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Abstract

Mining patterns of large-scale trajectory data streams has been of increase research interest.
In this paper, we are interested in mining group patterns of moving objects. Group pattern
mining describes a special type of trajectory mining task that requires to efficiently discover
trajectories of objects that are found in close proximity to each other for a period of time.
In particular, we focus on trajectories of pedestrians coming from motion video analysis
and we are interested in interactive analysis and exploration of group dynamics, including
various definitions of group gathering and dispersion. Traditional approaches to solve the
problem adhere to strict definition of group semantics. That restricts their application to
specific problems and renders them inadequate for many real-world scenarios. To address
this limitation, we propose a novel versatile method, timeWgroups, for efficient discovery
of pedestrian groups that can adhere to different pattern semantics. First, the method effi-
ciently discovers pairs of pedestrians that move together over time, under varying conditions
of space and time. Subsequently, pairs of pedestrians are used as a building block for effec-
tively discovering groups of pedestrians that can satisfy versatile group pattern semantics.
As such, the proposed method can accommodate many different scenarios and application
requirements. In addition, we introduce a new group pattern, individual perspective group-
ing that focuses on how individuals perceive groups. Based on the new group pattern we
define the concept of dominant groups, a global metric for defining important groups that
respects the individual perspective group pattern. Through experiments on real data, we
demonstrate the effectiveness of our methods on discovering group patterns of pedestrian
trajectories against sensible baselines, for a varying range of conditions. Furthermore, a
query-based search method is provided that allows for interactive exploration and analysis
of group dynamics over time and space. In addition, a visual testing is performed on real
motion video to assert the group dynamics discovered by our methods.
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1 Introduction

Advances in location acquisition and tracking devices have given rise to the generation of
enormous trajectory data consisting of spatial and temporal information of moving objects,
such as persons, vehicles or animals [37]. These trajectories can either be physically con-
strained (e.g., a pedestrian walking on a sidewalk) or unconstrained (e.g., a bird’s flight).
Mining trajectory data to find interesting patterns is of increased research interest due to a
broad range of useful applications, including analysis of transportation systems, location-
based social networks, and pedestrian behavior [13, 30, 38]. The primary focus of this
research is on discovery of pedestrian group patterns through mining moving pedestrian
trajectories. Group pattern mining describes a special type of trajectory mining task that
seeks to efficiently discover moving objects that are found in close proximity to each other
for a period of time. This is an important step towards understanding pedestrian behav-
ior, including group gathering (people coming together) and group dispersion (people
distributing over a wider area).

To motivate our problem domain, Fig. 1 provides a simple visual example of some inter-
esting group dynamics. It depicts a train station scene taken from a video surveillance
camera, where four pedestrian trajectories are highlighted. By careful analysis of the trajec-
tories one can gather that pedestrians #23 (yellow) and #24 (green), met each other in the
station for a while, and then exited the station following alternate routes. Meanwhile, pedes-
trians #53 and #54 (white) walked and exited the station together (i.e., continuously stayed
within close proximity to each other). Enabling this kind of analysis and understanding
pedestrian group patterns can support a variety of useful applications ranging from moni-
toring physical areas [8], such as shopping malls, train stations, and airports to supporting
pedestrian behavioral studies [7, 19]. In fact, crowded scenes would render the analysis
more challenging, as individuals are often intermixed with the crowd. Motion video analysis

Fig. 1 Four pedestrian trajectories are highlighted in this scene of a train station. Pedestrians #23 and #24
met for some time and then exited the station following different routes. Pedestrians #53 and #54 walked and
exited the station together
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raises additional challenges for the problem of interest. For example, the actual proximity of
two pedestrians depends on the amount of video’s perspective distortion (i.e., pedestrians far
from the camera appear smaller than pedestrians closer to it). We address these problems in
a data pre-processing phase and discuss potential implications. Our methods are orthogonal
and can be applied to any trajectory data (not necessarily coming from motion video).

There are many definitions of group patterns studied in the literature. The flock pattern
[5], for example, refers to groups of trajectories that stay and move together, as a cluster,
under a predefined threshold of distance, over a certain time period. This pattern is not suf-
ficient to deal with moving objects that divert in a wide area (potentially leaving a group
and joining other groups over time). Another group pattern is the moving cluster [17], which
defines the group as a sequence of spatial clusters that appear in consecutive snapshots of the
object movements, such that two consecutive spatial clusters share a large number of com-
mon objects. However, this pattern does not require that the group’s members are unique
throughout the snapshots (i.e. it is not required to have the same members in the clusters).
The convoy pattern [15] tries to merge the two concepts, such as the group consists of at least
m same objects moving together for at least k consecutive time instants. The gathering pat-
tern [41] is another group pattern that focuses on adjacent clusters that move close to each
other over time. Recently, R. Lan et al. [18] presented a new group pattern, called evolv-
ing group pattern that defines an evolving group as a dense group of trajectories that share
common behavior in most of the time and only gradually change over time. Similarly, Q.
Fan et al. [10] introduced a platform for mining co-movement patterns in trajectories, which
relaxes the “moving together” constraint, by allowing individual objects to join or leave a
group at different times. This group pattern, is conceptually closer to the type of group pat-
terns that we want to discover in this work. However, instead of designing a method that
adheres to a strict definition of what consists a group, we propose a new method, timeW-
groups that can accommodate variant group pattern semantics —the semantics still need to
adhere to constraints of space and time.

There is a key idea that differentiates our approach to existing approaches. Existing
methods operate in the following two phases: In the first phase, they utilize a spatial cluster
algorithm (typically DBSCAN [9], any of its variants or other from the rich literature [37])
to discover groups (clusters) of objects at any specific time point. Then, in a second phase,
they discover groups that follow the semantics of a specific group pattern by post-processing
already discovered groups of phase 1. While this approach works, it inherits limitations of the
clustering algorithms themselves, and it doesn’t exploit the group pattern semantics up front.
The latter is especially important when the time dimension is critical for a group pattern.

In contrast, our approach first discovers pairs of pedestrians that spatially move together
over a certain time interval. Then, pairs are utilized as building blocks to define larger
groups (see Section 2 for details). That way, our method provides more flexibility and
allows to define more versatile strategies of group pattern discovery, including the proposed
individual perspective pattern (see Section 4 for details).

