
MRSweep: Distributed In-Memory Sweep-line for
Scalable Object Intersection Problems

Tilemachos Pechlivanoglou, Mahmoud Alsaeed and Manos Papagelis
Lassonde School of Engineering, York University, Toronto, Canada

tipech@eecs.yorku.ca, mahmoud2@eecs.yorku.ca, papaggel@eecs.yorku.ca

Abstract—Several data mining and machine learning problems
can be reduced to the computational geometry problem of
finding intersections of a set of geometric objects, such as
intersections of line segments or rectangles/boxes. Currently,
the state-of-the-art approach for addressing such intersection
problems in Euclidean space is collectively known as the sweep-
line or plane sweep algorithm, and has been utilized in a
variety of application domains, including databases, gaming and
transportation, to name a few. The idea behind sweep line is
to employ a conceptual line that is swept or moved across
the plane, stopping at intersection points. However, to report
all K intersections among any N objects, the standard sweep
line algorithm (based on the Bentley-Ottmann algorithm) has
a time complexity of O((N + K)logN), therefore cannot scale
to very large number of objects and cases where there are
many intersections. In this paper, we propose MRSWEEP and
MRSWEEP-D, two sophisticated and highly scalable algorithms
for the parallelization of sweep-line and its variants. We provide
algorithmic details of fully distributed in-memory versions of
the proposed algorithms using the MapReduce programming
paradigm in the Apache Spark cluster environment. A theoretical
analysis of the proposed algorithms is presented, as well as a
thorough experimental evaluation that provides evidence of the
algorithms’ scalability in varying levels of problem complexity.
We make source code and datasets available to support the
reproducibility of the results.

Index Terms—parallel and distributed data mining, big data
analytics, computational geometry, intersection problem, over-
laps, sweep-line

I. INTRODUCTION

Several data mining and machine learning problems employ

the abstraction of axis-aligned geometric objects in some
dimension D to represent temporal, spatial or other semantic
information of events or entities. An axis-aligned object (also

known as axis-parallel or axis-oriented) is an object in D-
dimensional space whose shape is aligned with the coordinate

axes of the space, such as line segments in 1-D, rectangles
or boxes in 2-D, cuboids in 3-D, and so forth (see Fig. 1).
For example, an event typically has a starting time and an

ending time and can be represented as a 1-D line segment;

the daily pickup and drop-off locations of a taxi in New

York City (NYC) can be represented as a 2-D rectangle or

box covering all locations visited that day; the trajectories of

a drone can be modeled as a 3-D cuboid that contains its

trajectories. Now, consider the case where given a large set

of axis-aligned geometric objects in dimension D, we want to
perform an analysis of the relationships between these objects.
By a relationship we refer to questions of whether two objects

(a) Sample line-segments (b) Sample rectangles

Fig. 1: Axis-aligned geometric objects in 1-D (line-segments),
2-D (rectangles) and higher dimensions are commonly utilized
to represent temporal, spatial or other semantic information

of events or entities in diverse data mining applications.

Exploring the relationship of millions of these objects in

Euclidean space, requires scalable algorithms for determining

their intersection and size of overlap.

intersect each other, and if yes, what is the size of their
intersection or their overlap. Following the aforementioned
motivating examples, we might be interested to find overlaps

between events, which areas are better served by taxis in

NYC, or areas of possible collision of drones, respectively. All

these problems can effectively be reduced to the computational

geometry problem of finding intersections of a set of geometric

objects and computing their pair-wise overlap.

Methods that address this problem have found application in

various domains, including spatial databases [1], graph mining

[2], VLSI physical design [3], computer graphics and crowd

simulation collision detection [4]. The naive approach to this

problem is to simply compare every object to every other in

a brute-force fashion, a process that is prohibitively expen-

sive and inefficient. Instead, more efficient, well-established

methods exist that utilize what is collectively known as the

sweep-line or plane sweep algorithm. This is an algorithmic
paradigm that employs a conceptual sweep line to solve var-

ious intersection problems in Euclidean space [5]. While this

paradigm has been successfully used in a number of problems

in diverse domains and applications [6], it is a particularly

resource intensive algorithm and therefore its application is

limited to smaller and/or sparser data sets. The main limitation

of the algorithm can be attributed to its usage of memory

space, especially for cases where the dataset is large (i.e., large

324

2020 IEEE 7th International Conference on Data Science and Advanced Analytics (DSAA)

978-1-7281-8206-3/20/$31.00 ©2020 IEEE
DOI 10.1109/DSAA49011.2020.00046

number of objects) and there is a large number of pair-wise

intersections. Such data characteristics will effectively render

the algorithm impractical. There have been some attempts to

address the memory space limitation using specialized data

structures and techniques but these result in an increase of the

runtime complexity of the algorithm [7], [8].
Another approach is to develop variants of the sweep-

line algorithm that can carry out computations simultane-

ously using principles of parallel computing. Conceptually,
the sweep-line algorithm can be easily parallelized following

a divide and conquer algorithm design paradigm. A divide-

and-conquer algorithm works by recursively breaking down a

problem into sub-problems, until they become simple enough

to be solved independently. The outcome of the sub-problems

can then be combined to give a solution to the original

problem. As such, several well-established solutions have been

proposed for the parallelization of the sweep-line algorithm,

usually by statically or dynamically segmenting incoming data

and performing the sweep-line operation in parallel for each

segment [9]–[12]. However, these methods either introduce

synchronization checkpoints that slow down execution or

have been developed specifically for single-node multi-core
architectures with shared memory and shared data storage.
As such, they cannot accommodate larger instances of the

problem. Furthermore, most of the current state-of-the-art

implementations assume that the input data are already sorted,

an assumption that is not necessarily true; however, the sorting

operation is expensive and can introduce significant additional

processing time if not properly parallelized. Finally, as most

prior research deals with adaptations of the sweep-line algo-

rithmic paradigm for domain-specific problems, the sensitivity

of those implementations to different data characteristics and

other parameters has not been properly studied.
Motivated by these limitations, our main objective is to

