
Fast and Accurate Mining of Node Importance
in Trajectory Networks
Tilemachos Pechlivanoglou and Manos Papagelis

Lassonde School of Engineering, York University, Toronto, Canada
tipech@eecs.yorku.ca, papaggel@eecs.yorku.ca

Abstract—Mining large-scale trajectory data streams (of mov-
ing objects) has attracted significant attention due to an abun-
dance of modern tracking devices and a number of real-world
applications. In this paper, we are interested in evaluating the
relative importance of such objects through monitoring their
interactions with other objects, over time. Which object has
encountered more other objects? When did these encounters
happen and how long did they last? To address this type of
questions, we consider a trajectory network that is defined
based on the proximity of moving objects over time. Given
this network, we are able to evaluate the importance of an
object (node) by monitoring its complex network connections
to other nodes over time. Traditional approaches to address the
problem rely on either evaluating network metrics over a number
of static network snapshots or expensive trajectory similarity
and clustering methods that require further post-processing.
Streaming algorithms also exist, but they focus on simple network
metrics. In contrast to these approaches, we devise a method
that is able to simultaneously evaluate node importance metrics
for all moving objects in the trajectory network. Our proposed
method is based on, first, efficiently computing and representing
the interactions of moving objects as time intervals. Then, a fast
and accurate one-pass sweep-line algorithm over the trajectories
(SLOT) is devised that can effectively compute the metrics of
interest, all at once. Through experiments on various types of
data, we demonstrate that our algorithm is a multitude of times
faster than sensible baselines, for a varying range of conditions.

Index Terms—Trajectory data mining, graph mining, network
science, trajectory networks, dynamic networks

I. INTRODUCTION

Advances in location acquisition and tracking devices have
given rise to the generation of enormous trajectory data con-
sisting of spatial and temporal information of moving objects,
such as persons, vehicles or animals [1]. Mining trajectory data
to find interesting patterns is of increased research interest
due to a broad range of useful applications, including analysis
of transportation systems, location-based services, and crowd
behavior analysis [2]–[5].

As multiple objects are continuously moving in an area
they can be found in close proximity to each other, forming
contacts. In this paper, proximity means spatial distance. A
contact between two objects can be seen as an event that
lasts for as much as their spatial distance remains consistently
smaller than a proximity threshold τ . Therefore, any event has
a duration, simply defined as the amount of time that passes
from the beginning of the contact until it ends. We say that
a contact is active for the duration of the event describing it.
Note that any two objects might encounter each other multiple

(a) t = 0 (b) t = 1

(c) t = 2 (d) t = 3

Fig. 1. Example evolution of the system over discrete times. As objects
move over trajectories they form contacts with other objects they are in close
proximity to. The collection of contacts at time t represents a proximity
network; over a period of time [0, T] it represents a temporal network, or
trajectory network. We want to mine the network importance of moving
objects in this trajectory network.

times, leading to the same contact occurring multiple times.
So, while each event is unique, multiple events might refer to
the same contact of two objects, occurring at different times.

At any point in time t, we can consider a proximity
network, defined as a graph with nodes representing objects
and edges representing contacts that are currently active. The
proximity network satisfies particular distance requirements
and its topology depends on the proximity threshold employed.
Given a proximity threshold, the trajectories of the moving
objects continuously form new contacts, while other contacts
are dissolved, leading to a collection of proximity networks.
These networks can be understood as a dynamic network the
topology of which is changing over time, a temporal network.
We refer to this temporal network defined by the trajectories
of moving objects over time as a trajectory network.

In this paper, we are interested in mining the importance of
moving objects (represented as nodes) in a trajectory network.

The concept of node importance has been rigorously studied
in the case of static graphs, due to its numerous applications.
These include measuring the influence of individuals in a
social network, understanding the role of infrastructure nodes
in transportation networks, urban networks, the Internet, or
assimilating the role of a given node in spreading a contagious
disease, to name a few.

Most of the metrics employed to characterize the importance
of a node in a static graph depend on the number of direct
connections that this node has to other nodes in the graph (i.e.,
the node degree). In the case of a trajectory network, these
connections are evolving over time, therefore the definition of
node importance needs to be redefined. For example, the num-
ber of unique connections or average number of connections
over time might be of interest. In addition, while existence (or
not) of a node’s connections remains important, the temporal
dimension adds more quantities of interest that need to be
examined, including metrics of frequency and duration of
these connections. These metrics can be equally important in
understanding a node’s role in the network and being able
to evaluate them allows for an overall more comprehensive
analysis. Other metrics of importance include the level of
connectedness of a node to other nodes over time, as well
as, the membership of a node to specific network motifs, e.g.,
network triangles. Fig. 1 presents a motivating example of the
nature of the problem. We further discuss and formally define
these metrics in Section II.

While the temporal dimension adds richness to the analysis,
it also adds to the complexity of the graph representation
and demands for efficient methods for evaluating the metrics
of interest. The naive approach to the problem requires to
evaluate the various node importance metrics over a number
of proximity graphs (assuming observation time is discretized),
using traditional static graph algorithms and then aggregating
quantities in a meaningful way. This is in addition to applying
expensive trajectory similarity methods over multiple points
to construct the proximity network at each point in time.
There are also streaming versions of algorithms that focus on
efficient computation of single network metrics over time. In
contrast to these approaches, we devise a novel method that is
able to simultaneously evaluate a number of network metrics
of interest for all moving objects (i.e., all trajectories), over
time. Our proposed method is based on two phases. First, it
efficiently computes and represents contacts of moving objects
over a period of time as a set of time intervals. Then, a one-
pass algorithm is used to evaluate the metrics of interest, all
at once, by efficiently processing the sets of time intervals
of contacts. In the cases we present, moving objects have
either constant velocities or follow random trajectories while
other parameters that can dramatically affect the results and the
algorithms’ performance are considered, such as the proximity
threshold τ . Furthermore, our method is utilized to evaluate
the membership of an object to interesting network motifs,
allowing for a more comprehensive clustering analysis of
objects over time. In summary, the major contributions of this
work include:

TABLE I
SUMMARY OF NOTATIONS

Notation Description

[0, T] Observation time interval
N A set of moving objects
Pi Trajectory of an object i
(x, y, t) Coordinates of an object at time t
τ Proximity threshold
du,v Spatial distance of u and v
cu,v Contact of u and v
eu,v Event about a contact between u and v
∆t Duration of an event
G[0,T](V,E) Trajectory network of V nodes and E edges
Vt Set of nodes at time t
Et Set of edges at time t
Gt(Vt, Et) Proximity network at time t

• a novel framework for network-based trajectory analysis.
• a novel one-pass algorithm, for fast and accurate mining

of node importance in trajectory networks.
• a thorough evaluation of node importance methods on

large-scale synthetic data, for a range of conditions.
• making source code and data publicly available to en-

courage reproducibility of results.
The remainder of this paper is organized as follows: Section

II introduces notation and preliminaries related to the problem.
Section III formally defines the problem of interest and its
variations. Our methods and overall framework are presented
in Section IV. Section V presents the details of our algorithms.
After reviewing the related work in Section VII, we conclude
in Section VIII.

II. DEFINITIONS AND PRELIMINARIES

Consider a set of objects N = {1, 2, . . . , N} moving in the
Euclidean plane R2 for a finite observation time interval [0, T],
forming trajectories Pi, i ∈ {1, 2, . . . , N}. As the objects are
continuously moving, they can at times encounter each other,
forming contacts.

Definition 1: (Contact) A contact c between two moving
objects u, v ∈ N occurs when the physical proximity (spatial
distance) du,v of the two objects is smaller than or equal to a
threshold τ (du,v ≤ τ). A contact is represented as a pair of
nodes cu,v = (u, v).

Several approaches can be used to estimate the spatial
distance of two points in Euclidean plane. In this paper, we
employ its simplest form, the Euclidean distance, given by:

du,v =
√

(xu − xv)2 + (yu − yv)2

where (xu, yu) and (xv, yv) are the spatial coordinates of
objects u and v at a time t, where 0 ≤ t ≤ T respectively.

As mentioned earlier, a contact is considered active for as
much as the spatial distance between the two objects u and v
remains consistently smaller than a proximity threshold τ . To
better describe this concept, we introduce the concept of an
event.

Definition 2: (Event) An event e occurs when two moving
objects u, v ∈ N form a contact cu,v and is represented by a

pair eu,v = (cu,v, [ts, te]), where cu,v = (u, v) and [ts, te] is
a time interval between the time at which the contact became
active ts and the time that the contact dissolved te. We also
refer to the times ts and te as endpoints of an event, the one
representing the starting point and the other the ending point
of the event e. Endpoints are critical for our proposed methods.
For simplicity, we sometimes represent an event as a quadruple
eu,v = (u, v, ts, te). An event has also a duration ∆t = te−ts.

Note that, in our setting, we do not preclude the case
that two objects contact each other multiple times over the
observation time interval [0, T]. In this case, a contact be-
tween two moving objects u and v is represented by a
sequence of events Eu,v = {e1

u,v, . . . , e
n
u,v} or Eu,v =

{(cu,v, [t1s, t1e]), . . . , (cu,v, [tns , tne])}, and the respective dura-
tions of the events as a set E∆t

u,v = {∆t1, . . . ,∆tn}.
In this paper, we employ a universal proximity threshold

τ , so the contacts will always be reciprocal, meaning that
(cu,v, [ts, te]) is equivalent to (cv,u, [ts, te]). While we can
assume that the reciprocity property is valid in many appli-
cations (e.g., vehicle-to-vehicle proximity, human-to-human
proximity, to name a few), there are interesting cases and
applications where the reciprocity property might not always
be satisfied. For example, if proximity is defined as the ability
of a node to perceive another object, then we can assume that
nodes u and v might have a different degree of that skill,
and therefore (cu,v, [ts, te]) is not necessarily equal to the
(cv,u, [ts, te]). These cases are out of the scope of this work.

A. Trajectory Networks

Monitoring the physical proximity of moving objects, can
be represented as a trajectory network. Formally, a trajectory
network G[0,T] defined in an observation time interval [0, T]
consists of a set of vertices V[0,T] and a set of edges E[0,T].
It is easy to see that V[0,T] represents all moving objects N
and E[0,T] represents all the events that occurred in [0, T].

A trajectory network is inherently dynamic and can also
be thought of as a temporal network, also referred to as
a time-varying network. Most characterizations of temporal
networks discretize time by converting temporal information
into a sequence of n network “snapshots”. We use w to denote
the time duration of each snapshot (time window size), where
w = T/n, expressed in some time unit (e.g., seconds, minutes,
hours, etc.). For simplicity we assume that w = 1. In other
words, a temporal network can be represented as a series
of static graphs G1, G2, . . ., Gn. The notation Gt(Vt, Et),
∀t ∈ {1, 2, . . . , n} represents the temporal network snapshot
at time t, where Vt, Et are the sets of vertices and edges at
time t, respectively. It is easy to see that Gt(Vt, Et) represents
a proximity network at time t, where Vt represents moving
objects and Et represents all active contacts at time t.

Edge Stream Representation of a Trajectory Network:
A trajectory network G[0,T] can be represented as an edge
stream —a sequence of all events e ∈ E[0,T] ordered by
their starting time ts. For example, if E[0,T] has the following
events: {(u1, u5, 3, 7), (u2, u7, 2, 4), (u1, u2, 5, 7)}, then the

Fig. 2. A set of continuous line segments representing time intervals can be
used to model the events that occur in a trajectory network.

edge stream appears as follows: {(u2, u7, 2, 4), (u1, u5, 3, 7),
(u1, u2, 5, 7)}. If two events start at the same time, their
ordering is considered arbitrary. Our algorithms assume that
the edges are given in chronological order; if not, they can
be sorted in O(mlogm) time, where m = |E[0,T]|. The edge
stream is a natural way to represent a trajectory network, e.g.
representing walking individuals over time, vehicles moving
in city over time, and more. The edge stream of G can be
modeled as a set of n continuous line segments (i.e, event
time intervals) with freely defined starting and ending points
placed along an horizontal axis representing time (see Fig. 2).