It also allows to improve the time performance by considering only relevant pairs in
the grouping phase. Towards this end, we present a fensor-based method for efficiently
discovering pairs and groups of moving objects that are intentionally traveling together in
space and time. Our method assumes that the (x, y) coordinates of the motion trajectory
for each pedestrian are given at each time point —we argue that this assumption is valid
based on the rapid development of location-tracking devices (e.g., GPS) and vision-based
pedestrian detection and tracking techniques (refer to representative works of vision-based
detection and tracking technologies [3, 8]).
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In the case of studying pedestrian groups, there is no single group pattern that can exactly
describe the pedestrian group behavior, so more flexible definitions of groups are encour-
aged. In principle, pedestrians who intentionally walk together are considered a group.
Accordingly, to model this kind of group pattern we should take into consideration the
time dimension, and allow a group of pedestrians to be formed and dispersed over time.
In addition pedestrian groups are typically small. For example, some studies observed that
pedestrian groups usually consist of two to four members, while groups of size five or higher
are considered rare cases [22]. Therefore emphasis should be given in methods that effi-
ciently find small clusters. Towards that end, we introduce a new group pattern, individual
perspective grouping that focuses on how individuals perceive groups (i.e., own perspec-
tive). To motivate the new pattern, Fig. 2 shows four time snapshots of moving pedestrians
(from top to bottom the snapshots are S1, S2, S3, and S4). Let us focus on two specific
pedestrians, shown as blue and yellow colored dots. The yellow and blue pedestrians were
members of the same group at only one time snapshot (S3). This is, in fact, the only time
that the yellow pedestrian was ever grouped to other pedestrians, so this consists an impor-
tant group for the yellow pedestrian. In the meantime, the blue pedestrian was consistently
grouped with other pedestrians during the time snapshots (S1-53), as depicted in Fig. 2a. If
we were to apply the state-of-the-art or common methods for discovery of group patterns
(e.g., flock or evolving groups), we would not be able to discover the group of the yellow
pedestrian. In fact, the yellow pedestrian was member of only one group, as depicted in
Fig. 2b. This individual perspective group pattern offers more insights and is meaningful for
many applications, such as surveillance video analysis and anomaly detection. Based on the
new group pattern we also define the concept of dominant groups. As will see later, this is
referring to a global metric for discovery of important groups that at the same time respect
the individual perspective group pattern.

Trajectory data sets are typically very sparse so representing the data using a simple ten-
sor would contain a large number of zero values (this is because not all pedestrians move at
the same time interval). To improve efficiency, we represent the data as a sparse tensor. A
sparse tensor allows to keep large-data sets in memory and provides significant improve-
ments in terms of time performance by utilizing optimized and scalable matrix operations,
provided in many existing toolkits and software packages [40].
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Fig.2 Two examples of the individual perspective group pattern. a Groups discovered from the perspective
of the blue pedestrian. b Groups discovered from the perspective of the yellow pedestrian
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In summary, the major contributions of this work include:

— A novel time-window based versatile method, timeWgroups, for efficiently and effec-
tively finding groups of pedestrians with variant group pattern semantics.

— A new individual perspective group pattern that considers how individuals perceive groups.

— Introducing the concept of dominant groups, for finding groups of pedestrians over a
given time period.

— A thorough evaluation of group pattern discovery methods on large-scale real data, for
a varying range of conditions. In addition, a visual testing is performed on real motion
video to assert the groups discovered by each method.

— Anovel tool that supports interactive exploration of group dynamics over time by end-users.

—  Making source code, data, sample rendered videos and an online interactive demonstration
publicly available to encourage reproducibility of results. They can all be accessed online!.

An earlier version of this work appeared in the proceedings of the IEEE International
Conference on Mobile Data Management (IEEE MDM 2018) [27]. The current journal
version provides a more complete coverage of the problem, introduces a novel method
and extends the experimental evaluation to offer substantial, new insights of the problem’s
complexity and the versatility of our computational framework. In particular, this version
introduces a new group pattern, individual perspective grouping, which focuses on how
individuals perceive groups. A new metric is also proposed that identifies and characterizes
what the dominant groups of an individual are. We experimentally evaluate the accuracy per-
formance of the new method and demonstrate its effectiveness in finding dominant groups
on a real data set Student003 [21]. Moreover, a systematic method is presented for determin-
ing the optimal hyper-parameters of the new method. This version provides more examples
throughout the manuscript to motivate the contributions and better illustrate dimensions of
our work. The related work is also extended to provide a more complete coverage of the
problem and its variations. To improve reproducibility of our methods, the source code of
the proposed methods are publicly provided, as well as, all the datasets employed in our
experimental evaluation.

The remainder of this paper is organized as follows: Section 2 introduces notation and
formally defines the problem. Our versatile grouping method and overall computational
framework are presented in Section 3. In section 4, the individual perspective group pattern
is explained. Section 5 provides details of our experimental evaluation. In Section 6 we
present an interactive tool for exploration of group dynamics. After reviewing the related
work in Section 7, we conclude in Section 8.

2 Problem definition

In this section, we state the problem by giving the definitions of pedestrian groups and pairs
that we aim to find. Table 1 lists the symbols we will use and their meanings. Formally,
given (x, y) coordinates of the motion trajectories for N pedestrians over a set of V time
snapshots, we define the following.

Definition 1 (Coherent pair) Given two pedestrian trajectories (p;, p;), i, j € [1..N],
where N is the total number of pedestrian over the given time period, (i, j) is considered

Thttps://sites.google.com/view/pedestrians- group-pattern/
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Table 1 Table of notations

Indices:

t Given time point

i,j Indices representing
pedestrians

Sets:

G Pedestrian group

Vv Time Period

G; Set of pedestrians grouped
with i during the entire
period  pedestrian i
appeared in

Parameters:

T Proximity threshold

w Time window size

K Selectivity parameter of
the individual perspective
group pattern

Metrics:

ANG Average number of identi-
fied groups (in the video)
per time unit according to
certain proximity distance
threshold t

AGS Average group size (in
the video) per time unit
defined as number of
pedestrians  assigned to
a group in the frame
divided by the number of
identified groups in that
frame

o Density of groups

Variables:

(xi, ¥i) Pedestrian i position in the
2D Cartesian coordinate
system

Xt, ¥t

Dy

Dy

Pi

Ci

Functions:

x and y coordinates of all
pedestrians’ trajectories at
time ¢

Distance between two
pedestrians

Global distance between
two pedestrians’ trajecto-
ries

Maximum distance over w
time window

Trajectory of pedestrian
number i

Sparse tensor contains all
pedestrians’ data over a
certain period of time

The pedestrian i perspec-
tive grouping record

The pedestrian i perspec-
tive grouping probability
record

Number of pedestrians

Number of time snap-
shots the pedestrian i was
grouped with other pedes-
trians

Number of time snapshots
that both pedestrians i and
j are members of the same
group

Mapping function
between pedestrian IDs
and indices in the tensor
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a coherent pair, iff the average distance between them, over the entire given time, is below
a fixed threshold. Intuitively, the coherent pair is a pair of pedestrians’ trajectories that
intentionally appear, travel, and disappear together over time.

Definition 2 (Coherent group) is a group of pedestrians, where each member of the group
belongs to one or more coherent pairs and each coherent pair shares at least one pedestrian
with at least another coherent pair, i.e. let G = {1, 2, ..., k} be the members of a coherent
group, then Vi € G,3j,m € {1, ..., k} : (i, j) and (i, m) are both coherent pairs.

Definition 3 (Pedestrian pair) Given two pedestrian trajectories (p;, p;) over a time win-
dow of size w, where w > 1, the pair (i, j) is considered a pedestrian pair iff the maximum
distance between p; and p;, during this time window, is below a certain threshold.

Definition 4 (Pedestrian group) is a group of pedestrians that belong to one or more pedes-
trian pairs over the time window w. As w approaches to 1, the pattern becomes more suscepti-
ble to local changes over time. On the other hand, a larger w, that is close to the entire trajectory
length, forms a coherent group. In other words, the pedestrian group is a dense group of
pedestrians that intentionally walk together and can be gradually changed over time.