design and develop methods that are adequate for much

larger instances of the problem, by taking advantage of a

distributed processing environment, including a large clus-
ter with multiple nodes, distributed storage and distributed
memory. Towards that end, we design and propose (i) Map
Reduce Sweep-line (MRSWEEP), and (ii) Map Reduce Sweep-
line across Dimensions (MRSWEEP-D): two sophisticated
and highly scalable methods that implement the original

sweep-line method and its variants. We provide algorithmic

details of fully distributed in-memory versions of the proposed

methods in a cluster environment with distributed memory

and storage, using the MapReduce programming paradigm

and the Apache Spark framework. To achieve very high

levels of parallelization, we utilise different data partitioning

techniques. In summary, the major contributions of this work

are:

• We design and implement MRSWEEP, a distributed in-
memory sweep-line method, using the Apache Spark

framework, which can efficiently address demanding

axis-aligned object intersection problems. The method

can gracefully address instances of the problem in any

dimension (1-D, 2-D, ..., D-D).

TABLE I: Summary of Notations

Notation Description

N Number of objects in the dataset
D Number of dimensions
R A rectangle or box (2-D geometric object)
(x0

R, y
0
R) (x, y)-coordinates of the bottom left corner of R

(x1
R, y

1
R) (x, y)-coordinates of the top right corner of R

(xc
R, y

c
R) (x, y)-coordinates of the center of R

Z Sample size
P Number of partitions
K Number of intersecting object pairs

• We design and implement MRSWEEP-D, a variant of
MRSWEEP that is more effective than MRSWEEP under

specific data assumptions and conditions.

• We present a thorough experimental evaluation of MR-
SWEEP and MRSWEEP-D to demonstrate their scalabil-

ity effectiveness. We also examine the behavior of the

algorithms under various assumptions of the input dataset

and parameters of the distribution environment.

• We make source code and data publicly available to

encourage reproducibility of results.

The remainder of this paper is organized as follows: Section

II introduces preliminaries of the problem and provides back-

ground information on the current state-of-the-art solutions

to address the axis-aligned object intersection problem. Our

proposed distributed in-memory methods, the overall algo-

rithmic analysis and implementation details are presented in

Section III. Section IV presents an experimental evaluation

of the different methods. After reviewing the related work in

Section V, we conclude in Section VI.

II. BACKGROUND

In this section, we introduce notation and preliminaries of

the problem of interest and provide some background of the

main approaches to address it.

A. The Object Intersection Problem

The 1-D case of the problem of interest (detecting in-

tersecting line-segments) constitutes a simplified version of

the D-dimensional case. Furthermore, the case of more than
two (2) dimensions, includes steps that are analogous of

those required for the 2-D case (detecting intersections of

rectangles). Therefore, for the rest of the manuscript, we only

provide algorithmic details and examples using the case of 2-

D objects. The distributed methods presented, as well as the

implementation details can be applied directly to axis-aligned

object dataset of arbitrary dimensions. Whenever special treat-

ment is required for the case of 1-D objects, we explicitly

mention that and provide a brief explanation.

The Problem in 2-D: Consider the Cartesian plane R
2 =

R×R, where R is the set of all real numbers. Let a rectangle

R be defined by the (x, y)-coordinates of two points in R
2,

one point representing its bottom-left corner (x0
R, y

0
R) and one

representing its top-right corner (x1
R, y

1
R), respectively. As the

two points represent the diagonal corners of the rectangle R,

325

it is x0
R < x1

R and y0R < y1R. Now, for a pair of rectangles A
and B, consider the following conditions:

max(x0
A, x

0
B) ≤ min(x1

A, x
1
B) (1)

max(y0A, y
1
A) ≤ min(y0B , y

1
B) (2)

The two rectangles A and B are intersecting if and only if

both (1) and (2) are true. Note that (1), (2) check whether

the rectangles are intersecting in the X-axis and Y -axis,
respectively.

When two rectangles A and B are intersecting, then

their overlapping area defines a new rectangle, called

an overlap and denoted as OAB . The rectangle co-

ordinates of OAB are (max(x0
A, x

0
B),max(y0A, y

1
A)) and

(min(x1
A, x

1
B),min(y0B , y

1
B)). Note that the dimensions of the

overlap OAB are given by:

widthOAB
= min(x1

A, x
1
B)−max(x0

A, x
0
B) (3)

heightOAB
= min(y0B , y

1
B)−max(y0A, y

1
A) (4)

The size SOAB
of the overlap OAB is given by:

SOAB
= widthOAB

× heightOAB
(5)

Note that in the case of 1-D, two line-segments A, B are

intersecting if and only if the condition (1) is satisfied.

Their overlap defines a new line-segment OAB that starts at

(max(x0
A, x

0
B)) and ends at (min(x1

A, x
1
B)). The size SOAB

of the overlap OAB is given by (3).

In the standard rectangle intersection problem, we are given

a set ofN rectangles and asked to detect all pair-wise rectangle

intersections K, sometimes along with determining the size
of their pair-wise overlap. A worst-case scenario exists where

K = N2, meaning that all rectangles are overlapping with

each other; this, however, is a degenerate case for most real-

world scenarios or applications (otherwise there is no reason

to study the intersection analysis on the dataset). We further

elaborate on the complexity of the various methods to address

the problem in the next paragraphs.

B. Naive Approach

The naive approach to the object intersection problem

involves simply comparing every object in the data set to

every other using a nested loop. This operation is of course

extremely expensive and inefficient, always requiring exactly
1
2N

2 comparison steps and K steps to report the output,

resulting in a computation cost of O(N2+K). Therefore this
method, although very simple to implement and needing O(1)
memory space, is unsuitable for all but the smallest datasets

and applications.