B. Node Importance in Trajectory Networks

In this paragraph, we define metrics that relate to the
temporal importance of nodes. Note that we abstain from
the term node centrality to refer to node importance that is
common in static network analysis. This is because measures
of node centrality in the traditional setting of a static network
are commonly based on shortest paths (e.g., betweenness
centrality [6], [7]), but shortest paths in temporal networks
take a different character [8]. For example, in [9], the authors
define minimum temporal paths to capture the different charac-
terizations of time-constraint shortest paths including cases of
earliest-arrival paths, latest-departure paths, or fastest paths.
It is possible to evaluate a notion of temporal betweenness
[10], but in our setting, we focus on more versatile notions of
importance that are critical in the context of trajectories and
network-based trajectory analysis. That includes metrics that
relate to the temporal node degree, duration of contacts, node
connectedness, and node triangle membership, as described
below. In addition, we describe global metrics that offer
insights about the state of the observed system of trajectories,
over the observation time period [0, T], including descriptive
analysis of the number of events per time and space and
network community profiling analysis.

Definition 3: (Trajectory Node Degree) We generalize the
concept of a node importance to that of node profiling in
trajectory networks. For a moving object u ∈ N , we assume
that the object might appear and disappear during the n time
units of the observation time interval [0, T]. We represent
the γ sequences of the continuous periods of presence as:
Γu = {[t1a, t1ω], . . . , [tγa, t

γ
ω]}. Each appearance i of an object

u spans |Γiu| = (tiω − tia + 1) time units, and the total
number of observation time units Tu of an object u will
be Tu =

∑γ
i=1 |Γiu|, where Tu ≤ n. Then, we define the

following metrics:

• Cu: a set of all the contacts of u during the observation
time interval [0, T].

• degMax
u : the maximum number of concurrent contacts at

some time t, 0 ≤ t ≤ T .
• degMin

u : the minimum number of concurrent contacts at
some time t, 0 ≤ t ≤ T .

• degAvgu =
∑|Γu|

1

∑|Γi
u|

i=1 degtu
Tu

: the normalized mean tempo-
ral node degree, where degtu is the degree of u at time t
and t ∈ [tia, t

i
ω], i = {1, . . . , γ}.

• Ddegu(k): the distribution that represents the fraction of
the time [0, Tu] that u has node degree k.

In a static undirected graph, a node v is reachable from
a node u if there is a sequence of adjacent nodes (i.e., a
path) starting at u and ending at v. In addition, a connected
component is a subgraph of an undirected graph in which any
two nodes are reachable to each other. Node reachability and
connectedness are important since they allow to characterize
the topology of a network and to investigate the dynamics
of processes occurring in it. In the case of a trajectory
network G[0,T], node adjacency is a function of time t and
a proximity threshold τ , therefore the concepts of reachability
and connectedness need to be redefined.

Definition 4: (Trajectory Node Connectedness) Two nodes
u and v are reachable at time t if there is a sequence of
adjacent nodes connecting them in the proximity network at
time t. Similarly, a connected component cc is a subgraph of
the proximity network at time t in which any two nodes are
reachable to each other. We also define as node connectedness
cctu of u the connected component containing u at time t.
Then, we can define the following metrics:

• CCu: a set of all the connected components that con-
tained u during the observation time interval [0,T].

• DCCu(k): a distribution of the size of connected compo-
nents that represents the fraction of the time [0, Tu] that
u is a member of components of size k.

In a static undirected network, the clustering coefficient
of a node u is a fundamental measure that quantifies how
close its neighbours are to being a clique. Its computation can
be reduced to counting the number of triangles incident on
the particular node u in the network, where a triangle is a
set of three nodes u, v, w such that (u, v), (v, w), (u,w) are
edges in the graph. In the case of a trajectory network G[0,T],
the number of triangles incident on a particular node u is a
function of time t and a proximity threshold τ , therefore the
concept of a triangle and membership in a triangle needs to
be redefined. Duration of membership to each triangle is also
imported.

Definition 5: (Trajectory Node Triangle Membership) A
node u is a member of a triangle {u, v, w} at time t if there
are nodes u, v, w ∈ Vt, such that (u, v), (v, w), (u,w) ∈ Et in

the proximity network Gt. Then, we can define the following
metrics:
• λ

G[0,T]
u : the number of triangles during the observation

time interval [0, T] that v is a member of.
• Dλu

(k): a distribution that represents the fraction of the
time [0, T] that u is a member of k triangles.

It is easy to see that a number of global trajectory network
analytics are possible in a post-processing phase. For instance,
it is possible to perform an enumeration of all the connected
components, along with the time duration of each, during the
observation time interval [0, T] leading to a complete network
community profiling [11] analysis for the trajectory network.
We skip formal coverage of these metrics due to space
limitations, but provide example analysis in the experimental
evaluation section.

III. THE PROBLEM

In this paper, we are interested in mining the network
importance of moving objects in trajectory networks. In the
previous section, we have explained how the semantics of
network importance had to be redefined to consider the spatio-
temporal notion of node degree, node connectedness and node
membership in triangles. We collectively refer to the problem
of interest as the Moving Object Network Profiling problem,
or simply MONetPro, and we formally define it as follows:

Problem 1: (MONetPro) Given the trajectories Pi, i ∈
[1, . . . , N] of N moving objects, an observation time interval
[0, T] and a proximity threshold τ that defines a non-negligible
contact between two objects, compute the metrics that define:

i. the trajectory node degree of each object.
ii. the trajectory node connectedness of each object.

iii. the trajectory node triangle membership of each object.

IV. METHODOLOGY

We first present methods for constructing a trajectory net-
work. Then, we present methods that given an a trajectory
network, address the subproblems of Problem 1.