Definition 5 (Individual perspective group) given a pedestrian i, let ¢; be the number of
times the pedestrian i is grouped with other pedestrians. Let also ¢; ; be the number of time
snapshots that both pedestrians i and j are members of the same group. Given a selectivity
parameter «, we define the individual perspective groups of i, with respect to «, to be the
pedestrians j, such as ¢; ; > «. Effectively, this group pattern represents the pedestrians
that a specific pedestrian i has interacted the most with, during i’s trajectory.

Definition 6 (Dominant groups) given a set of pedestrians iy, i2, ...ix over an observation
time V, the concept of dominant groups describes the most prominent groups of all pedes-
trians, as identified using the individual perspective group pattern. In practice, it defines
globally important groups by aggregating information of already discovered individual per-
spective groups. Section 4.2 provides details about the systematic approach followed to
determine the dominant groups.

As we process a large amount of data, we employ an efficient data structure to store and
represent the trajectories. We store all trajectories in a big sparse tensor M € RV*V*2,
where N is the number of pedestrian trajectories over V time snapshots. At any given time ¢,
M = (xi,, yi,), where x;,, y;, are the (x, y) coordinates of pedestrian i at . Our objective
is to solve the following problems:

Problem 1 Given a set of pedestrian trajectories p; € P, i € [1...N], find the coherent pairs
and coherent groups of pedestrians in a certain time interval.

Problem 2 Given a set of pedestrian trajectories p; € P, i € [1...N], find the pedestrian
pairs and pedestrian groups in a certain time interval.

Problem 3 Given a set of pedestrian trajectories p; € P, i € [1...N], find the individual
perspective groups of each pedestrian i in a certain time interval.

Problem 4 Given a set of pedestrian trajectories p; € P, i € [1...N], find the dominant
groups of all pedestrians in a certain time interval.

@ Springer



Geoinformatica

Note that the main objective is to accommodate discovery of pedestrian groups that
satisfy variant definitions of a group. While the evolving group pattern might be a good
candidate group pattern to describe pedestrian groups, another group pattern might be more
appropriate for specific domain applications. For example, in criminal investigation, it might
be more interesting to sieve through video archives and find activities of coherent pairs of
pedestrian that have occurred in the past. Accordingly, the flock pattern would be more suit-
able to describe this kind of pedestrian group activity. Although flock pattern is useful to
report the coherent pairs or groups during a given time period, it can still fail to discover
some groups or group members due to gathering/dispersion activity in groups. Our method,
timeWgroups can support a more versatile analysis of group patterns within the same com-
putational framework. In addition, our proposed individual perspective pattern and the
concept of dominant groups provides the means to discover pedestrian groups that take into
consideration an individual’s perspective, offering more rich insights in the analysis.

3 Methodology

In our problem domain, a large number of moving objects is expected to appear at the same
time point (e.g., a train arrives). Since the performance is critical, dealing with such huge
data requires that we adopt a straightforward approach to find groups with different patterns
semantics. We use the Euclidean distance as a metric to measure the distance between tra-
jectory pairs. Then a recursive algorithm is applied to extend pairs to groups. In this section,
we present the details of the proposed methods to find pedestrian pairs and groups. As dis-
cussed earlier and later in Section 7, existing approaches rely on well-known clustering
methods (e.g., DBSCAN) to first find groups (clusters) at any time point. In contrast, we
consider the temporal nature of trajectories upfront by splitting the process of finding the
groups into two steps: i) finding pairs over time, and ii) extending the discovered pairs to
discover groups. This approach allows to define alternate strategies for group patterns using
the same computational framework.

3.1 Finding pair patterns

Finding pairs operates as a building block in our framework for finding both coherent
groups and pedestrian groups. Given a sparse tensor (M € RY*V*2) that contains N pedes-
trians’ trajectories over time V, M captures the (x, y) coordinates of each trajectory per
time point. Using this representation, we present the following three methods to find pair
patterns:

3.1.1 Local spatial pairing of trajectories (locTgroups)
Given N; pedestrians at a time point ¢, we first define the proximity measure between two

pedestrians i, j € [1..N,], in which we use the Euclidean distance D; (pﬁ, p’j) (1) between
two trajectories p; and p; in space such that:

Di(pL, p)) = (ef — ¥ + (o — ¥R (1)

Any two pedestrians that have distance below a predefined threshold t will form a pair at the
particular time point 7. In some real application, T should reflect the real proximity distance
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allowed. For example, in motion video a pedestrian’s x, y coordinates are the pixel coordi-
nates in each video frame (i.e., still image). For such motion video application, there should
be a way to map dimensions of pixel units (image plane space) to meter units (real world
space). Also the threshold 7 can be dynamic based on factors such as density of trajecto-
ries and other application-specific factors. More analysis of the impact of 7 is presented in
Section 5.

3.1.2 Global spatio-temporal pairing of trajectories (globTgroups)

Given pedestrian i € N, we are interested to find the coherent pairs of the pedestrian i over
the entire time period V (see Fig. 3). However, since i appears for a certain period of time 7;,
we limit the search space into the N7, pedestrian trajectories overlapping with the pedestrian
i’s trajectory. To find the spatio-temporal coherent pairs, we average the Euclidean distance
over time as a proximity measure between two pedestrian trajectories using the following
equation:

T;
3Ly Di(pf, p)

T , 2

Dg(pi.pj) =

where D, (p;, p;) is the average distance between pedestrians i and j. After constructing
Dy, any two trajectories are considered as a pair if their distance is below a predefined
threshold .

time
fi
fi+1
v o fi

Fig. 3 Coherent pair follows similar path over time (red/blue arrows). Non-coherent pair (green/yellow
arrows)

@ Springer



Geoinformatica

Table 2 Comparison between the three approaches: locTgroups, globTgroups, and time Wgroups

Comparison locTgroups globTgroups timeWgroups
On-line v X w time delay
Group gathering/dispersion v X v
Dominant groups X X X
Spatial proximity v v v
Temporal proximity X v v

3.1.3 Time window based pairing of trajectories (timeWgroups)

For the previous two approaches, there are some strengths and weaknesses summarized in
Table 2. The local spatial approach (locTgroups) can be more easily adapted to real-time
applications, in which case, it can process sufficient amount of time points with less com-
putational power. Furthermore, this method can be easily extended by implementing some
incremental algorithms such as adopting speed, acceleration, and direction. It is also capable
to capture the group gathering and group dispersion dynamics. However, this method com-
putes only the spatial proximity and ignores the temporal one. On the other hand, the global
spatio-temporal approach (globTgroups) is efficient in finding coherent pairs in space and
time. However, this method runs in as an offline batch process, as it requires the entire
data to be available beforehand. It is also not able to capture the group gathering and group
dispersion dynamics.

By comparing and discussing the shortcomings of the previous two approaches, the task
is now motivated by finding a way to overcome these limitations. Towards this end, we
propose a novel method, timeWgroups. The method finds pairs efficiently that respect spa-
tial and temporal constraints, and naturally captures a variant of group gathering/dispersion
dynamics. We use a step time window of size w. The distance between p; and p; over w
time window is calculated by the following equation:

Dy(pi,pj) = max {D;(p},p))} 3)
{r—>1+w—1)

It is important to note that our timeWgroups method can be configured to perform exactly
as the locTgroups and globTgroups methods. In particular, when w = 1, the timeWgroups
instantiates to locTgroups method, and when w = V, (V is the entire video time snapshots),
it instantiates to globTgroups.