C. SWEEP-LINE Algorithm

The much more efficient alternative to the naive approach

is the SWEEP-LINE, or Bentley-Ottmann algorithm [5]. This

is an algorithmic paradigm that uses a conceptual sweep line

to identify and report intersections in Euclidean space. Given

a set of rectangles, the first preliminary step of the algorithm

involves constructing a list that includes the start and stop

(a) SWEEP-LINE (b) SCAN-LIST

Fig. 2: Illustrative example of sweep-line algorithm variations.

points of all regions in each dimension and sorting them. Then,

a conceptual line, moves (sweeps) from left to right across the
plane in the X dimension, examining the rectangles, one by

one, in order. During the sweep, the active rectangles (i.e., the
ones that the line is currently traversing over) are maintained

in a list. When a new region is encountered by the line, we

determine whether it is intersecting with any other rectangle in

the list of actives in the Y dimension as well, using equation

(2). For any pair where this is true, the pair constitutes an

intersecting pair, and included in the results. Afterwards, the

new rectangle is added to the list of active rectangles. When

the upper corner (ending point) of a rectangle is reached by

the line, that rectangle is removed from the list of actives.

At any given time during the sweep, the list of active

rectangles has size L. The sweep line will visit N lower

rectangle corners and N upper ones, where at every lower

corner there will be L comparisons performed. Of course, K
additional steps are required to output the intersections found.

Therefore, the number of operations is O(
∑N

i=1 Li+N+K).
As mentioned before in a worst case scenario where all the

objects are intersecting, L can reach as high as N . Therefore,
the upper bound for the computation cost is O(N ∗ N +
N + K) = O(N2 + K). Usually, however, L � N , and
the Bentley-Ottmann algorithm significantly outperforms the

naive one in terms of time. In terms of memory space required,

as the list of active rectangles is maintained throughout the

sweep, the memory required is O(L) = O(N). An illustrative
example of the process can be seen in Figure 2a.

It is possible to reduce the upper bound for the compu-

tational complexity of the SWEEP-LINE algorithm further,

by replacing the list of active rectangles with a balanced

binary search tree, instead [7]. The binary tree structure is

constructed during the sweep, and it allows for comparing

newly encountered rectangles with active ones in logarithmic

time, by performing a search on that tree. As this search

requires logL steps, the new upper bound for this version of
the sweep-line algorithm becomes O(N +K)logN , which is
the state-of-the-art for non parallelized versions of the sweep-

line algorithm.

326

D. SCAN-LIST Algorithm

A critical limitation of the basic Bentley-Ottman sweep-

line algorithm is that it must iterate through the entire dataset

in series. The need to maintain a record of active objects

introduces some invariants, which are violated when trying

to unravel the main sweep loop and distributing the work.

A straight-forward approach to side-step these invariants and

distribute the work to many cores in the same machine is the

SCAN-LIST algorithm [12].

In SCAN-LIST, a sweep is performed across a dimension in

an arbitrary direction; however, only left edges (represented

by the x0 coordinates) are considered while scanning. The

scan step picks one rectangle (R1) at a time and checks for

intersection with the ones to the right of this test rectangle.

The scan continues as long as the right-edge coordinate of the

selected rectangle x1
R1
is greater than the left-edge coordinate

of the newly encountered rectangle x1
R2
. At this point, the

selected rectangle is discarded and the scan proceeds to the

next one. An illustrative example of this process can be seen

in Fig. 2b.

This method is actually much less sophisticated than sweep-

line, and would be outperformed by it in a sequential execution

as it has a worst-case serial complexity of O(N2). However,
it has the benefit of being effortlessly parallelizable, at least

within a single machine. All processing for each selected

object is independent of the others, and they can be per-

formed simultaneously, thus outperforming the serial sweep-

line. However, there are still limitations with this algorithm.

The stopping condition for each selected object isn’t specific

and pre-determined, but instead it depends on the length of

the object in the scan dimension (in worst-case scenarios, this

could even span the entire dataset!). As such, it is impossible

to directly partition the data into smaller batches and distribute

them across a cluster environment.

In our proposed method, we utilize elements from both

sweep-line and SCAN-LIST, as well as sophisticated techniques

for input data partitioning, to achieve a highly parallelized

and truly scalable and distributed solution to the axis-aligned

object intersection problem.

III. METHODOLOGY

In this section, we introduce the MRSWEEP and

MRSWEEP-D methods and all procedures associated with

their evaluation. We first describe the steps involved in the

MRSWEEP algorithm, including the sampling for the dynamic

partitioning. Afterwards, we present its variant MRSWEEP-D,

with its own partitioning scheme and additional steps. Finally,

we discuss the strengths and limitations of each approach.

A. MRSWEEP

For our proposed algorithm, we employ dynamic partition-

ing through sampling. As a pre-processing step, we wish to

divide the entire observation space in all dimensions so that

a roughly equal number of of input data objects is present in

every partition. To do that, we try to approximately determine

the underlying distribution in each dimension, with the help

↓ ↓

↓ ↓

(a) all dimensions (b) per dimension

Fig. 3: Illustrative example of data partitioning.

of a representative sample. Although this step adds a slight

computational overhead, Apache Spark’s architecture allows

us to retrieve a sufficiently large sample of size S in negligible
time.

We proceed by calculating the coordinates of the

center points for each sampled object in all dimen-

sions (xc
R1

, ycR1
, xc

R2
, ycR2

, . . .). Afterwards, we group to-

gether and sort the coordinates for each dimension

({xc
R1

, xc
R2

, . . .}, {ycR1
, ycR2

, . . .}). Finally, since these points
should follow the same underlying distribution as the initial

dataset, all we need in order to produce P partitions overall

(i.e. P
D partitions in each dimension) is to select every Z·D

P th

value in each dimension and use that as a partition point

in that dimension. These partition points are used to define

an uneven D-dimensional grid, with each cell receiving an
arbitrary partition id.