A. Construction of the Trajectory Network

Given a set of trajectories of moving objects, the first
task is to construct the trajectory network. The result of
this process is an edge stream representation of a trajectory
network — a sequence of all events e ∈ E[0,T]. Typically, the
construction of the trajectory network requires considerable
time. This time depends on the type of motion of the objects
that is expected/allowed. Below we cover the case of random
trajectories and the case of trajectories of constant velocities.
Both have interesting real-world applications.

Random Trajectories: In the general case, a trajectory is a
random walk in the Euclidean space. In that case, in order to
construct the trajectory network G[0,T](N,E) (without assum-
ing any advanced approximation method) we need to compute
the distances between all pairs of objects (u, v) ∈ Vt×Vt that
are present at time t. If the distance is less than or equal to the
proximity threshold τ , then an edge is added to the trajectory

network that connects the two nodes at that time. The process
is continued for subsequent times, eventually finding all events
e ∈ E[0,T]. The computation cost of this process for the entire
observation time [0, T] is O(T · |Vt|2).

Trajectories of Constant Velocity: In many applications, we
can assume that objects are moving with constant velocity
(i.e., constant speed and direction), forming trajectories that
can be represented as straight lines in the Euclidean space.
In that special case, the position of the objects as a function
of time can be described using a linear equation. This case
is interesting because we can resort to an algebraic way of
determining whether and when an edge between two moving
objects exists. In practice, we need to determine the switching
times when the distance of each pair of objects is smaller
or larger than the proximity threshold τ , without the need to
compute their distance again and again for each time unit.
Formally,the position of an object i moving with constant
velocity, as a function of time t ∈ [0, T] can be described
by the following two equations:

px,i(t) = sx,i · t+ x0,i

py,i(t) = sy,i · t+ y0,i

where sx,i is the speed of object i and x0,i is its initial position
in the x axis. Similarly, sy,i is the speed of object i and y0,i

is its initial position in the y axis. Then, we can express the
distance between two points a and b as a function of time, as:

da,b(t) =
√

(px,a(t)− px,b(t))2 + (py,a(t)− py,b(t))2

where da,b(t), is the distance of points a and b over time. Now,
the solutions (if any) of this quadratic polynomial for da,b(t) =
τ are the times when a contact is formed or dissolved. This
process requires a single distance calculation between any pair
of objects (u, v) ∈ V × V , so the required time is O(|V |2).

B. Methods for Moving Object Network Profiling

Given a representation of all events over time that define
t proximity networks Gt, t ∈ [0, T], we need to compute
the metrics of interest that define the subproblems of Problem
1. Towards this end, we present three approaches: a naive
approach of applying standard graph algorithms on every
proximity network Gt, a streaming approach of computing
metrics over a stream of edges, and our proposed method
that its key idea is based on applying a Sweep Line Over
Trajectories (SLOT). A sweep line algorithm [12] is an algo-
rithmic paradigm that uses a conceptual sweep line to solve
various problems in Euclidean space — it is one of the key
techniques in computational geometry.

Naive Approach: The naive way to address the problem is to
first construct a set of all the proximity networks Gt(Vt, Et)
for each time unit t ∈ [0, T]. Then, visit each Gt independently
and compute the metrics of interest for each node u ∈ Vt
by applying standard graph algorithms on static graphs. Once
all networks have been examined, a post-processing step is
required that would collect and aggregate the independent re-
sults in order to compose the final results. The post-processing

phase could be dropped if the Gt networks are examined in a
temporal order. In that case, it is possible to update the metrics
of interest on-the-fly (progressively) as they are computed in
subsequent proximity networks. But, the naive approach has
serious drawbacks. First, it will be very inefficient, because
each proximity network still needs to be constructed for every
time t. Then, the standard algorithms need to be run for T
time units, so computations would grow linearly to the size
of the observation period [0, T]. Given a trajectory network
G[0,T]=(V,E), the worst-case computational complexity of the
different subproblems is as follows:

• Trajectory Node Degree: O(T ·(|Vt|+|Et|)). Every vertex
and every edge of each proximity network Gt need to be
explored in the worst case, for t ∈ [0, T].

• Trajectory Node Connectedness: O(T ·(|Vt|+ |Et|)). The
connected components of a proximity network Gt can
be found by applying a breadth-first or depth-first search
algorithm, which are known to have a computational
complexity of O(|Vt| + |Et|) in worst case [13]. They
need to be applied for every t ∈ [0, T].

• Trajectory Node Triangle Membership: O(T · (|Vt|3)).
The trivial approach of counting the number of triangles
in a proximity network Gt is to check for every triple
(u, v, z) ∈

(|Vt|
3

)
if nodes u, v, z form a triangle.

This procedure has a worst-case complexity of O(|Vt|3).
Faster algorithms are also known for finding and counting
triangles that rely on fast matrix product and have a
computational complexity of O(|Vt|ω), where ω < 2.376
[14], [15]. They need to be applied for every t ∈ [0, T].

Streaming Approach: Since a trajectory network can be
represented as an edge stream, an alternative approach to
evaluating the metrics of interest is to consider streaming
versions of the graph algorithms. The main idea is that at each
time t ∈ [0, T] some of the metrics of interest are computed
and this information is carried over to subsequent time units.
As a result, unnecessary computations are dropped. The main
drawback of the streaming approach is that computations still
have to take place at every t. Streaming algorithms would
have a similar worst case computational complexity to static
algorithms examined in the naive approach. It is easy to see
that if one considers the case where all vertices and edges
are becoming available in a single time t. As we show in
Section VI, in practice, the streaming algorithm would always
outperform the naive approach, since it only needs to account
for the updates that occur among subsequent times, but its cost
would still be dominated by the requirement to run for each
t ∈ [0, T]. In Section VI we only experiment with streaming
versions for computing the trajectory node degree related
metrics, but skip streaming algorithms for more advanced
metrics that are not readily available. These are adequate to
demonstrate the relative performance of streaming versions to
the naive method and our proposed methods.

Fig. 3. Illustrative example of SLOT, our proposed method that employs a
sweep line approach to determine when intersection of events occur. As a
result, in the general case, only a small set of time units need to examined.

