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Abstract—The bulk synchronous parallel (BSP) is a celebrated
synchronization model for distributed training of deep learning
models. A shortcoming of the BSP is that it requires workers to
wait for the straggler at every iteration. Therefore, employing
BSP increases the waiting time of the faster workers of a cluster
and results in an overall prolonged training time. To ameliorate
this shortcoming of BSP, we proposed ELASTICBSP [1], a model
that aims to relax its strict synchronization requirement with
an elastic synchronization by allowing delayed synchronization
to minimize the waiting time. ELASTICBSP is realized by the
algorithm named ZIPLINE. In this work, we show the theoretical
proof of ZIPLINE and further propose algorithmic and imple-
mentation optimizations of ZIPLINE, namely ZIPLINEOPT and
ZIPLINEOPTBS, which reduce the time complexity of ZIPLINE

to linearithmic time. The experiments show that ZIPLINEOPT

and ZIPLINEOPTBS enable the scalability of ELASTICBSP.
Further experimental evaluation on large deep neural networks
on large ImageNet dataset demonstrate that our proposed ELAS-
TICBSP model, materialized by the proposed optimized ZIPLINE

variants, converges faster and to a higher accuracy than the
predominant BSP.

Index Terms—distributed deep learning, parameter server
framework, data parallelism, bulk synchronous parallel, stale
synchronous parallel, asynchronous parallel

I. INTRODUCTION

The parameter server framework [2] has been widely

adopted to distribute the training of large deep neural networks

(DNNs). The framework consists of multiple workers and

a logical server that maintains globally shared parameters.

Due to its importance, a number of synchronization models

have been proposed [2], the most important of which are the

asynchronous parallel (ASP) [3], the bulk synchronous par-

allel (BSP) [4], and the stale synchronous parallel (SSP) [5]

models. Nonetheless, these models exhibit certain limitations.

In ASP there is no need for synchronization, so the waiting

time of the workers is eliminated. However, the convergence

in the training might be dramatically affected due to incon-

sistent weight updates to the model. On the other hand, a

prevalent shortcoming of the BSP is the strict synchronization

requirement it imposes. In BSP, all workers are waiting for

each other by a synchronization barrier. In SSP, while the

strict synchronization requirement of BSP is removed, a user-

specified threshold (fixed throughout the training period) is

needed to control the maximum iteration difference among

workers. Further, SSP offers a shortsighted solution to the

problem, as it does not consider the computational capacity
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Fig. 1. ZIPLINE scans all elements on the timeline, from left to right, one
element at a time. When a solution Z of n distinct elements is formed, dZ
is computed. At the end of the process the optimal solution Z∗ is found that
yields the minimum d∗

Z
. If multiple solutions exhibit the same d∗

Z
s, then the

solution Z that occurred first (chronologically) is selected. In this example, d6
and d10 have the same minimum value — Z6 associated with d6 is chosen
as the optimal solution.

of each worker (i.e., how fast it is), merely relying on the

number of iterations that each worker has completed.

To ameliorate these shortcomings, we proposed ELAS-

TICBSP [1], a model that relaxes the strict synchronization

requirement of the predominant BSP, reduces worker waiting

time, and therefore increases the iteration throughput. At the

same time, the model limits the staled gradients and their

staleness values in the iterative stochastic gradient descent

convergent process. ELASTICBSP is realized by the ZIPLINE

algorithm, originally proposed in [1]. The current extended

abstract provides a summary of the journal archival version of

our research [6], including a theoretical proof of ZIPLINE’s

optimality, and two optimizations of the general ZIPLINE

algorithm, namely ZIPLINEOPT and ZIPLINEOPTBS, which

reduce its time complexity to linearithmic time and improve

the scalability of ELASTICBSP. A thorough experimental eval-

uation on large deep neural networks using the large ImageNet

dataset demonstrates that the ELASTICBSP model, realized by

the proposed optimized ZIPLINE variants, converges faster and

to a higher accuracy than the predominant BSP.

