
EvoNRL: Evolving Network Representation Learning
based on Random Walks

Farzaneh Heidari and Manos Papagelis

York University, Toronto ON M3J1P3, Canada
{farzanah, papaggel}@eecs.yorku.ca

Abstract. Large-scale network mining and analysis is key to revealing the
underlying dynamics of networks. Lately, there has been a fast-growing
interest in learning random walk-based low-dimensional continuous rep-
resentations of networks. While these methods perform well, they can
only operate on static networks. In this paper, we propose a random-
walk based method for learning representations of evolving networks.
The key idea of our approach is to maintain a set of random walks that
are consistently valid with respect to the updated network topology. This
way we are able to continuously learn a new mapping function from the
new network to the existing low-dimension network representation. A
thorough experimental evaluation is performed that demonstrates that
our method is both accurate and fast, for a varying range of conditions.

Keywords: network representation, evolving networks, random walks

1 Introduction

Large-scale network mining and analysis is key to revealing the underlying dy-
namics of networks, not easily observable before. Traditional approaches to net-
work mining and analysis inherit a number of limitations; typically algorithms
do not scale well (due to ineffective representation of network data) and require
domain-expertise. More recently and to address the aforementioned limitations,
there has been a growing interest in learning low-dimensional representations of
networks, also known as network embeddings. A comprehensive coverage can be
found in the following surveys [5, 9, 19]. A family of these methods is based on
performing random walks on a network. Random-walk based methods, inspired
by the word2vec’s skip-gram model of producing word embeddings [13], establish
an analogy between a network and a document. While a document is an ordered
sequence of words, a network can effectively be described by a set of random
walks (i.e., ordered sequences of nodes). Typical examples of these algorithms
include DeepWalk [15] and node2vec [7]. In this work, we collectively refer to
these random-walk based methods as StaticNRL. A typical StaticNRL method,
is operating in two steps:

(i) a set of random walks, walks, is collected by performing r random walks of
length l starting at each node in the network (e.g., r = 10, l = 80).

2 Farzaneh Heidari et al.

(ii) walks are provided as input to an optimization problem that is solved using
variants of Stochastic Gradient Descent using a deep neural network [3]. The
outcome is a set of d-dimensional representations, one for each node.

A major shortcoming of these network representation learning methods is that
they can only be applied on static networks. However, in real-world, networks
are continuously evolving, as nodes and edges are added or deleted over time. As
a result, any previously obtained network representation will now be outdated
having an adverse effect on the accuracy of the data mining task at stake.

The main objective of this paper is to develop methods for learning rep-
resentations of evolving networks. The focus of our work is on random-walk
based methods that are known to scale well. The naive approach to address this
problem is to re-apply the random-walk based network representation learning
method of choice every time there is an update to the network. But this approach
has serious drawbacks. First, it will be very inefficient, because the embedding
method is computationally expensive and it needs to run again and again. Then,
the data mining results obtained by the subsequent network representations are
not directly comparable to each other, due to the differences involved between
the previous and the new set of random walks (lack of stability), as well as, the
non-deterministic nature of the learning process (Section 2). Therefore the naive
approach would be inadequate for learning representations of evolving networks.

In contrast to the naive approach, we propose a novel algorithm, EvoNRL,
for Evolving Network Representation Learning based on random walks. The
key idea of our approach is to design efficient methods that are incrementally
updating the original set of random walks in such a way that it always respects
the changes that occurred in the evolving network (Section 3). As a result, we
are able to design a strategy for continuously learning a new mapping from the
evolving network to a low-dimension network representation, by only updating
a small number of random walks required to re-obtain the network embedding
(Section 4). A thorough experimental evaluation on synthetic and real data
sets demonstrates that the proposed method offers substantial time performance
gains without loss of accuracy (Section 5). In addition, the method is generic,
so it can accommodate a variant of random-walk based methods and the needs
of different domains and applications.