Sweep Line Over Trajectories (SLOT): We can further
improve the performance of the streaming algorithms by
avoiding a large number of unnecessary computations. The
key idea of our proposed method is that even if an event
eu,v = (u, v, ts, te) has a duration of ∆t = te− ts time units,
the metrics of interest for each node need only be updated at
the endpoints ts and te of each event eu,v . Recall that the
endpoints define when an edge in the network (i.e., a contact)
is created or dissolved. When the time intervals (i.e., durations)
of multiple events that involve the same node u are overlapping
(it is easy to imagine such cases in the example of Fig. 2), then
we need to consider these events simultaneously and inform
the correct update of the related metrics.

Processing events only at the endpoints (instead of all the
time units) has the premise of improving the computational
performance of the method by orders of time. However, there
is a challenge. In many of our metrics, the duration of the
overlapping time of events is increasingly important. In the
cases of the streaming approach and the naive approach,
where all units are examined, we had to simply increment
the duration values by one (1) time unit, when needed. Now
that endpoints are examined in arbitrary times, computing the
duration of overlapping times (without examining all time
units) is challenging.

To address this problem, we adopt a sweep line approach.
A sweep line [12] is an algorithmic paradigm that uses a
conceptual sweep line, say L, to solve various problems in
Euclidean space. Given a set of line segments, similar to the
ones in Fig. 2, the line moves from left to right across the
plane, intersecting the input line segments in sequence as it
moves. In such a case, L will end up intersecting the input line
segments (i.e., events) in a number of points (i.e., time units
TL ≤ T) defined by the finite set of line segment endpoints
(i.e., the event endpoints). These are the only points where the
sweep line L is intersecting with the line segments, and the
process effectively determines the only time units that need
to be examined in our problem. Specifically, each of the TL
time units is associated with an event starting time ts or an
event ending time te (see Fig. 3). Therefore, our proposed
method, SLOT, is a one-pass algorithm that employs a variant
of the sweep line algorithm and runs in time linear to TL.

TABLE II
SUMMARY OF TIME COMPLEXITIES

Naive Streaming SLOT

i O(T · (|Vt|+ |Et|)) O(T · (|Vt|+ |Et|)) O(|E|)
ii O(T · (|Vt|+ |Et|)) O(T · (|Vt|+ |Et|)) O(|E|)

iii O(T · (|Vt|3)) O(T · (|Vt|3)) O(|E|)

Specifically, when any of the TL time units is examined, a
number of quantities are computed that relate to metrics of
the subproblems of Problem 1. As a result, the computation
cost of our method and its variations will now be a factor
of TL, instead of T . It’s important to note that at each time
unit examined, only incremental updates of already maintained
quantities need to be performed, relevant to the metrics of
interest. Given a trajectory network G[0,T]=(V,E), the number
of events is the same as the number of edges E, thus the
number of event endpoints will be TL = 2|E|. It is sensible
to assume that the maximum node degree of our network is
much less than the total number of edges (max(degu)� |E|).
Therefore, the worst-case computational complexity for all
three trajectory node metrics is O(|E|).

Our algorithms assume that the edges are given in chrono-
logical order; if not, they can be sorted in O(|E| · log|E|)
time.

Table II provides a summary of all the time complexities
of different methods for each subproblem of Problem 1. We
provide implementation details of the algorithms that compute
the various metrics in Section V and demonstrate the efficiency
of the method in Section VI.

V. ALGORITHMS

The SLOT algorithm receives a set of all endpoints ts
and te of all events eu,v and computes the relevant metrics
for all nodes u ∈ V , in a single pass. The algorithm has
two parts. In the first part, all variables are initialized using
InitializeMetrics. In the second part, event endpoints
are iterative processed to compute metrics of interest. For
each metric, a separate metric procedure is invoked. Details
of the metric procedures are provided in the next paragraphs.
There is also an auxiliary procedure, StoreNodeMetric,
which is used by all metric procedures of the algorithm.
This procedure computes the elapsed time between the last
and current endpoint for a particular node and incrementally
updates metric and duration values.

Trajectory Node Degree: For the computation of the tra-
jectory node degree, we provide the CalculateDegree
procedure. As endpoints are processed, we monitor the current
node degrees and increment or decrement them according to
whether an edge attached to a node is added or removed.

Trajectory Node Connectedness:
For the computation of the trajectory node connectedness,

we provide the CalculateConnectedNess procedure. As
endpoints are processed, we monitor the currently available
components in the network, information about the component

Algorithm 1: Main SLOT algorithm that scans over the
sequence of edge events and at the endpoints of each event,
calculates the relevant metrics based on user-selected flags.

Input: Set V of nodes, Set Ends of all event endpoints
ts, te of all events eu,v = (u, v, ts, te)

Output: Set V of nodes, each with a set representing the
node’s distributions of metric values over time
(u,Ddegu , DCCu

, Dλu
)

if not sorted(Ends) then
Sort(Ends)

InitializeMetrics(V)

for endpoint in Ends do
CalculateDegree(V , endpoint)
CalculateTriangles(V , endpoint)
CalculateConnectedness(V , endpoint)

Procedure InitializeMetrics(V)
components ← []
for node in V do

node.last time ← 0

node.degree.value ← 0
node.degree.history ← []

node.neighbors ← []
node.triangles.value ← 0
node.triangles.history ← []

components.append(node)
node.component ← components[node]
node.connectedness.value ← 0
node.connectedness.history ← []

Procedure StoreNodeMetric(V , endpoint, node, metric)

new duration ← endpoint.time - node.last time
if new duration> 0 then

if node.metric.value not in node.metric.history then
append(node.metric.value) to node.metric.history
node.metric.value.duration ← 0

node.metric.value.duration + = new duration
node.last time ← endpoint.time

each node participates in, and its size. When a new edge is
added, there are two possible outcomes: either the two nodes
attached to the new edge are already members of the same
component (no need to update), or they are members of two
different components that now need to be merged into one.
In either case, the values of all nodes participating in any
of the affected components are updated. When an edge is
removed, we must perform a search to check if this has caused
a disconnection, or the component remains connected. We
perform a breadth-first search to determine if the two nodes are