II. ZIPLINE OPTIMALITY AND OPTIMIZATION

ZIPLINE consists of 2 phases: Phase I initializes the scan-

ning set Z, and Phase II iteratively searches for the optimal

set Z∗. Figure 1 provides an intuitive demonstration of how

ZIPLINE works in Phase II. As evidence of ZIPLINE’s correct-

ness, we provide a formal proof of its optimality (see Theorem

1 below and its proof in our journal paper [6]).

Theorem 1: [ZIPLINE optimality] ZIPLINE leads to an

optimal solution Z
∗.

Further, we proposed algorithmic and implementation op-

timizations of ZIPLINE, namely ZIPLINEOPT and ZI-

PLINEOPTBS, which reduce its time complexity to linearith-

mic time O(Rn log n) (see Figure 2). ZIPLINEOPTBS opti-
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Fig. 2. Two possible cases of the add operation in searching for the same
color in the scanning set Z: does the leftmost element of Z have the same
color as the new adding point? ZIPLINEOPT checks the leftmost element to
skip the search if it has the same color as the new adding point. Otherwise,
ZIPLINEOPTBS performs a binary search in Z with an auxiliary matrix. It
retrieves the timestamp value of the element of Z with the same color as the
new adding point from the auxiliary matrix.
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Fig. 3. Computation time cost comparison of ZIPLINE and its variants. The
cost of ZIPLINE and its variants increases as the number of workers n and
the value of parameter R increases. Both ZipLineOpt and ZipLineOptBS out-
perform the basic ZipLine. For larger values of R (R ≥ 100), ZipLineOptBS

outperforms ZipLineOpt.

mizes the ‘add’ operation of the scanning set Z. It uses a

pruning technique to accelerate the addition of new elements

to set Z. Specifically, it skips the search if a new element has

the same color as the leftmost element of Z. ZIPLINEOPTBS

further optimizes the ‘add’ operation of the scanning set Z.

It uses an auxiliary matrix M containing information (e.g.,

timestamps and colors) of data points and performs a binary

search in set Z for finding the element with the same color

as the newly added element. The matrix M : n (workers) ×
R (future iterations) is constructed in the lookalead step of

ELASTICBSP (see details in our journal paper [6]).

III. EXPERIMENT

We compare the run time of ZIPLINE and its optimized

versions as a function of n workers on varying values of the

lookahead parameter R in Figure 3. It can be observed that

when the worker number n is small (e.g., below 150), ZI-

PLINEOPT is faster than ZIPLINEOPTBS. But, as n increases

(e.g., above 200), ZIPLINEOPTBS outperforms ZIPLINEOPT.

We observe in Figure 3 that for R=150, ZIPLINEOPTBS

grows significantly slower than ZIPLINEOPT. The same trend

is depicted for R=15 as well – as n increases, ZIPLINEOPTBS

outperforms ZIPLINEOPT.

We compare ELASTICBSP with BSP, ASP, SSP and DSSP

[7] on training large DNNs on ImageNet1k. As depicted in

Figure 4, ELASTICBSP outperforms BSP. Particularly, at later
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Fig. 4. VGG-16 on ImageNet 1K dataset (n = 4)

training time, it converges 1.77× faster and achieves 12.6%

higher test accuracy than BSP. We also observe that while SSP,

ASP and DSSP complete 19 epochs faster than ELASTICBSP,

they fail to learn. This is due to staled gradients that are

constantly present in the training process.

IV. CONCLUSIONS

In this extended abstract, we discussed the optimality of ZI-

PLINE, and presented ZIPLINEOPT and ZIPLINEOPTBS that

improve on the scalability of ELASTICBSP. ZIPLINEOPTBS

has a linearithmic time complexity which supports large-

scale scalability for ELASTICBSP. The experimental results

show that ELASTICBSP provides faster convergence than

BSP for large-sized DNNs on the high dimensional dataset

while achieving higher (or comparable) accuracy than other

most related state-of-the-art synchronization models on large

datasets in the parameter server setting.
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