3.2 Recursive grouping of pairs

Given a trajectory p; of pedestrian (i) and using the pairwise proximity distances found by
any of the previous methods, we group together all the pedestrians (k) that are paired with
the pedestrian (7). Formally, the group of pedestrian (7) is:

G ={i}U{Gr :k #i, D(pi,pr) < T}

where D € {Dy, Dg, Dy} is the distance metric defined according to locTgroups, globT-
groups or timeWgroups methods, respectively. Until all the pairs are visited, we keep
expanding the group (G) by adding all the pairs of the group members recursively as
described in Algorithm 1.
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Algorithm 1 Grouping of pedestrian pairs.

1: procedure GETGROUPS(D, 1) > Group pedestrians using distance function D and
proximity threshold t

2: P, j) < 1,foralli, j € [1.N]where D(i, j) <t

3: V(i) < 0, foralli € [1..N]

4: Groups <[] > Identified pedestrian groups
5: Ng <0 > Number of identified groups
6: for all Pedestriani € [1..N] do

7: G; < FindGroupOf{(i);

8: if G; # ¢ then

9: Ng < Ng +1

10: Groups(Ng) < G

11: return Groups

12: procedure FINDGROUPOF(i) > Recursively find the group of pedestrian i

13: Global V, P
14: if V(i) then return ¢

15: V(i) < 1;

16: Gi < ¢

17: for all kK where P(i, k) = 1 do
18: if V (k) # 1 then

19: Gy < FindGroupOfik)
20: G; < G; UGy

21: if G; # ¢ then G; < G; U {i}
22: return G;

The algorithm starts by initializing two global variables P and V in lines 2 and 3, respec-
tively. P is a boolean matrix of size N x N that takes the value 1 when two pedestrians i, j
are in one pair, otherwise it takes the value 0. V is a vector of size N that keeps a record
of whether a pedestrian i has been visited or not. In line 4 an empty array Groups, which
will contain the identified groups, is initialized. The algorithm will call at line 7 the func-
tion FindGroupOf{i) which will initially, at line 14, verify that pedestrian i was not visited
before. Then recursively iterates through the pairs of pedestrian i to find all their groups
and return the union of all these groups. If pedestrian i has been visited, then the function
returns an empty set, meaning that the pedestrian already belongs to a group (or does not
have not been been paired).

Our approach of first discovering pairs over time and then utilizing pairs as building
blocks to define larger groups allows to define more versatile strategies of group pattern
discovery. In addition, it can be tweaked to provide support for diverse group semantics that
appear in the literature.

For instance, our global group pattern globTgroups can be employed to capture semantics
of a flock group pattern. Recall that a flock is defined as a disk of radius r that contains at
least m same objects for every point in a period of time (it is typical for flock to consider the
whole observation time). It resembles a group of trajectories that stay and move together,
as a cluster, under a predefined threshold of distance, over a certain time period. Once
all groups are identified by globTgroups, a meta-analysis is required as there is no direct
mapping between the threshold t used in the method to define pair-wise groupings and the
radius r of a circle that defines a flock. In order to establish this connection, we reduce the
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meta-analysis to the smallest-circle problem or minimum covering circle problem. This is
the problem of computing the smallest circle that contains all of a given set of points in the
Euclidean plane. In practice, since all pair-wise distances have already been computed, for
each group with m objects, we first obtain the distance d of the two objects (out of m) that
are farther away. By definition, these points lie on the circumference of the smallest circle
that encloses all objects in the group. This circle represents a flock with disk radius r = d/2
and m objects. Performing the same analysis for each group will provide all the flocks that
can be defined for a varying disk radius . If we need to control the number of objects in a
group, then this information needs to be taken into account when we recursively group pairs
(see Algorithm 1). Similarly, our timeWgroups method can be adjusted to capture various
local and global group pattern semantics by varying the proximity and duration parameters.
A visual summary of some group patterns that can be instantiated using our versatile method
is shown in Fig. 4.

While our method is versatile enough to accommodate diverse group semantics, the map-
ping process is not always straightforward. This is because many of these patterns can be
very restrictive/specific. The main claim of our work is that an analysis that begins with
diverse definitions of what consists a pair, and obtains all these pairs efficiently, can provide
the base for more rich analysis of diverse group pattern semantics that can accommodate
different scenarios and application domains. This is in contrast to specialized methods that
assume input parameters are known a priori and are provided to the system.

3.3 Tensor-based optimization

Each method operates on different data size; the locT groups receives on-line trajectory
information at a single time point. While, the timeW groups waits until it receives w time
points. Eventually, the globT groups requires the entire trajectories data to be available.
Pedestrians trajectories have a sparse representation, since their trajectories are not aligned
in time. Based on that, we perform the following steps for performance optimization:

— At each time interval, we reduce the computations by applying the algorithms on the
existing pedestrians at that interval using a map function

() = Lyyp, (L)™' — 1,

o i S1 o Q S1 [¢] 8 S1
® ©° @ P e ¢ c® 9 ®
s2 2 s2
® e o » 8 ® ® @
’ Cs3 : © | s3 * ] s3
&, ¢ . @ o @ . &o @ .
®» © 5 s« - .« @ s
(a) (b) (©

Fig.4 Our proposed method can be configured to discover groups of variant group patterns: a local groups
that are defined without taking into account the temporal information. b groups that follow the flock pattern,
where group members move consistently together over time. ¢ groups that follow the evolving group pattern
that allow members to gather/disperse over time
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where [ is the indices of N pedestrians in M and I, C I : |I5,p| <<|I| that contains
the existing pedestrians.

—  We use optimized matrix operations to calculate the distances in Eqgs. 1, 2 and 3, as
following: let x; and y; be column vectors represent the x and y coordinates of N;
pedestrians’ locations at time ¢, respectively. We construct X;, Y; € RN *Nt matrices,
such that:

X =[x X .. x ], 4)

Yi=[¥ Vi ¥t ] 5)
In that way, the distances between all pedestrians’ at time 7 can be calculated by the
following equation:

D = /X —XI )2+ (Y, - Y2, (©)
where Dy is the distances matrix between all pedestrians at time ¢.

4 Individual perspective group pattern

The proposed method described in the previous section can effectively find primitive groups
of pedestrians over time which can be used to find more sophisticated patterns, such as
individual perspective groups and dominant groups. To the best of our knowledge, the afore-
mentioned patterns are novel, not studied in the literature before in the context of group
pattern discovery. The following figures, Figs. 2 and 4 illustrate different patterns including
the newly proposed patterns.

4.1 Individual perspective grouping

To this end, we need to first find a link between pedestrians that are members of the same
primitive groups in successive time points. Through this linking process we are able to
assign a score for each pair of pedestrians based on the number of time points they were
primitively grouped together.