Procedure CalculateDegree(V , endpoint)

StoreNodeMetric(V , endpoint, endpoint.node u, degree)
StoreNodeMetric(V , endpoint, endpoint.node v, degree)

if event.type = start then
endpoint.node u.value + = 1
endpoint.node v.value + = 1

else
endpoint.node u.value − = 1
endpoint.node v.value − = 1

Procedure CalculateConnectedness(V , endpoint)

node u←endpoint.node u, node v←endpoint.node v
com u←node u.component, com v←node v.component

if endpoint.type=start then
if com u != com v then

new com← MergeComponents(com u, com v)
new size = length(new com)
for node in new com do

node.component← new com
StoreNodeMetric(V , endpoint, node,
connectedness)

node.connectedness.value = new size

else
connected, com u, com v = BFS(V,node u,node v)
if not connected then

size u = length(com u)
size v = length(com v)
for node in com u do

node.component← com u
StoreNodeMetric(V , endpoint, node,
connectedness)

node.connectedness.value = size u
for node in com v do

node.component← com v
StoreNodeMetric(V , endpoint, node,
connectedness)

node.connectedness.value = size v

still connected. If after the removal of the edge, the two nodes
are still connected, there is no need to update. Otherwise, the
current component needs to be split into two components and
the values of all nodes participating in any of the affected
components are updated.

Trajectory Node Triangle Membership: For the computa-
tion of the trajectory triangle membership, we provide the
CalculateTriangles procedure. As endpoints are pro-
cessed, we monitor the current number of triangles each node
participates in, and in addition, a list of the currently connected
neighbors of each node. When a new edge is added (or
removed), we check whether the two newly connected (or

Procedure CalculateTriangles(V , endpoint)

node u←endpoint.node u, node v←endpoint.node v

if endpoint.type = start then
append(node v) to node u.neighbors
append(node u) to node v.neighbors

else
remove(node v) from node u.neighbors
remove(node u) from node v.neighbors

for node i in endpoint.node u.neighbors do
if node i in endpoint.node v.neighbors then

StoreNodeMetric(V , endpoint, node u, triangles)
StoreNodeMetric(V , endpoint, node v, triangles)
StoreNodeMetric(V , endpoint, node i, triangles)
if endpoint.type=start then

node u.triangles.value + = 1
node v.triangles.value + = 1
node i.triangles.value + = 1

else
node u.triangles.value − = 1
node v.triangles.value − = 1
node i.triangles.value − = 1

disconnected) nodes have any common neighbors. If they do,
then a new triangle is formed or an existing one no longer
exists, respectively. We update the metric values accordingly
for each of the three nodes, and we update the lists of active
neighbors for the two nodes of the new edge.

VI. EXPERIMENTAL EVALUATION

In this Section, we experimentally evaluate the performance
of SLOT compared to the static and streaming methods. We
also examine the effect of some critical parameters on its
computation cost. We aim to answer the following questions:
• Q1 Effects of the Proximity Threshold. How does the

proximity threshold τ affect the final number of edges
and events in the trajectory network?

• Q2 SLOT Comparative Performance. How much faster
is SLOT compared to the naive and streaming methods?

• Q3 SLOT Scalability. How SLOT scales to larger num-
ber of objects or events in the trajectory network?

Before presenting the results, we provide details of the com-
putational environment and the data sets employed.

Environment: All experiments are conducted on a PC with 8x
Intel(R) CoreTM i7-7700 CPU @ 3.60GHz and 64GB memory.
Python 3.6 is used and the static graph calculations use the
state-of-the-art algorithms for the relevant metrics provided by
the networkx package. For the algorithm performance evalua-
tion, we measure the average time for 10 executions of each
algorithm, and for the study of simulation parameter effects,
we take the average results of 10 random seed executions.

Data: In order to evaluate the various conditions and param-
eters of our algorithms, we had to resort to synthetic data.

(a) Constant trajectories (b) Random trajectories

Fig. 4. Effect of proximity threshold on number of events, N = 1000.

Towards this end, a generator was implemented that allows
the simulation of random or constant velocity trajectories
over a Euclidean plane. Given the size T of an observation
period [0, T] every object is set in motion for T discrete
time units forming trajectories. Objects moving outside the
boundaries are deleted, while new objects are generated at a
steady rate to counteract the loss. The resulting generator has
a number of configurable parameters, including space size,
min and max speed of an object, new object generation rate,
observation time. Different combinations of these parameters
lead to different trajectory networks. We examine the effect of
some of these properties on the results and the algorithm per-
formance. For the majority of the experiments and without loss
of generality, we fix the following parameters space size =
1000×1000, minimum speed = 0 and maximum speed =
±1. For experimental evaluation purposes, various datasets
were created, ranging from 102 to 105 objects and 104 to
1010 individual measurements. Additionally, to evaluate the
scalability of SLOT to larger datasets, we had to resort to
a random generator of events (instead of trajectories). This
will skip the computations required to construct the trajectory
network, a more computationally expensive task.

A. Effects of the Proximity Threshold
We examined the impact of the threshold parameter during

the simulation phase on the number of events produced, and
therefore on the resulting data size. With fixed values for the
rest of the parameters, the results for various threshold values
can be seen in Figure 4a for the single-contact case, and Figure
4b for the multi-contact one.

Constant Trajectories: For proximity threshold τ < 300, the
number of connections increases quadratically with τ . This
happens because the τ defines a circle with radius r = τ
around every object, where any other objects found will be
connected to the first. As τ increases, the area of that circle
increases relative to the square of τ . Around τ = 300, many
objects are limited by the space boundaries and the number
of new connections slows, converging to the theoretical maxi-
mum of all possible connections N(N−1). Because of objects
moving out of bounds, the actual maximum is lower for larger
observation times T .

Random Trajectories: In the case of random trajectories, the
exact number of events is unpredictable, but it increases in a
roughly linear fashion with the proximity threshold.

(a) Node degree (b) Connectedness, Triangles

Fig. 5. Performance of SLOT versus naive, streaming algorithms, T = 100.