2 Instability of StaticNRL Methods

In this paragraph, we present a systematic evaluation of the stability of the
StaticNRL methods, similar to the one presented in [2]. The evaluation aims to
motivate our approach to address the problem of interest. Intuitively, a stable
embedding method is one in which successive runs of it on the same network
would learn the same (or similar) embedding. StaticNRL methods are to a great
degree dependent on two random processes: (i) the set of random walks collected,
and (ii) the random initialization of the parameters of the optimization method.
Both factors can be a source of instability for the StaticNRL method. Comparing

EvoNRL 3

two embeddings can happen either by measuring their similarity or by measuring
their distance. Let us introduce the following measures of instability:

– Embedding Similarity: Cosine similarity is a popular similarity measure for
real-valued vector space models [8, 11]. Formally, given the vector represen-
tations ni and n′i of the same node ni in two network embeddings obtained at
two different times, their cosine similarity is: sim(ni,n′i) = cos(θ) = ni·n′i

∥ni∥∥n′i∥
.

We can extend the similarity to two network embeddings E and E ′ by sum-
ming and normalizing over all nodes: sim(E ,E ′) = ∑i∈V sim(ni,n′i)/|V |.

– Embedding Distance: Given a graph G = (V,E), a network embedding is a
mapping f : V → Rd , where d≪ |V |. Let Ft(V) ∈ R|V |×d be the matrix of all
node representations at time t. Then, similarly to the approach in [6], the
distance of two embeddings E , E ′ is: distance(E ,E ′) = ||F(V)−F ′(V)||F .

Experimental Scenario: We design a controlled experiment on two real-world
networks, namely Protein-Protein-Interaction (PPI) [4] and a collaboration net-
work (dblp) [18] that aims to evaluate the effect of the two random processes
(set of random walks, initialization weights) in the network embeddings. In these
experiments, we compare three settings. For each setting, we run StaticNRL on
a network (using parameter values: r = 10, l = 10, k = 5) two times (while there
have been no change in the network), and compute the cosine similarity and
the matrix distance of the two embeddings E , E ′. We repeat the experiment 10
times and report averages. The three settings are:

– StaticNRL: independent set of random walks; random initialization weights.
– StaticNRL-i: independent set of random walks; same initialization weights.
– StaticNRL-rw-i: same set of random walks; same initialization weights.

Results & Implications: The results of the experiment are shown in Fig. 1a (co-
sine similarity) and Fig. 1b (matrix distance). They show that when we employ
the same set of random walks and the same initialization in consecutive runs
of StaticNRL, we are able to obtain the same embedding (as depicted by the
sim(·, ·) = 1 in Fig 1a or distance(·, ·) = 0 in Fig. 1b). However, when random
walks and/or random initialization are employed in consecutive runs of a Static-
NRL method, then the embedding can be shifted (lack of stability) despite the
fact that there is no actual change in the network topology. Most of similar work
in the literature correct this problem by applying an alignment method [8] that
aims to rotationally align two embeddings. While alignment methods can bring
independent embeddings closer and eliminate the effect of different embeddings,
this approach won’t work well in random walk based models. The main rea-
son for that is that as we have showed in the experiment, consecutive runs suffer
from instability that is introduced by both random processes. Therefore, changes
that occur in the evolving network topology will not be easily interpretable by
the changes observed in the network embedding (since differences might incor-
porate changes due to the two random processes). These observations highlight
the challenges of employing StaticNRL methods for learning representations of
evolving networks, which is the focus of this work.

4 Farzaneh Heidari et al.

(a) embedding similarity (b) embedding distance

Fig. 1. Instability of the StaticNRL methods when applied on the same network.

3 Dynamic Random Walks Framework

In Section 2, we established the instability of random-walk based methods when
they are repeatedly applied to the same static network. This motivated our key
idea to address the problem: maintain a set of random walks that are consistently
valid with respect to the network topology changes. If we are able to do so, we
can effectively eliminate the effect of the random processes by, first, preserving,
as much as possible, the original random walks that haven’t been affected by the
network changes. Then, by initializing the model with a previous run’s initial-
ization [11]. The main advantage of this approach is that any changes observed
in the embedding of an evolving network will be more interpretable. Stemming
from our key idea, in this Section we describe a general framework and a novel
method that allows to incrementally update a set of random walks obtained
on a network Gt(Vt ,Et) at time t so that they remain valid at time t ′ > t and
network Gt ′(Vt ′ ,Et ′). The most common change in an evolving network consists
of either adding a new edge or deleting an existing edge. While our method is
able to handle both cases (with minor variations), for the rest of the manuscript
we discuss only the case of edge addition, due to space limitations. Therefore,
Gt ′ represents an augmentation of Gt , where Vt ′ = Vt and Et ′ = Et ∪E+, and E+