Having determined the partitions, we can now proceed with

327

Procedure 1 GetPartitions
Input: Set S of objects in D dimensions

Output: Set of partitions Pd,i with their bounds

C = sample(S, Z) // get sample
C.map(Ri: (R

0
i +R1

i)/2) // get centers
for d ∈ D do

Cd.sort() // sort centers
for i ∈ [2, (Z ·D)/P] do

Pd,i = (Cd,i−1, Cd,i) // get partition points
end for

end for

processing the dataset itself. As each input object is read, it

is compared with the partition grid. For every cell it comes in

contact with, a key-value pair is returned, with the value being

the object and the key being the corresponding partition id.

Effectively, each object is replicated across all the partitions it

belongs in, and objects with the same partition id are grouped

and processed independently. An illustration of this process

can be seen in Fig. 3a.

The next step is sorting the objects in each partition along

a sweep direction and simply applying the state-of-the art

sweep-line algorithm independently on each of them. Any

two objects that are intersecting in at least one point are

guaranteed to both belong in the partition that includes that

point. Therefore, since all intersecting pairs always appear in

at least one partition together, we are guaranteed to correctly

find all intersecting pairs in the dataset, with possibly some of

the results duplicated. The final step, then, is to simply filter

out all duplicate results. The pseudocode for the algorithm can

be found in Alg. 1.

Note that in 2-D+ this method will only guarantee a

roughly equal number of objects in each partition, as long

as their distribution in space is close to either the gaussian

or the uniform distributions. If that isn’t true, there is no

guarantee that the resulting partitions will be balanced. For

example, in Fig. 3a, partition 2 has no objects at all, and is

therefore not included. In cases like these, much more complex

and computationally heavy methods are required to produce

balanced partitions of D-dimensional space. We instead try to
address this limitation through the algorithm itself, as shown

in the next subsection.

B. MRSWEEP-D

Similar to MRSWEEP, MRSWEEP-D we dynamically de-

termine a number of partition points using a sample. However,

while before we divided the entire observation space into

P partitions, each with the same number of dimensions as

the original space, now we split the objects even further,

down to their component factors in each dimension instead.

This means that we create P
D partitions for every dimension

(Px1, Px2, Py1, Py2, . . .), and each one contains the projections
of some objects in the corresponding dimension. An illustra-

tion of this process can be seen in Fig. 3b.

Algorithm 1 MRSWEEP
Input: Set S of objects in D dimensions

Output: Set of intersect pairs (R1R2R4R6, . . .)
Pd,i = GetPartitions(S) // get partition points

function PARTITION(R)
for Pi ∈ P do // for every partition

if R ∈ Pi then // check if object is in
yield (Pi, R) // emit and continue

end if
end for

end function
S.map(partition).groupByKey() // perform partitioning

S.mapValues(SweepLine) // get intersecting pairs
S.groupByKey()
S.mapValues(x: x[0]) // remove duplicates, keep only 1st

After the separate factors of all objects have been sent to the

corresponding partitions, once again a sorting step takes place.

It is now possible to simply execute the classic sweep-line or

SCAN-LIST algorithm for 1-D line segments, and find the pairs

of objects that are partially intersecting, i.e. intersecting in at

least one dimension. The SCAN-LIST was selected out of the

two for the experiments in this work, as it lends itself better

to parallel, multi-threaded calculation and, as such, performed

better. Of course, this means that another step is necessary:

we need to determine which of these are actually intersecting

in all dimensions, and which are not. For this purpose, we use

a simple key-based reduction, where the key is formed from

the ids of the intersecting pair, and the value is the number

of dimensions they overlap in. If, after this reduction step, a

pair objects is not overlapping in all D dimensions, then it is

filtered out, and only the complete intersections are returned.

Alg. 2 outlines the exact process.

This time, since the partition points in each dimension

approximately correspond to the underlying distribution in that

dimension, the partitions produced by MRSWEEP-D should

always have approximately equal numbers of objects (as can

be seen in 3b. Thus, processing can be more effectively

distributed, with the end result being a more scalable al-

gorithm. There is, however, a trade-off: depending on the

distribution of objects in space and the number of dimensions,

the number of intermediate results (i.e. partial intersections)

can be prohibitively large. Specifically, when the objects are

uniformly distributed in space, the fact that they intersect in

one dimension is in no way indicative about them intersecting

in another; thus MRSWEEP-D will produce many intermediate

results that will be later discarded. Furthermore, if D is high,

and a pair of objects are intersecting in only 1 or 2 dimensions,

MRSWEEP-D will still examine all dimensions for potential

partial intersections, whereas MRSWEEP will stop after the

first negative result.

Overall, MRSWEEP should be well-suited to problems

328

Algorithm 2 MRSWEEP-D
Input: Set S of objects in D dimensions

Output: Set of intersection pairs (R1 R2, R4 R6, . . .)
Pd,i = GetPartitions(S) // get partition points

function PARTITION(R)
for d ∈ D do // for every dimension

for Pd,i ∈ P do // for every partition
if Rd ∈ Pd,i then // check if object is in

yield (Pd,i, R) // emit and continue
end if

end for
end for

end function
S.map(partition).groupByKey() // perform partitioning

S.mapValues(ScanList) // get pairs

function MERGE(Factors of intersect. R1R2)

for d ∈ D do
set(R1-R2d) // remove duplicates in same d

end for
if length(R1-R2)= d then //all intersect

yield R1-R2 // emit and continue
end if

end function
S.groupByKey().mapValues(merge)

where the objects are very high-dimensional or are uni-

formly/normally distributed in space. On the other hand,

MRSWEEP-D is better geared towards cases where the objects

are concentrated in several specific points (”hotspots”) in

space, and have a small number of dimensions. It should

be possible to determine which one is more appropriate by

examining the properties of the dataset itself.

