] T. Pechlivanoglou and M. Papagelis, “Fast and accurate mining of node
importance in trajectory networks,” 2018 IEEE International Conference
on Big Data (Big Data), 2018.

[5] T. Tang, E. L. Bohez, and P. Koomsap, “The sweep plane algorithm for
global collision detection with workpiece geometry update for five-axis
nc machining,” Computer-Aided Design, vol. 39, no. 11, p. 1012, 2007.

[6] M. I. Shamos and D. Hoey, “Geometric intersection problems,” in 17th
symposium on foundations of computer science. IEEE, 1976, p. 208.

[7] M. de Berg, J. Gudmundsson, and A. D. Mehrabi, “Finding pairwise
intersections inside a query range,” Algorithmica, vol. 80, no. 11, pp.
3253–3269, Nov 2018.

[8] Bentley and Ottmann, “Algorithms for reporting and counting geometric
intersections,” IEEE Transactions on Computers, vol. C-28, no. 9, pp.
643–647, Sep. 1979.

[9] R. Bar-Yehuda, M. M. Halldrsson, J. S. Naor, H. Shachnai, and
I. Shapira, “Scheduling split intervals,” SIAM Journal on Computing,
vol. 36, no. 1, pp. 1–15, 2006.

[10] C. Bron and J. Kerbosch, “Algorithm 457: finding all cliques of an
undirected graph,” Communications of the ACM, vol. 16, no. 9, pp.
575–577, 1973.

[11] S. Tsukiyama, M. Ide, H. Ariyoshi, and I. Shirakawa, “A new algorithm
for generating all the maximal independent sets,” SIAM Journal on
Computing, vol. 6, no. 3, pp. 505–517, 1977.

[12] D. J. Watts and S. H. Strogatz, “Collective dynamics of small-world
networks,” Nature, vol. 393, pp. 440–442, 2011.

[13] F. Dévai and L. Neumann, “A rectangle-intersection algorithm with
limited resource requirements,” in 10th IEEE International Conference
on Computer and Information Technology, June 2010, pp. 2335–2340.

[14] T. M. Chan, “A note on maximum independent sets in rectangle
intersection graphs,” Information Processing Letters, vol. 89, no. 1, pp.
19–23, 2004.

[15] P. K. Agarwal, M. V. Kreveld, and S. Suri, “Label placement by
maximum independent set in rectangles,” Computational Geometry,
vol. 11, no. 3-4, pp. 209–218, 1998.

[16] E. Oh and H. Ahn, “Finding pairwise intersections of rectangles in a
query rectangle,” CoRR, vol. abs/1801.07362, 2018.

[17] R. H. Güting and W. Schilling, “A practical divide-and-conquer al-
gorithm for the rectangle intersection problem,” Information Sciences,
vol. 42, no. 2, pp. 95–112, 1987.

[18] F. Zhang, X.-Z. Qiao, and Z.-Y. Liu, “A parallel smith-waterman
algorithm based on divide and conquer,” in International Conference
on Algorithms and Architectures for Parallel Processing, 2002, p. 162.

[19] M. McKenney and T. McGuire, “A parallel plane sweep algorithm for
multi-core systems,” in 17th ACM SIGSPATIAL International Confer-
ence on Advances in Geographic Information Systems, 2009, p. 392.

[20] G. Bergen, “Efficient collision detection of complex deformable models
using aabb trees,” Journal of Graphics Tools, vol. 2, no. 4, p. 1, 1997.

[21] C. S. Rim and K. Nakajima, “On rectangle intersection and overlap
graphs,” IEEE Transactions on Circuits and Systems I: Fundamental
Theory and Applications, vol. 42, no. 9, pp. 549–553, Sept 1995.

[22] H. Imai and T. Asano, “Finding the connected components and a
maximum clique of an intersection graph of rectangles in the plane,”
Journal of Algorithms, vol. 4, no. 4, pp. 310–323, 1983.

[23] E. Balas and C. S. Yu, “Finding a maximum clique in an arbitrary graph,”
SIAM Journal on Computing, vol. 15, no. 4, pp. 1054–1068, 1986.