represents the set of the new edges in Gt .
Dynamic Updates of Random Walks: Given a network Gt = (Vt ,Et) at time t, we
employ a standard StaticNRL method1 to simulate random walks. By default,
this method is configured to perform r = 10 random walks per node, each of
length l = 80. Let RWt be the set of random walks obtained, where |RWt |= |Vt |×r.
We store the random walks in memory, using a data structure that provides
random access to its elements (i.e., a 2-D numpy matrix). Now, assume that
a single new edge ei j = (nodei,node j) arrives in the network at time t + 1, so

1node2vec; code is available at https://github.com/aditya-grover/node2vec

https://github.com/aditya-grover/node2vec

EvoNRL 5

Et+1 = Et ∪ (nodei,node j). There are two operations that need to take place in
order to properly update the set RWt of the random walks in hand:

– Operation 1: contain the new edge to existing random walks in RWt .
– Operation 2: discard obsolete parts of random walks of RWt and replace them

with new random walks to form the new RWt+1.

Operation 1: We want to update the set RWt to contain the new edge (nodei,node j).
We explain the update process for nodei; the same process is followed for node j.
First, we need to find all the random walks walksi ∈ RWt that include nodei.
Then, we need to update them so as to reflect the existence of the new edge
(nodei,node j). In practice, the new edge offers a new possibility for each random
walk in Gt+1 that reaches nodei to traverse node j in the next step. The number
of these random walks that include (nodei,node j) depends on the node degree
of nodei and it is critical for correctly updating random walks in RW . Formally,
if the node degree of nodei in Gt is dt then in Gt+1 it will be incremented by
one, dt+1 = dt + 1. Effectively, a random walk that visits nodei in Gt+1 would
have a probability 1

dt+1
to traverse node j. This means that if there are f reqi oc-

currences of nodei in RWt , then f reqi
dt+1

edges (nodei,node j) need to be contained,
by setting the next node of nodei to be node j, in the current random walk. If
nodei is the last node in a random walk then, there is no need to update the
new edge in that random walk. The naive approach to perform the updates is
to visit all f reqi occurrences of nodei in walksi ∈ RW and for each of them to
decide whether to perform an update of the random walk (or not), by setting
the next node to be node j. The decision is based on tossing a biased coin, where
with probability psuccess =

1
dt+1

we update the random walk, and with probability
p f ailure = 1− psuccess we do not. While this method is accurate, it is not efficient
as all occurrences of nodei need to be examined, when only a portion of them
needs to be updated. A faster approach is to find all the f reqi occurrences of
nodei, and then to uniformly at random sample f reqi

dt+1
of them and update them

by setting the next node to be node j. While this method will be faster than the
naive approach, it still resides on finding all the f reqi occurrences of nodei in
the set of random walks RW , which is an expensive operation. We employ the
faster approach for the updates. We will soon describe how this method can be
accelerated by using an efficient indexing library that allows for fast querying
and retrieval of all occurrences of a node in random walks.

Operation 2: Once a new edge (nodei,node j) is contained in an existing random
walk, it renders the rest of it obsolete. We replace the remainder of the random
walk by simulating a new random walk on the updated network Gt+1. The ran-
dom walk starts at node j with length lsim = l− (Indi +1), where 0≤ Indi ≤ l−1
is the index of nodei in the currently updated random walk. Fig. 3 presents an
illustrative example of how updates of random walks work. First, a set of random
walks RWt are obtained (say 5 as illustrated by the upper lists of random walks).
Let us assume that a new edge (1,4) arrives. Note that now, the degree of node
1 and node 2 will increase by 1 (dt+1 = dt + 1). Because of the new edge, some

6 Farzaneh Heidari et al.

(a) Example addition of a new edge (1,4).
Random walks need to be updated to adhere
to the updates of the network.

(b) Example inverted random walk in-
dex. Given a graph, five random walks
are performed and indexed.