More specifically, given a pedestrian i, we assign pedestrian i with a list of other pedes-
trians G; who were primitively grouped with i during the entire period pedestrian i appeared
in. Formally, let R; be the pedestrian i perspective grouping record where each element
R; ; counts the number of times the pedestrian pair (i and j) appeared together in the same
primitive group at an instance of time. In addition, we keep a record ¢; of how many times
the pedestrian i was primitively grouped with others.

Assume that we are interested in finding the perspective groups of pedestrian i from his
own point of view. We achieve that by computing the probability of other pedestrians being
in the perspective groups of pedestrian i. Normalizing the elements of R; by ¢;, we get the
perspective grouping probability record P; of the pedestrian i. Hence, P; ; represents how
likely it is that a pedestrian j will be grouped with the pedestrian i from the perspective of
i. In other words, P; ; represents how importance the pedestrian j to i from the perspective
of i.

Figure 5 illustrates an example of three pedestrians (yellow, red, and blue), where the
yellow and red pedestrians spent with each other 10 minutes, while each of them met
the blue pedestrian for only 30 seconds. Assuming that the time point is represented by
1 second, we can group those pedestrians by applying the grouping method proposed in
Section 3 using a proper proximity distance t and time window w. As a result the yel-
low and red pedestrians are grouped together for 10 x 60 = 600 times. The blue and each
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Fig. 5 An example of the individual perspective grouping probability record. a The individual perspective
grouping probability records for each pedestrian reflects how important each other pedestrian (as a group
member) is to the current pedestrian. b Shows the details of each pedestrian trajectory over the time

of red and yellow pedestrians are grouped together only for 30 times. By plugging these
numbers to build the individual perspective grouping records Ryeq, Ryeliow, and Rpjue, we
have Rpeq = [600, 30], Ryejiow = [600, 30], and Rpjue = [30, 30] for the red, yellow, and
blue pedestrians, respectively. Since mpeq = Myellow = 630 and mpe = 30, the indi-
vidual perspective grouping probability record of the red, yellow, blue pedestrians will be
Preq = [0.953, 0.047], Pyeiow = [0.953, 0.047], and Py = [0.5, 0.5], respectively.
Intuitively, both red and yellow pedestrians are equally important from the blue pedes-
trian’s point of view. However, the blue pedestrian is less important from both the yellow
and red pedestrians point of views, as she only spent very short amount of time as a group
member with each of them. Figure 5a shows that the individual perspective grouping proba-
bility record of each pedestrian reflects this relation between each pedestrian by giving high
probability to the most important pedestrians from each pedestrian point of view.

4.2 Dominant groups pattern

So far, we have discovered the individual perspective groups of a certain pedestrian i.
To find the dominant groups pattern we will extend this concept to a set of pedestrians
as follows: first we compute the pairwise averages of each individual perspective group
probabilities as follows:

5 Pi(j)+P;()

P, ;= 5 @)

Subsequently, we combine the pairwise probabilities in a single vector I" that will be used to
compute the threshold value that achieves the selectivity value x using the probability quan-
tile. In other words, we compute the threshold value that discards the low k % of the entries
in I'. The computed threshold is used later to select the dominant groups from the pair-
wise perspective grouping probability records P. The essence of constructing the vector I’
is to take into consideration the correlation between the groups in a certain set of pedestrian
trajectories.

5 Experimental evaluation

Experimental Setup All methods were implemented in Matlab on an Intel® core™ i-7
6700 @ 3.40GHz machine with 16 GB RAM.
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Table 3 Details of the two datasets used for evaluation

Dataset Pedestrian walking route [36] Student003 [21]
Resolution (px) 1,920 x 1,080 720 x 576
Annotated frame count 6,000 900

Annotated pedestrian count 12,684 434

Average pedestrian number per frame 123 38.93

Max pedestrian number per frame 332 51

Number of data points 1,266,502 33,792

Data To evaluate and validate our methods, two datasets are employed, namely Pedestrian
Walking Route dataset introduced by Shuai Yi et al. [36] and Student003 dataset introduced
by Lerner et al. [21]. Both datasets contain a real-scene crowd data. In the case of the Pedes-
trian Walking Route dataset, the trajectories were extracted from one hour of video recorded
by a surveillance camera that captures walking pedestrians at a train station. Data points
were manually annotated every 2/3 second for 12,684 trajectories. On average there were
around 123 pedestrians per video frame with the most crowded frame containing 332 pedes-
trians. In the case of the Student003 dataset, trajectories of pedestrians were extracted from
220 seconds of video recorded by a surveillance camera that captures walking students at a
University walkway. The data points of moving pedestrians and groups ground truth were
manually annotated at each single frame. It is worth mentioning that pedestrian trajectory is
usually collected using GPS and/or some pedestrian tracking techniques in video streams.
Table 3 provides a summary of these two datasets. Note that a number of visualization
videos of the following experiments are also available online? (Fig. 6).

Pre-processing In surveillance video, pedestrians move toward and away from the camera,
and there is a noticeable amount of perspective distortion. This distortion results in objects’
foreshortening, where the objects closer to camera appear larger than faraway objects with
similar dimensions in real-world. This perspective distortion does not give the actual dis-
tance between pedestrians, which may affect the accuracy of the proximity measure. To
overcome this distortion, thus, the x, y coordinates for each pedestrian are projected into
the ground plane using an estimated Homography [11] as suggested by [1]. The proximity
between pedestrians, thus, can be calculated after the projection, to give the actual distance.
To roughly measure the amount of perspective distortion in the dataset we use, we pick two
pedestrians, one is close to the camera whereas the other is faraway (Fig. 7). As shown in
Fig. 7, the pedestrian closer to the camera is about two times larger than the pedestrian far-
ther away. The impact of the projection distortion is a video specific problem that we had
to address during the pre-processing phase, but it is out of the scope of this research. Our
group pattern discovery methods are orthogonal and can be applied to any trajectory data
(not necessarily coming from motion video).

Since the dataset we use reported only (x, y) coordinates of moving pedestrian. Another
step was required to fill the discontinuity in pedestrian trajectory. This discontinuity hap-
pens when pedestrian stops moving (stationary pedestrian). The intuitive step to fill the
discontinuity, between any two time points, is to replicate the last (x, y) coordinates for the

2https://sites.google.com/view/pedestrians- group-pattern/
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Before Preprocessing After Preprocessing
_ Frames(1..100) Frames (1 ... 100)

79)

Pedestrians (1. ..

Pedestrians (1...79

Fig. 6 Left and right maps show the trajectories before and after filling the unreported stationary positions
respectively. Yellow cell indicates the reported (x, y) coordinates of moving pedestrian and the blue cell
indicates the unreported position of stationary pedestrian

unreported position of stationary pedestrian. Figure 6 shows some pedestrian trajectories
before and after filling the unreported stationary positions.

Recall that the w parameter of our versatile method timeWgroups can be configured to
take any value in the range 1 < w < V. As discussed in Sections 3 and 4, it can be
instantiated to discover local groups (i.e., w = 1) as in locTgroups, to discover coherent
groups for the whole observation time V (i.e., w = V) as in globTgroups, or anything in
between. Lastly, the terms perBgroups and perDgroups refer to the post-processing steps to
find individual perspective groups and dominant groups, respectively.