IV. EXPERIMENTAL EVALUATION

In this section, we experimentally evaluate the perfor-

mance of our proposed distributed algorithms MRSWEEP and

MRSWEEP-D. We also evaluate their behaviour assuming

different levels of problem complexity. Before presenting the

results, we provide details of the computational environment

and the data sets employed.

A. Cluster Environment

All experiments are conducted using Apache Spark de-

ployed on a Hadoop cluster with 7 nodes, each with 24 Intel®

Xeon® E5-2620 CPU v3 @ 2.40GHz cores and 64 GB of

RAM, at a total capacity of 168 cores (limited to 140 for Spark

usage) and 448GB of RAM. For the algorithm implementa-

tion we are using Python 3.7 and PySpark 2.4.4. For each

experiment that takes up to 2 hours, we execute any evaluated

algorithm ten (10) independent times and report average values

(of execution time or other quantities, accordingly).

TABLE II: Summary of Datasets

Name N K(≈) D Distribution

XS-N 106 2 · 106 2 normal (μ = 0.5T ;σ = 0.1T)
S-N 5 · 106 107 2 normal (μ = 0.5T ;σ = 0.1T)
M-U 107 2 · 107 2 uniform
M-N 107 2 · 107 2 normal (μ = 0.5T ;σ = 0.1T)
M-H 107 2 · 107 2 hotspots (#spots = 3)
L-N 5 · 107 108 2 normal (μ = 0.5T ;σ = 0.1T)
XL-N 108 2 · 108 2 normal (μ = 0.5T ;σ = 0.1T)

M-N-1D 107 2 · 107 1 normal (μ = 0.5T ;σ = 0.1T)
M-N-3D 107 2 · 107 3 normal (μ = 0.5T ;σ = 0.1T)
M-N-4D 107 2 · 107 4 normal (μ = 0.5T ;σ = 0.1T)

(a) uniform (b) normal (c) hotspots

Fig. 4: Small examples of the different distributions of the

input data that are employed in the experiments. The uniform
distributes objects equally in the Euclidean space; the normal
or gaussian creates a hot spot in the Euclidean space, where
a large number of objects is concentrated and results in

large number of multiple overlaps; the hotspots replicates the
behavior of the gaussian multiple times and generates multiple
hot spots in the Euclidean space.

B. Data

In order to evaluate the behavior of the algorithms under

certain conditions, we use synthetic data. A data generator was

implemented that produces data sets of specific characteristics

thanks to a controlled number of parameters. We define a

Euclidean space in 1-D, 2-D or a higher dimension D and

fix the size of each dimension to be T , effectively ranging in
[0, T]; unless otherwise noted T = 1000. Within that space,
we randomly generate N objects(e.g., line segments in 1-

D or rectangles in 2-D, etc.). The size of each dimension
(side) of an object is uniformly at random selected from the

range t : [0, tmax], where tmax = r · T and r ∈ [0, 1]
represents a ratio of the total length T . For example, if
r = 0.01 and T = 1000, then the size for each dimension
of a region would be bound by 0 ≤ t ≤ 10. Randomly
generated objects will result in a number of intersections.

To control how objects are located in the Euclidean space

(and therefore the likelihood of them intersecting) we rely in

three different probability distributions, uniform, gaussian or
normal and hotspots. These distributions and their properties
were selected to reflect a wide variety of possible real-world

conditions and different levels of problem complexity; the

gaussian or normal distribution has mean (μ) of μ = 0.5T and
standard deviation (σ) of σ = 0.1T , while the hotspots one is
a combination of a specified number of gaussians with random

mean (μ) values and sigma (σ) values in the range [0,1T]. In

329

practice, the distribution is specified by the user and when

an object is generated the position of its starting coordinate

for each dimension is dictated by one of the three possible

distributions. Illustrative examples of these distributions for

2-D can be seen in Figure 4. Therefore, the configurable

parameters of the synthetic data generator are the number of
objects N , a ratio r, a dimension D and a spatial distribution,
with related parameters. For experimental evaluation purposes,
various datasets were created, ranging from 106 to 109 regions
and resulting in 107 to 1010 intersections. The reference name
and details of all the generated datasets used in the experiments

can be found in Table II.

C. Experiments

We aim to evaluate the following aspects:

• Effect of Object Distribution on Performance. How
does the distribution of objects in Euclidean space affect

the performance of MRSWEEP and MRSWEEP-D? How

the performance is affected if objects are defined in

higher-dimensions?

• Effect of Partitioning Parameters on Performance.
How do MRSWEEP and MRSWEEP-D behave for dif-

ferent numbers of data partitions?

• Scalability. How does our proposed MRSWEEP and

MRSWEEP-D methods scale with increasing numbers of

cluster cores, for various data sizes?

1) Effect of Object Distribution on Performance: First, we
examine the performance of MRSWEEP and MRSWEEP-D

for datasets with different spatial distributions. To that end,

we use the datasets M-N, M-U and M-H, that contain objects

following a normal (or gaussian), uniform and hotspots spatial
distribution, respectively. The results can be seen in Figure 5a.

As expected, MRSWEEP outperforms MRSWEEP-D for uni-

formly distributed objects; the opposite is true for the hotspots
distribution. A major cause of this is partial intersections:
when two objects intersect in some dimension(s) but not in all

of them, MRSWEEP-D will examine all dimensions, whereas

MRSWEEP will examine the sweep dimension first and won’t

proceed to the next if they don’t intersect. This results in more

calculation steps and a slower execution time for MRSWEEP-

D in the uniform distribution, where partial intersections are

more likely to occur. However, for the hotspots distribution,
MRSWEEP-D performs better, despite this additional cost. The

main reason is the imbalance in partition sizes: MRSWEEP

attempts to partition the entire space using an uneven grid,

which produces unbalanced partitions, as the the objects are

not symmetrically distributed. When the objects follow a

normal distribution, the objects can be evenly partitioned and
partial intersections are less likely to occur; therefore, both

algorithms perform similarly well.