(a) Node degree (b) Connectedness, Triangles

Fig. 6. Performance of SLOT versus naive, streaming algorithms, N = 1000.

B. SLOT Comparative Performance

SLOT is an exact algorithm, so it will always find the correct
values of the metrics of interest that it computes. Here, we
evaluate the time performance of SLOT against the naive and
streaming methods, as a function of the number of objects
in the trajectory network. We report results for the trajectory
node degree metric. For the rest two metrics (connectedness,
triangles), we only compare SLOT to the static method, since
streaming versions of algorithms that compute these metrics
are not readily available. Fig. 5a presents the results for for
trajectory node degree, and Fig. 5b for the rest of the metrics.

SLOT outperforms both the naive and streaming methods by
a significant margin, up to 1550× in the case of 7·103 objects.
This happens because SLOT scales with the number of events
|E|, which is relative to the number of edges |Et|, but the other
algorithms scale with the product of time and number of edges
T ·|Et|, as mentioned in section IV. It can also be seen that the
streaming method performs better than the naive. This is to be
expected, as the streaming method avoids many unnecessary
computations by maintaining information over time. We also
experiment with different observation times T , and the results
can be seen in Fig. 6. SLOT once more outperforms the
naive and streaming algorithms by a large margin, for example
5.87× for T = 160. The naive and streaming algorithms
behave this way because they scale linearly with time T , while
its effect on the calculation cost of SLOT is negligible.

C. SLOT Scalability

Using the synthetic data generated by the trajectory network
generator, we examine the performance of the SLOT algorithm
itself for different numbers of objects. To obtain consistent
results that scale with the number of nodes, the data generated
had on average of 20 events per node. This means that the

Fig. 7. Performance of SLOT for large scale data, T = 10000.

number of events scales linearly with the number of objects,
and as a result the execution time of SLOT does the same.
This can be seen in Figure 7.

VII. RELATED WORK

Our work is related to trajectory data mining, dynamic and
temporal networks. A number of key ideas in these areas have
been mentioned throughout this paper, and here we present a
more comprehensive view of existing work on these topics.

Trajectory Data Mining: Trajectory problems have been ex-
tensively studied in the data mining area. Of particular interest
are problems related to similarity in trajectory data [16], [17]
and trajectory clustering [18]. While there is research on the
behavior and trajectories of moving objects [19], there hasn’t
been much focus on the interactions between them.

Spatial Networks: The notion of objects distributed in space
and interacting with each other has been heavily explored
in graph theory. Graph theory concepts such as proximity
graphs [20] and geometric intersection graphs [21] are char-
acteristic examples of this. Specifically, several variations of
proximity graphs have been developed over time to better
fit different problems. For instance, relative neighbor graphs
[22] and Gabriel graphs [20] connect nearest neighbors if no
other vertexes are nearby, while Delaunay triangulations [23]
maximize the minimum angles of all triangles formed. These,
however, mostly deal with static data, while our goal was to
examine cases of proximity graphs where all objects/nodes are
moving and their relationships are evolving over time.

Temporal Networks: There has also been significant research
on networks that are evolving over time, or temporal networks.
The nature of these systems introduces a number of issues and
obstacles, which make it necessary to adapt for the problem
basic graph theory concepts and algorithms such as shortest
paths [9], motifs [24] and other metrics [25]. Furthermore,
with the addition of temporal information, several concepts
can be extended to take advantage of the additional data.
Examples of this are the temporal node centrality [10] and
the network reachability [26] metrics. As part of this project
we developed techniques that provide accurate values for these
metrics in a fast and accurate way for all nodes, with detailed
results over time, then apply these for the analysis of trajectory

temporal networks. In addition to node degree and reachability
or connectedness metrics, we also examine the participation
of every node in triangles. Earlier research on this topic,
including network temporal motifs, focused mostly on faster
approximations for streaming graphs [27]–[29]. An accurate
triangle counting algorithm without approximation exists [30],
but merely counts all triangles rather than enumerating them.
Our approach, therefore, allows for more rich analysis of
extracted information. Moreover, our algorithm reports the
duration of each triangle and does not preclude the case where
three nodes may form a triangle several times, something that
is typically ignored by existing algorithms.

VIII. CONCLUSIONS

In this paper, we have represented trajectories of moving
objects as a trajectory network. Based on this representation,
we have introduced metrics of network importance of moving
objects, including trajectory node degree, trajectory node
connectedness and trajectory node triangle membership. These
metrics can be used to better understand the behavior of a
moving object through its interactions with the environment
(other objects), over time. They can also be used to reveal
interesting network dynamics of moving objects, not easily ob-
servable before. In order to evaluate the metrics of interest, we
proposed SLOT, a fast and accurate algorithm for mining node
importance in trajectory networks. Extensive experiments were
performed to demonstrate the effectiveness of our algorithm,
in a wide range of conditions. Furthermore, our algorithm out-
performed naive and sensible streaming approaches to address
the problem, by many orders of time. We also demonstrated
that our method can scale to very large amounts of trajectories.
This work is a substantial first step in understanding network
dynamics of moving objects. We are confident that, as large
amounts of trajectory data become available, these methods
will prove useful and find interesting application in a number
of real-world problems and solutions.

Reproducibility: The source code and some execution ex-
amples are publicly available to encourage reproducibility
of results. They can be accessed at the following website:
https://github.com/tipech/trajectory-networks.

Acknowledgments: This research has been supported by a
Natural Sciences and Engineering Research Council of Canada
(NSERC) Discovery Grant (#RGPIN-2017-05680).

REFERENCES

[1] G. Yuan, P. Sun, J. Zhao, D. Li, and C. Wang, “A review of moving
object trajectory clustering algorithms,” Artificial Intelligence Review,
vol. 47, no. 1, pp. 123–144, 2017.

[2] A. Sawas, A. Abuolaim, M. Afifi, and M. Papagelis, “Tensor methods
for group pattern discovery of pedestrian trajectories,” in Proceedings of
the 19th IEEE International Conference on Mobile Data Management,
2018, pp. 76–85.