Evaluation Criteria We have evaluated the proposed method using the following criteria:

— ANG: Average Number of identified Groups per time unit (e.g. one time point when
using the locT groups, w time points with timeW groups, and the entire time interval
using the globT groups) according to certain proximity distance threshold t.

Fig. 7 High perspective distortion in the Pedestrian Walking Route dataset. The pedestrian closer to camera
is about two times larger than the one farther
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— AGS: Average Group size per time unit defined as the average of number of pedestrians
assigned to a group in the frame divided by the number of identified groups in that time
unit for all the frames.
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Fig. 8 Analysis of the proximity threshold (meters) impact for the three proposed approaches on the Pedes-

trian Walking Route dataset: a the average number of identified groups per time unit, b the average group
size per time unit, ¢ the density of the groups
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—  p: Density of groups which is defined as

_ AGS
T ANG’

—  Execution Time: The required time (in seconds) to process the given set of trajectories.

P ®)

5.1 Determination of threshold (7)

Considering only the spatial information of the pedestrians, we can cluster them into groups
based on the distance among them using three approaches (locT groups, globT groups,
and timeWgroups). However, deciding the minimum proximity (distance) t is a critical
factor that affects the pedestrian groups discovered by each approach. Therefore, in order to
find the suitable value of t, we evaluated the three grouping approaches for different values
of threshold 7 (ranging from 0.2 to 22 meters). The effect of changing t on the proposed
approaches is shown in Figs. 8 and 9 for the Pedestrian Walking Route and the Student003
datasets, respectively. The proximity threshold T was represented in meters by estimating
the pixel-to-meter ratio of an object in the scene that has a well known height range (e.g.
doors, or average height of persons).

As shown in Figs. 8a and 9a, for small values of t the average number of identified
groups AN G of the pedestrian trajectories is small since pedestrians that are not very close
to each other are not going to be grouped. ANG keeps increasing with increasing t until
it reaches a peak (at T = 2, 3, 9.5 meters for locT groups, timeWgroups[w = 5], and
globT groups approaches, respectively) then it starts decreasing. This is because with large
proximity distance threshold t people relatively far from each other are now considered to
be in the same group causing the size of the group to increase, while the number of groups to
decrease. The threshold that maximizes the average number of groups for the globTgroups
is quite higher than the locTgroups and timeWgroups; that is because the globTgroups has
been designed to find coherent pairs and groups. As a consequence, the number of groups is
expected to be smaller than the number of evolving groups. At T = 9.5 meters, the average
number of groups is the max with the globTgroups, that means there are some coherent
groups of pedestrians that follow the same path but are found far away from each other.

We can notice in Figs. 8a and 9b that the average size of the pedestrian groups AG S
increases with the increase of proximity threshold, as expected. It can also be seen that
at max the AGS for globTgroups approach is very low (= 2.2) compared to the other
approaches. This is due to the fact that normal pedestrians movement is hardly ever coherent
in larger groups.

Interestingly, the density of the groups (p) in both Figs. 8c and 9c shows a peak at
proximity threshold T = 1.5 meter for the locTgroups. It worth mentioning that the curve
corresponding to the globTgroups mehtod is not shown in the density figure because the
values of ANG were very closed to zero. Only in Fig. 8c, it shows a peak & 4 at proximity
threshold T = 2.5 meters for the timeWgroups with w = 5. This result of average groups’
density obtained by the timeWgroups[w = 5 and T = 2.5] meters, agree with the study pre-
sented by Mousaaid et al. [22] that found that the average number of pedestrians in groups
is usually less than or equal to four pedestrians. Finally, the coherent groups, captured by
the globTgroups, were excluded from density calculation in Fig. 8c because of the very
low number of the average group size. This can be explained by the fact that the coherent
groups, by definition, have very hard constraints that are rare to happen in the real-world

@ Springer



Geoinformatica

groups; this refers to pedestrians that intentionally walk together with a distance below a
certain threshold over the entire time interval and usually consists of just two pedestrians,
i.e. coherent pairs.
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Fig. 9 Analysis of the proximity threshold (meters) impact for the three proposed approaches on the Stu-
dent003 dataset: a the average number of identified groups per time unit, b the average group size per time
unit, ¢ the density of the groups
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5.2 Determination of window size (w)

Considering the time window size w in grouping pedestrian trajectories adds a temporal
aspect to the grouping method, besides the spacial aspect. This allows to filter pedestrians
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Fig. 10 Analysis of window size and threshold impact for the timeWgroups proposed method on: a the
average number of identified groups per time unit, b the average group size per time unit, ¢ the density of the
groups
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activities based on both time and space. For example, pedestrians crossing each other (walk-
ing in opposite direction) will not be grouped together if the time they spent during crossing
was below the average pedestrian crossing time. If however the pedestrians have a longer
interaction compared to a normal crossing, then they will be grouped together.

The results shown in Fig. 10 for the impact of varying the window size w on the average
number of groups AN G, average group size AG S, and groups’ density p at different values
of t affirms that conclusion. Increasing the window size w effectively controls the time
that pedestrians need to spend close to each other in order for them to be considered as a
group. Hence, ANG and AGS decreases with increasing w. Finally, our results for peak
value of the group density (p) matches the finding by Mousaaid et al. [22]. That indicates
the effectiveness of the timeWgroups in effectively finding evolving groups.

5.3 Time performance

Based on the tensor-based optimization presented in Section 3.3, the proposed method can
be ran efficiently in a reasonable execution time. Figure 11 shows the total execution time
for the proposed approaches to find the pedestrian groups in the entire video (1 hour) at
different proximity distance threshold .

As the value of 7 increases, the required time for the grouping method increases, because
high t value means more pedestrians are considered as pairs, resulting in longer processing
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Fig. 11 Execution time of the proposed approaches for finding the pedestrian groups in the entire video (=~
1 hour) for varying proximity threshold ¢
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time required by the grouping algorithm 1. However, after a certain value of t, the process-
ing time is converging. This is because we are getting the same groups, since no more pairs
are generated. This threshold corresponds to the maximum distance between the pedestri-
ans in the scene. It can be seen that the timeWgroups method runs faster for larger window
size w because the grouping method needs to be executed fewer times compared to smaller
window size values.

5.4 Dominant group identification

Dominant groups are identified based on the individual perspective group pattern. In this
section, we discuss the effect of the selectivity parameter on the number and size of the
dominant groups identified by our method. In addition, we evaluate the performance of our
proposed method, perDgroups, on identifying dominant groups in Student003, a real dataset
that provides ground truth labeling. We compare the performance of our method to state-
of-the-art alternatives from the literature. Before we present the details of the analysis, we
provide an illustrative example that simplifies the individual perspective group patter.

Illustrative example The example is based on careful selection of a set of eight video
frames coming from the Student003 real dataset as shown in Fig. 12 (i.e., frames #300,
#388, #400, #416, #428, #452, #598, and #634). In these frames, there are two groups
annotated, the red group and the white group. In addition, an individual person is annotated
with a yellow oval dashed outline. As shown in the sequence of the video frames, the yellow
pedestrian only spent a limited amount of time being in the proximity of the pedestrians
that are members of the red and white groups. As such, when we consider our individual
perspective grouping method from the perspective of any of the members of the red or white
groups, the yellow individual will not be part of the defined groups. On the other hand, when
we consider a grouping from the perspective of the yellow pedestrian, it will appear as if
she was member of the whife group (rather than the red group), since she spent substantial
time of her trajectory being close to that group. This illustrative example was obtained by
running our method described in Section 4.