Secondly, we explore the behavior of the two algorithms

as a function of higher dimensions. For that task, we use the

datasets with that refer to higher dimensions M-N-1D, M-N,

M-N-3D and M-N-4D. Figure 5b displays the results. In 1-D,
both algorithms follow the exact same partitioning technique.

However, MRSWEEP-D slightly outperforms MRSWEEP, as it

(a) distribution×time

(b) D×time
Fig. 5: Effect of spatial distribution and number of dimensions

on execution time for MRSWEEP and MRSWEEP-D.

utilizes the SCAN-LIST algorithm, which as discussed in Sec-

tion III, can be executed in parallel threads – something that

Apache Spark handles automatically. However, as the number

of dimensions increases, partial intersections are becoming

more and more likely, while object intersections (where objects

intersect in all dimensions) are less likely to occur. This results

in more intermediate results produced for MRSWEEP-D, and

it is quickly outperformed by MRSWEEP.

2) Effect of Partitioning Parameters on Performance:
Subsequently, we explore the impact that the number of parti-

tions has on the performance of MRSWEEP and MRSWEEP-

D, in terms of execution time. This is particularly helpful

in determining the optimal partitioning properties for each

algorithm. We use the M-N dataset, setting the number of

partitions P from 1 to 5000. Note that for a value of P = 1, the
entire dataset consists of the single partition and the execution

is effectively non-distributed. For this experiment we employ

all available nodes in the cluster (effectively 140 cores). The

results can be seen in Figure 6a. The first observation is

that as the number of partitions increases, the execution time

decreases. This is intuitive – as the data is divided into more

partitions, it can be easier to distribute the computation to

more workers/cores on the cluster. However, this downwards

330

(a) P×time

(b) P×#replicated
Fig. 6: Effect of number of partitions on execution time and

number of additional replicated objects for MRSWEEP and

MRSWEEP-D.

trend continues up to the point that the number of partitions is

similar to the number of cores (140), at which point the trend

switches to upwards, indicating that the execution time starts

increasing, instead of continuing to decrease.

There are a few reasons for this behavior. First, as the

number of partitions increases, the amount of intermediate

results produced in the MapReduce operations increase as

well, creating more cluster communication costs (shuffling

over the network). But, more importantly, this behavior is

explained by the effect that the partitioning has to the data and

the need to merge results that have been replicated in multiple

partitions. Recall that every time an object is spanning two

(or more) partitions, we replicate that object in all partitions

and merge it at a later stage. To further study this behavior

we perform an additional experiment where the number of

replicated objects (#replicated) is monitored as a function
of the number of partitions (#partitions). Figure 6b shows
the results. Note that the plot is in log-log scale and appears as

a straight line. The slope of a log-log plot gives the exponent

in the relationship between #replicated and #partitions:

#replicated ∝ #partitions100

(a) N×time

(b) #cores×time
Fig. 7: Effect of number of objects and number of cores on

execution time for MRSWEEP and MRSWEEP-D.

The exponent (i.e., 100) is an artifact of the synthetic generator

parameter that controls the size of each object. So, as the

number of partitions increases above ∼ 140, the number of

replicated objects increases faster, and leads to the upwards

trend of the execution time that we observe in Figure 6a.

In all the previous cases, MRSWEEP outperforms

MRSWEEP-D, as the dataset follows a gaussian distribution,

for which the former is better suited for. Other than that, the

trends remain the same.

3) Scalability: Finally, we evaluate the time performance of
MRSWEEP and MRSWEEP-D. In the following experiments,

we fix the number of partitions to P = 300.
First, we evaluate the performance of the methods as a

function of different data size (i.e., number of objects). For

this experiment, we make use of the XS-N, S-N, M-N, L-

N, XL-N datasets and employ all available nodes in the

cluster (effectively 140 cores). Figure 7a shows the results.

It can be seen that both MRSWEEP and MRSWEEP-D can

detect the intersections in very large instances of the problem

(108 objects, having 2 · 108 intersections) within a few hours;
in slightly smaller datasets within minutes. The increase on

the time for larger datasets can be explained by the number

331

of replicates that are created during the execution of the

algorithm. As we explained in paragraph IV-C2 and since in

this experiment the number of partitions is fixed to P = 300,
a larger number of objects will increase the number of object

replicates; therefore the method will have to carry on the

overhead of merging replicates found in different partitions.

More importantly, we evaluate the performance of the

methods as a function of the numbers of available cores. For

this experiment, we make use of the M-N dataset. The results

can be seen in Figure 7b. We observe that as the number

of cores is increasing (from 1 to 128) the execution time

of both MRSWEEP and MRSWEEP-D is steadily decreasing.

The decrease is not linear, since by increasing the number of

cores we carry on the overhead of shuffling and coordinating

the different cores (communication cost). We have effectively

provided evidence that our proposed distributed methods can

scale gracefully to very large data sizes and make efficient use

of the available cores of a large cluster. More importantly, they

can yield significant performance improvements to current

state-of-the-art implementations. For instance, we were able to

find the intersections of 107 objects, having 2·107 intersections
using 128 cores in less than 10 minutes – the same operation

would require approximately 200 minutes when executed on

a single core.

V. RELATED WORK

Our research is related to the object intersection problem
in computational geometry, spatial data structures that com-
monly arise in the context of spatial databases and spatial

data mining, as well as the problem of algorithm distribution
and parallelization in MapReduce. Several key ideas on these
topics have already been cited throughout the paper; here we

present a more comprehensive coverage of each topic.

A. Sweep-line Algorithm

A great number of data structures and algorithms have been

developed that deal with finding and performing queries on

intersecting objects [6], [13]. One of the most common related

problems to that is the axis-aligned (or iso-oriented) rectangles

in R
d [14], [15], or the very similar orthogonal range search

problem [16]. A critical step in various different applications

such as collision detection in computer simulations [17] or for

object placement problems [18], this problem has seen a lot

of usage in data mining research [19], [20].