[3] D. Guo, S. Liu, and H. Jin, “A graph-based approach to vehicle trajectory
analysis,” Journal of Location Based Services, vol. 4, no. 3-4, pp. 183–
199, 2010.

[4] K. Siła-Nowicka, J. Vandrol, T. Oshan, J. A. Long, U. Demšar, and A. S.
Fotheringham, “Analysis of human mobility patterns from gps trajecto-
ries and contextual information,” International Journal of Geographical
Information Science, vol. 30, no. 5, pp. 881–906, 2016.

[5] F. Zanlungo, T. Ikeda, and T. Kanda, “Potential for the dynamics of
pedestrians in a socially interacting group,” Physical Review E, vol. 89,
no. 1, p. 012811, 2014.

[6] M. E. Newman, “A measure of betweenness centrality based on random
walks,” Social networks, vol. 27, no. 1, pp. 39–54, 2005.

[7] U. Brandes, “A faster algorithm for betweenness centrality,” Journal of
mathematical sociology, vol. 25, no. 2, pp. 163–177, 2001.

[8] D. Kempe, J. Kleinberg, and A. Kumar, “Connectivity and inference
problems for temporal networks,” in Proceedings of the thirty-second
annual ACM symposium on Theory of computing. ACM, 2000, pp.
504–513.

[9] H. Wu, J. Cheng, S. Huang, Y. Ke, Y. Lu, and Y. Xu, “Path problems in
temporal graphs,” Proceedings of the VLDB Endowment, vol. 7, no. 9,
pp. 721–732, 2014.

[10] H. Kim and R. Anderson, “Temporal node centrality in complex
networks,” Physical Review E, vol. 85, no. 2, p. 026107, 2012.

[11] J. Leskovec, K. J. Lang, A. Dasgupta, and M. W. Mahoney, “Statistical
properties of community structure in large social and information
networks,” in Proceedings of the 17th international conference on World
Wide Web. ACM, 2008, pp. 695–704.

[12] M. I. Shamos and D. Hoey, “Geometric intersection problems,” in 17th
Annual Symposium on Foundations of Computer Science. IEEE, 1976,
pp. 208–215.

[13] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction
to algorithms. MIT press, 2009.

[14] M. Latapy, “Main-memory triangle computations for very large (sparse
(power-law)) graphs,” Theoretical Computer Science, vol. 407, no. 1-3,
pp. 458–473, 2008.

[15] N. Alon, R. Yuster, and U. Zwick, “Finding and counting given length
cycles,” Algorithmica, vol. 17, no. 3, pp. 209–223, 1997.

[16] M. V. Kreveld and J. Luo, “The definition and computation of trajectory
and subtrajectory similarity,” Proc. of the 15th ACM int. symposium on
Advances in geographic information systems - GIS 07, 2007.

[17] K. Toohey and M. Duckham, “Trajectory similarity measures,” SIGSPA-
TIAL Special, vol. 7, no. 1, pp. 43–50, 2015.

[18] J.-G. Lee, J. Han, and K.-Y. Whang, “Trajectory clustering,” Proceedings
of the ACM SIGMOD international conference on Management of data
- SIGMOD 07, 2007.

[19] S. Dodge, R. Weibel, and E. Forootan, “Revealing the physics of
movement: Comparing the similarity of movement characteristics of
different types of moving objects,” Computers, Environment and Urban
Systems, vol. 33, no. 6, pp. 419–434, 2009.

[20] K. R. Gabriel and R. R. Sokal, “A new statistical approach to geographic
variation analysis,” Systematic Zoology, vol. 18, no. 3, p. 259, 1969.

[21] T. Erlebach, K. Jansen, and E. Seidel, “Polynomial-time approximation
schemes for geometric intersection graphs,” SIAM Journal on Comput-
ing, vol. 34, no. 6, pp. 1302–1323, 2005.

[22] G. T. Toussaint, “The relative neighbourhood graph of a finite planar
set,” Pattern Recognition, vol. 12, no. 4, pp. 261–268, 1980.

[23] B. Delaunay, “Sur la sphre vide. a la mmoire de georges vorono,”
Bulletin de l’Acadmie des Sciences de l’URSS, no. 6, pp. 793–800, 1934.

[24] L. Kovanen, M. Karsai, K. Kaski, J. Kertész, and J. Saramäki, “Temporal
motifs in time-dependent networks,” Journal of Statistical Mechanics:
Theory and Experiment, vol. 2011, no. 11, p. P11005, 2011.

[25] V. Nicosia, J. Tang, C. Mascolo, M. Musolesi, G. Russo, and V. Latora,
“Graph metrics for temporal networks,” in Temporal networks. Springer,
2013, pp. 15–40.

[26] P. Holme, “Network reachability of real-world contact sequences,”
Physical Review E, vol. 71, no. 4, p. 046119, 2005.

[27] L. S. Buriol, G. Frahling, S. Leonardi, A. Marchetti-Spaccamela, and
C. Sohler, “Counting triangles in data streams,” in Proceedings of the
twenty-fifth ACM SIGMOD-SIGACT-SIGART symposium on Principles
of database systems. ACM, 2006, pp. 253–262.

[28] Z. Bar-Yossef, R. Kumar, and D. Sivakumar, “Reductions in streaming
algorithms, with an application to counting triangles in graphs,” in Proc.
of the thirteenth annual ACM-SIAM symposium on Discrete algorithms.
Society for Industrial and Applied Mathematics, 2002, pp. 623–632.

[29] C. E. Tsourakakis, U. Kang, G. L. Miller, and C. Faloutsos, “Doulion:
counting triangles in massive graphs with a coin,” in Proceedings of the
15th ACM SIGKDD international conference on Knowledge discovery
and data mining. ACM, 2009, pp. 837–846.

[30] A. Paranjape, A. R. Benson, and J. Leskovec, “Motifs in temporal
networks,” in Proceedings of the Tenth ACM International Conference
on Web Search and Data Mining. ACM, 2017, pp. 601–610.

https://github.com/tipech/trajectory-networks