Fig. 12 Illustrative example of the individual perspective group pattern coming from the Student003 dataset.
Depending on which pedestrian’s perspective is considered, different groups are identified. For example,
from the perspective of the yellow pedestrian she will be grouped with the white group due to her proximity
to its members in some frames. On the other hand, from the perspective of any pedestrian in the white or
red groups, the yellow pedestrian won’t be part of their dominant groups, as they didn’t spend as much time
being close to each other, as with other pedestrians
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5.4.1 Analysis of the selectivity parameter

In order to study the impact of the selectivity parameter «, we consider values in the range
of 0 to 1. The selectivity parameter acts as a threshold for filtering pairs of pedestrians based
on the frequency with which each pair is found in a group. Any of the grouping methods
presented (locTgroups and timeWgroups) can be used to identify groups. In principle, the
smaller the selectivity parameter value is, the less frequent a pair of pedestrians need to be
in order to define a group. On the other hand, values of « near 1 will constrain a pair of
pedestrians to be considered a group, if only they are moving together for a longer time.

In Fig. 13a, we show how the number of dominant groups changes with varying values of
the selectivity parameter. By looking at the blue (triangles) curve (at T = 0.8), the maximum
number of dominant groups can be achieved at lower value of the selectivity parameter (k
0.4). In other words, when imposing a very small proximity threshold (z = 0.8) between
group members, a smaller selectivity value is needed to maximize the number of dominant
groups. That said, we need to allow less travel-together time within the proximity distance w.r.t
the total travel time; that will provide flexibility to the group members to travel beyond the prox-
imity distance. On the other hand, the green (circles) curve (at T 3.43) can achieve
the maximum number of dominant groups at a higher value of the selectivity parameter
(x ~ 0.96). Higher values of the selectivity parameter means that the group members should
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Fig. 13 Student003 dataset: a number of identified groups for different values of the selectivity parameter, b
average dominant group size for different values of the selectivity parameter
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travel most of the time within the proximity distance and leaving the proximity circle will
be costly.

As far as the dominant group size concerns, Fig. 13b demonstrates that the average dom-
inant group size is decreasing as the value of the selectivity parameter increases, which is
intuitive. Besides, the lower the proximity threshold the earlier that decrease occurs (see for
example the blue (triangles) curve at T = 0.8 as it crosses the black dashed line at a selec-
tivity parameter value smaller than 0.2). Therefore, imposing higher value for the selectivity
parameter will result in many small size groups. The figure shows a horizontal line at size
of six (6), this is to compare with other studies such as [22], which estimates the average
size of pedestrian groups very rarely includes more than six (6) pedestrians. Using this as a
guideline, the search space in Fig. 13 can be limited to groups of size below that threshold.

5.4.2 Parameter selection

As mentioned earlier, there are two parameters, namely proximity threshold (t) and selec-
tivity parameter («) that control perDgroups performance in finding dominant groups. To
show the direct effect of these two parameters, we plot in Fig. 14 the precision heat map by
varying x (x—axis) from min to max (0 — 1) and t (y—axis) within a reasonable range of
proximity (0 — 8 meters). The heat map nicely demonstrates the effect of perDgroups’s two
parameter values to the precision. The black dashed ellipse indicates the area of the highest
precision. This is represented by a proximity value in the range of 1 —2 meters and by selec-
tivity values in the range of 0.80 — 0.95. This is in accordance to our analysis in Fig. 13a
which shows a peak at (tr = 1.5 and k¥ = 0.82) of number of dominant groups.

5.4.3 Clustering evaluation criteria

Given a desired ground truth pedestrian groups set C and a set of grouping result C;, the
problem of evaluating the dissimilarity between the two clusterings can be formulated using
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Fig. 14 Student003 dataset: Precision heat—-map of the extracted dominant groups found at varying proximity
and relative selectivity parameters. Area in red color indicates high accuracy compared to area in blue color
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Table4 Accuracy performance of our proposed dominant groups method against the state-of-the-art method
presented in [31]

Method Dominant groups Solera [31]
Precision 91.2 81.7
Recall 92.7 82.5

Results are based on the real dataset Student003 [21] using G-MITRE loss Ag s introduced in [31]

a loss function. A common choice of loss function is the pair-wise loss, which is a gener-
alization of the Rand coefficient [32]. This loss function is defined as the ratio between the
number of pairs on which C and C; disagree on their cluster element membership and the
number of all possible pairs of elements in the set. However, due to the quadratic number
of pairs that exist among pedestrian groups, this metric tends to be imprecise when dealing
with large number of groups. This issue is also highlighted in [31] where the authors pro-
posed a different loss function, called GROUP-MITRE loss function, denoted for the rest
of the manuscript as (G-MITRE) Ag M(é, C). We adopt the same metric for evaluating the
quality of our group method, so results are directly comparable to those reported by a the
state-of-the-art described in [31]. In short, in the G-MITRE loss function, groups are rep-
resented as spanning trees, while a group partition resembles a spanning forest. The loss
score is computed by counting the number of links that need to be added or removed to
transform the spanning forest representing a proposed clustering partition into the spanning
tree corresponding to the ground truth. Besides considering the links between the members
in a group, the G-MITRE loss function takes into account, as well, the classification of sin-
gletons (elements that are not grouped; have no links in the spanning forest). Hence, it will
reward the partitioning when those singletons are clustered correctly.

5.4.4 Experimental results

We evaluate the accuracy performance of perDgroups against the ground truth provided by
the Student003 real dataset using the G-MITRE loss function. Based on the G-MITRE loss
function, precision and recall values for each clustering method are computed to evaluate its
accuracy performance. We run our proposed dominant groups method using the following
parameters (t = 1.5, w = 1, x = 0.82) obtained as described in Section 5.4.2.

Table 4 shows the results, where it can be seen that our proposed method outperforms
the state-of-the-art presented in [31]. By focusing on individual’s perspective, our method is
able to identify groups that globally defined group patterns are ignoring as non-important.

6 Interactive exploration of group dynamics

Interactive exploration of group dynamics of pedestrians in motion videos is an important
application. In this Section, we describe the main features of an online tool that we have
developed to enable ad hoc search and retrieval of pedestrian groups [28]. A live online
demonstration of this tool can be accessed online?.

3https://sites.google.com/view/pedestrians- group- pattern/
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The tool allows to extract information about pedestrians given only their trajectories.
A snapshot of the tool’s User Interface (UI) is shown in Fig. 15. The interface comprises
of four panels: (A) a video frame panel showing the pedestrian IDs and trajectories in the
scene; (B) a frame slider at the top to navigate video frames (i.e., a timeline slider) and
provides a summary of the number of pedestrians at each video frame; (C) a video panel
at the top left showing aggregated statistics and insights about the current frame, and (D)
a group information panel, at the bottom left, that shows analysis of pedestrian groups for
different proximity threshold settings.