The state-of-the-art techniques used in related research

belong to one of two families of algorithms: either a sweep-line
(also known as plane sweep) or a divide-and-conquer algo-
rithm, which have been shown to be equivalent in computation

cost [21]. These algorithms are commonly tasked with the

purpose of constructing data structures that can accommodate

spatial queries by identifying pair-wise [22], [23] or multiple

[24] intersections of objects.

There have been some extensive solutions on optimiz-

ing these techniques and methodologies for processing large

amounts of data in a single processor/single disk environment

[25], as well as many proposed parallelization methods for

different versions of the sweep-line algorithm. In [11], a

parallel algorithm for the general, non-axis-aligned interval

intersection problem is proposed, that relies on statically

partitioning the observation space into strips and performing

the sweep-line algorithm on these. In our research, we focus

on a parallel and distributed implementation of the axis-

aligned objects case instead. Although it’s more specific, it

is of great importance to numerous problems and it allows for

better optimized and efficient calculation techniques. In other

similar cases, the partitioning used introduces synchronization

points that aren’t feasible in a distributed environment [10].

Furthermore, in [12], the highly parallel scan-list algorithm

is proposed. However, it is best suited for single-node, multi-

threaded parallelization, as every separate process running in

parallel needs to be able to access the entire dataset locally. In

a distributed environment, this introduces the highly expensive

requirement of replicating the entire dataset to every node.

Such a distributed sweep-line in external memory algorithm

has been proposed to address very few computational geome-

try problems, such as the skyline merge one [26], but not the

rectangle intersection problem.

B. MapReduce and Apache Spark

MapReduce [27] is a distributed parallel processing model

and execution environment for processing large data sets run-

ning on large clusters of commodity machines. Apache Spark

[28] is an open-source, distributed, in-memory computing

framework and architecture that follows a similar approach but

overcomes some of the inefficiencies of MapReduce. MapRe-

duce and Spark have been utilized for various spatial data

mining and distributed processing problems, such as spatial

[29] and spatiotemporal joins [30]. A high-level approach for

parallelization and distribution of spatial data processing has

been proposed in [31], however it is not specifically directed

towards the axis-aligned object intersection problem. To the

best of our knowledge, this is the first work that presents

methods to distribute the sweep-line paradigm over a cluster

with multiple nodes, using Apache Spark.

VI. CONCLUSIONS

The axis-aligned object intersection problem is an essential

computational geometry problem and a key component in

numerous applications, such as data mining and machine learn-

ing, spatial databases, hardware design, and computer vision.

Current state-of-the-art solutions to address the problem rely

on an algorithmic paradigm known as sweep-line or sweep

plane. While this paradigm offers significant advantages to

naive approaches, it presents limitations that prevent it to scale

to very large instances of the problem (i.e., instances of large

number of objects, large number of intersections or both).

Motivated by the scalability limitation of such a popular

and useful method, we presented MRSWEEP and MRSWEEP-

D, two efficient distributed algorithms that implement the

sweep-line paradigm. Our comprehensive experiments provide

evidence that parallelization on a cluster using MapReduce on

Apache Spark yields significant performance improvements.

332

For instance, we were able to find the intersections of 107

million objects, having 2 · 107 intersections using 128 cores
in less than 10 minutes – the same operation would require

approximately 200 minutes when executed on a single core.

To the best of our knowledge, this is the first work that deals

with distributing the sweep-line paradigm over a cluster with

multiple nodes, with distributed storage and distributed mem-

ory. An important characteristic of the distribution strategy is

that the proposed algorithms offer a high level of versatility:
• they can adapt or be adapted to instances of the problem
of variable levels of complexity (i.e., different distribu-

tions of the input data and number of intersections);

• they can gracefully scale to objects of higher dimensions.
That is noteworthy, since previous attempts provide cus-

tomized implementations of the sweep-line that focus on

objects of a specific dimension, usually 1-D or 2-D.

The designed algorithms offered also a number of lessons

and insights about the complexity of distributing the problem.

While, the parallelization of the sweep-line itself is concep-

tually intuitive, how one should partition the data is not as

straightforward as it might seem. While joining partial results

that span boundaries of the data partitions is not difficult, an

increase on the number of partitions might carry substantial

overhead that cannot be ignored. Our proposed methods reflect

on these considerations and provide a sophisticated way to

scale out the computation of already existing implementations

of the popular sweep-line algorithm.

Overall, MRSWEEP and MRSWEEP-D offer a practical

solution to a challenging real-world problem. As such, we

anticipate their impact to be significant in various domains.

Reproducibility: To encourage reproducibility of the
results and broader adoption of the methods, we make

our synthetic data generator, source code, and data sets

publicly available at: https://github.com/tipech/mrsweep.

REFERENCES

[1] J. M. Patel and D. J. DeWitt, “Partition based spatial-merge join,”
SIGMOD Rec., vol. 25, no. 2, pp. 259–270, Jun. 1996.

[2] T. Pechlivanoglou and M. Papagelis, “Fast and accurate mining of node
importance in trajectory networks,” 2018 IEEE International Conference
on Big Data (Big Data), 2018.

[3] J. Fang, J. Wong, K. Zhang, and P. Tang, “A new fast constraint
graph generation algorithm for vlsi layout compaction,” 1991., IEEE
International Symposium on Circuits and Systems, 1991.

[4] T. Tang, E. L. Bohez, and P. Koomsap, “The sweep plane algorithm for
global collision detection with workpiece geometry update for five-axis
nc machining,” Computer-Aided Design, vol. 39, no. 11, p. 1012, 2007.

[5] Bentley and Ottmann, “Algorithms for reporting and counting geometric
intersections,” IEEE Transactions on Computers, vol. C-28, no. 9, pp.
643–647, Sep. 1979.