Using this service can reduce the time spent in searching and analyzing videos and
can also help researchers in this field to validate the results of their algorithms. The tool
visualizes the results and helps answering several important questions:

—  Showing the route of each pedestrian projected on the scene.

— Identifying the entry/exit gates each pedestrian has used to enter/exit the scene.

— Visualizing the location where pedestrians spent most of their time in the scene.

—  Reporting the length of a pedestrian stay in the scene.

— Querying about pedestrians who stayed in the station more than the average time.

— Querying about where, when and who are other people that a certain pedestrian has
been moving close to.

As this tool deals with thousands of frames, several implementation optimizations had to
be considered to enhance its performance in terms of fast data loading and online updating
of the visualization. Moreover, some statistics are computed on the browser to reduce data
transfer requirements.

7 Related work

Discovery of pedestrian groups is a special type of data mining task that can facilitate pedes-
trian behavior analysis. Our work is related to topics of trajectory-based pedestrian group
mining and to vision-based pedestrian group detection.

Video

Frame:1

Number of pedestrians:70
Average time pedestrians spent:00.01 41
Pedestrians spent above the average time:

{P21781{P8 145//P10 432/P11 460}
{P15 154:P28 2287 P29 203{P36 1322
P38 2321 P45 196 P46 195: P51 722!
P63 743:P65 260/ P63 141:{P69 243]
5?70 144

Groups B
Proximity distance:Min 10 + Max 80
Neighbors of pedestrian 38 are:

o |P2(w:34-41,43 45-46 53-58)

o (P46 (w.34-41,47-50 60-65)
- (P65 (w61-65)

« (P-108 (w34-41.46 485060 65-73)
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Fig. 15 Snapshot of the tool that allows for an interactive exploration of pedestrian group dynamics
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Trajectory-based Group Mining The works more related to our research has already been
reviewed in Section 1, so here we expand to other related work of this broad topic. Sakr
et al. [26] proposed a generic query method for matching group spatiotemporal patterns
by studying the group pattern matching problem from the perspective of database query.
They also discussed the issues of integrating their method with moving object database
(MOD) systems. Their method mainly utilizes history results of queries and merges them
with incoming data. However, there is a lack of analysis and study of different query types
related to moving objects that find similarities and common processings over time. Cluster-
ing the trajectories was utilized by Gaffney and Smyth et al. [12] using a mixture regression
model. However, their method is applied to the entire trajectories in order to find the groups.
C2P, a two-phase clustering algorithm, was used in order to gradually cluster closest pairs of
trajectories [23]. In the first phase, a set of sub-clusters were found. In the second phase, the
sub-clusters were merged iteratively to construct finer final clusters. However, the C2P algo-
rithm does not deal with the temporal information that may be considered in the data points.
Authors in [34] proposed a method for matching pedestrian trajectories on maps using a
dynamic time warping algorithm, however they did not explore the issue of matching pedes-
trian trajectories together to extract groups. Lee et al. [20] presented a partition-and-group
framework that is based on clustering sub-trajectories instead of the entire trajectories;
the focus is on local characteristics of the trajectories. A linear interpolation method was
adopted by Jeung et al. [16] to complete missing spatial data over time in order to find
convoy patterns (i.e. coherent moving groups) by applying a density clustering algorithm
followed by a post-processing to find the coherent moving groups. Pelekis et al. [24] pre-
sented a ReTraTree indexing structure to maintain (sub-)trajectories’ information over time.
Lan et al. [18] proposed an algorithm to find evolving groups by finding the candidate clus-
ters at each time point using DBSCAN [9]. Then, the Hausdorff distance was utilized for
each time interval specified by a sliding window. Although the temporal information is con-
sidered to capture the changes of groups over time, the method is hard to be adapted with
different group patterns, as being limited, in the first stage, by a spatial based clustering
algorithm performed at each time point.

Vision-based Pedestrian Group Detection Many vision-based methods have been pro-
posed to detect and track the movement of pedestrians in a video [2, 8, 14, 29]. With
the advent of location-tracking technology, many methods have been proposed to analyze
pedestrian movements and recognize specific behaviors (e.g., lying pose recognition [33],
anomaly detection [1], and escape behavior [35]). Solera et al. [31] presented an algo-
rithm for detecting social groups of pedestrians in crowd by clustering trajectories using a
novel affinity model based on sociological concepts and Structural Support Vector Machine
(Structural SVM). They devised and investigated new features and their method achieved
good results compared to state-of-the-art methods. However, obtaining trajectories in denser
crowds is challenging and the problem becomes harder due to the fact that the clusters — used
to identify each group — tend to present subtle differences. Bastani et al. [4] utilized Kalman
filter to estimate the trajectory pattern flow of each pedestrian. A symmetrized version of
Kullback-Leibler (KL) divergence was used as a metric to build up a similarity graph that
is used lately to find pedestrian groups after clustering is performed using the spectral clus-
tering algorithm. This clustering algorithm was used by Rupasinghe et al. [25] to extract a
set of nodes, where each node represents a particular motion pattern. From another perspec-
tive, the study proposed by Zanlungo [39] showed that the direction vectors of interacting
pedestrians are perpendicular to each other. Accordingly, the angles between the move-
ment directions of each pair of pedestrians were used in [6] to calculate the probability of
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being interacting pedestrians. Then, Bayes’ theorem was adopted to estimate the pedestrian
groups. However, this method can not deal with groups of more than three people.

8 Conclusions

We considered the problem of discovering groups of pedestrians when their trajectories are
provided. This is an interesting but challenging problem, with a broad range of applica-
tions. In particular, we proposed timeWgroup, an efficient time window based method that
effectively discovers groups of pedestrians of varying group pattern semantics. The nov-
elty provided by our method is based on the idea of first efficiently discovering the pairs
of moving objects over time and then, discovering evolving groups by expanding pairs to
groups. Moreover, the flexibility provided by our method is important, as pedestrian move-
ment (and probably trajectory data of moving objects in other application domains) does
not necessarily adhere to well defined group semantics. In addition, we presented a novel
pattern, individual perspective pattern that emphasizes on how individuals perceive groups.
Based on this pattern, we introduced the concept of dominant groups and presented a sys-
tematic method for identifying the best candidate values for the hyperparameters, and for a
given ground truth dataset. Our analysis reveals that these values will be restricted around
the peaks of the proximity curves (as depicted by the black dashed ellipse of Fig. 13a). By
limiting the search space, we can effectively find the most prominent values for setting the
selectivity parameter and guide the group pattern analysis.

To improve efficiency, we represented trajectory data as a sparse tensor. That way, we
were able to devise optimized tensor-based operations that could scale to large-scale anal-
ysis. For example, we were able to perform group pattern analysis of approximately 1h of
motion video, including more than 12k pedestrians and more than 1M trajectory data points,
in a matter of seconds. To appreciate the efficiency of the method, one needs to consider
that for n moving objects the number of candidate pairs that need to be evaluated are in the
order of O(n?). An even more interesting characteristic of the method is that it can enable
interactive exploration and analysis of the group patterns by an end-user.

Overall, the method we described is simple to understand and implement, accurate, fast,
and general, so it can be easily adopted in a variety of strategies for group pattern discovery.
As such, we expect our method to be beneficial in diverse settings and disciplines.
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