[6] Bentley and Wood, “An optimal worst case algorithm for reporting
intersections of rectangles,” IEEE Transactions on Computers, vol. C-29,
no. 7, pp. 571–577, July 1980.

[7] H. W. Six and D. Wood, “The rectangle intersection problem revisited,”
Bit, vol. 20, no. 4, p. 426–433, 1980.

[8] E. M. McCreight, Efficient algorithms for enumerating intersecting
intervals and rectangles. Xerox, Palo Alto Research Center, 1980.

[9] M. T. Goodrich, “Intersecting line segments in parallel with an output-
sensitive number of processors,” Proceedings of the first annual ACM
symposium on Parallel algorithms and architectures - SPAA 89, 1989.

[10] H.-P. Kriegel, T. Brinkhoff, and R. Schneider, “The combination of spa-
tial access methods and computational geometry in geographic database
systems,” Advances in Spatial Databases Lecture Notes in Computer
Science, p. 5–21, 1991.

[11] M. Mckenney and T. Mcguire, “A parallel plane sweep algorithm for
multi-core systems,” Proceedings of the 17th ACM SIGSPATIAL Inter-
national Conference on Advances in Geographic Information Systems -
GIS 09, 2009.

[12] A. B. Khlopotine, V. Jandhyala, and D. Kirkpatrick, “A variant of parallel
plane sweep algorithm for multicore systems,” IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, vol. 32,
no. 6, p. 966–970, 2013.

[13] F. Dévai and L. Neumann, “A rectangle-intersection algorithm with lim-
ited resource requirements,” in 2010 10th IEEE International Conference
on Computer and Information Technology. Berlin, Germany: IEEE,
June 2010, pp. 2335–2340.

[14] H. Edelsbrunner, “A new approach to rectangle intersections,” Interna-
tional Journal of Computer Mathematics, vol. 13, no. 3-4, 1983.

[15] T. M. Chan, “A note on maximum independent sets in rectangle
intersection graphs,” Information Processing Letters, vol. 89, no. 1, pp.
19–23, 2004.

[16] B. Chazelle, J. E. Goodman, and R. Pollack, Advances in discrete and
computational geometry: proceedings of the 1996 AMS-IMS-SIAM Joint
Summer Research Conference, Discrete and Computational Geometry.
Princeton, NJ: American Mathematical Society, 1999.

[17] Y. Zhou and S. Suri, “Collision detection using bounding boxes:
Convexity helps,” Algorithms - ESA 2000 Lecture Notes in Computer
Science, pp. 437–448, 2000.

[18] P. K. Agarwal, M. V. Kreveld, and S. Suri, “Label placement by
maximum independent set in rectangles,” Computational Geometry,
vol. 11, no. 3-4, pp. 209–218, 1998.

[19] T. Fukuda, Y. Morimoto, S. Morishita, and T. Tokuyama, “Data mining
with optimized two-dimensional association rules,” ACM Transactions
on Database Systems, vol. 26, no. 2, p. 179–213, Jan 2001.

[20] A. Giacometti and A. Soulet, “Dense neighborhood pattern sampling in
numerical data,” Proceedings of the 2018 SIAM International Confer-
ence on Data Mining, p. 756–764, Jul 2018.

[21] R. H. Güting and W. Schilling, “A practical divide-and-conquer al-
gorithm for the rectangle intersection problem,” Information Sciences,
vol. 42, no. 2, pp. 95–112, 1987.

[22] L. Arge, O. Procopiuc, S. Ramaswamy, T. Suel, and J. S. Vitter,
“Scalable sweeping-based spatial join,” in Proc. of the 24rd International
Conference on Very Large Data Bases, ser. VLDB ’98. San Francisco,
CA, USA: Morgan Kaufmann Publishers Inc., 1998, pp. 570–581.

[23] F. Zhang, X.-Z. Qiao, and Z.-Y. Liu, “A parallel smith-waterman algo-
rithm based on divide and conquer,” in Fifth International Conference
on Algorithms and Architectures for Parallel Processing. IEEE, Oct
2002, pp. 162–169.

[24] T. Pechlivanoglou, V. Chu, and M. Papagelis, “Efficient mining and
exploration of multiple axis-aligned intersecting objects,” 2019 IEEE
International Conference on Data Mining (ICDM), 2019.

[25] M. T. Goodrich, Jyh-Jong Tsay, D. E. Vengroff, and J. S. Vitter,
“External-memory computational geometry,” in Proceedings of 1993
IEEE 34th Annual Foundations of Computer Science, 1993, pp. 714–
723.

[26] C. Sheng and Y. Tao, “On finding skylines in external memory,” in
Proceedings of the thirtieth ACM SIGMOD-SIGACT-SIGART symposium
on Principles of database systems, 2011, pp. 107–116.

[27] J. Dean and S. Ghemawat, “Mapreduce: Simplified data processing on
large clusters,” Communications of the ACM, vol. 51, no. 1, p. 107, Jan
2008.

[28] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and I. Stoica,
“Spark: Cluster computing with working sets,” in Proceedings of the
2nd USENIX Conference on Hot Topics in Cloud Computing, ser.
HotCloud’10. USA: USENIX Association, 2010, p. 10.

[29] E. H. Jacox and H. Samet, “Spatial join techniques,” ACM Transactions
on Database Systems, vol. 32, no. 1, Jan 2007.

[30] R. T. Whitman, M. B. Park, B. G. Marsh, and E. G. Hoel, “Spatio-
temporal join on apache spark,” Proceedings of the 25th ACM SIGSPA-
TIAL International Conference on Advances in Geographic Information
Systems - SIGSPATIAL17, 2017.

[31] K. Wang, J. Han, B. Tu, J. Dai, W. Zhou, and X. Song, “Accelerating
spatial data processing with mapreduce,” 2010 IEEE 16th International
Conference on Parallel and Distributed Systems, 2010.

333