Fig. 2. Illustrative examples of the update method in both naive and faster approach.

random walks need to be updated to account for the change in the topology. To
perform the updates, we first search for all occurrences of i, f reqi. Then, we uni-
formly at random sample f reqi

dt+1
= 2/2 = 1 of them to determine where to contain

the new edge. In the example, node 4 is listed after node 1 (i.e., the second node
of the 4th random walk is now updated). The rest of the current random walk is
obsolete, so it needs to be replaced. To perform the replacement a new random
walk is simulated on the updated network Gt+1 that starts at node 4 and has
a length of lsim = l− (Ind1 +1) = 10− (0+1) = 9. The same process is repeated
for node 4 of the added edge (1,4) (see the updates on the 2nd and 5th random
walk, respectively). The details of the proposed algorithm are described in Algo-
rithm 1. Lines 2 and 12 of the algorithm invoke a Query operator. This operator
is responsible for searching and retrieving information about all the occurrences
of nodei in the set of the random walks RWt . In addition, lines 11 and 19 of the
algorithm invoke a UpdateRandomWalks operator. This operator is responsible for
updating any obsolete random walks of RWt with the updated ones to form the
new set of random walks RWt+1, valid to Gt+1. However, these operators are very
computationally expensive, especially for larger networks. In the next paragraph,
we describe how these two slow operators, Query and UpdateRandomWalks, can
be replaced by similar operators offered off-the-shelf by high performance index-
ing and searching open-source technologies. In addition, so far, we have relied on
maintaining the set of random walks RWt in memory. The indexing technologies
we will employ scale well to very large number of random walks.

Efficient Query & Update of Random Walks: Updating random walks methods
presented in the previous paragraph are accurate. However, they depend on
operators Query and UpdateRandomWalks that are computationally expensive
and are not scalable. The most expensive operation is to search and update
the random walks RWt with the occurrences of nodei and node j of the new edge
(nodei,node j). To address these shortcomings, our framework relies on popular
open-source indexing and searching technologies. We build an inverted random

EvoNRL 7

walk index, IRW . IRW is an index data structure that stores a mapping from
nodes (terms) to random walks (documents). The purpose of IRW is to enable
fast querying of nodes in random walks, and fast updates of random walks that
can inform Algorithm 1. Fig. 3 provides an example of a small inverted random
walk index. We also describe how to create the index and use it in our setting.

Algorithm 1 Update RW
1: procedure UpdateWalks
2: walksi←Query(nodei)
3: pi← 1

di

4: p j← 1
d j

5: si← Sample(walksi, pi)
6: if len(si)> 0 then
7: for wk in si do
8: Indi← Position(nodei, wk)
9: lsim = l− (Indi +1)

10: wk[Indi+1:]← SimulateWalk(node j, l)
11: UpdateRandomWalks()
12: walks j←Query(node j)
13: s j← Sample(walks j, p j)
14: if len(s j)> 0 then
15: for wk in s j do
16: Ind j← Position(node j, wk)
17: lsim = l− (Ind j +1)
18: wk[Ind j+1:]← SimulateWalk(nodei, l)
19: UpdateRandomWalks()

Indexing Random Walks:
We obtain the initial set of
random walks RWt at time t
by performing random walks
on the original network, sim-
ilarly to the process fol-
lowed in standard Static-
NRL methods. Each random
walk is transformed to a doc-
ument by properly concate-
nating the ids of the nodes
in the walk. For example, a
short walk (x→ y→ z) will
be represented as a docu-
ment with content “x y z”.
These random walks are in-
dexed to create IRW . It is im-
portant to note that once an
index is available, there is
no need to maintain the ran-

dom walks in memory any more.
Querying Random Walks: We rely on the index IRW to perform any Query oper-
ation. Besides searching and retrieving all random walks that contain a specific
nodei, the index IRW can provide useful quantities of interest like the frequency
of nodei in a set of random walks, and the position of nodei in a random walk.
Updating Random Walks: We rely on the index IRW for any UpdateRandomWalks
operation. While querying an inverted index is a fast process, updating it is
slower. Therefore, the performance of our methods is dominated by the number
of random walk updates required. Still, our methods would perform multitude of
times faster than StaticNRL methods. A detailed analysis of this issue is provided
in Section 5. Additional optimizations are available as a result of employing an
inverted index. For instance, we can take advantage of bulk updates. This will
sacrifice accuracy for speed that might be preferable in some applications.

4 Evolving Network Representation Learning

So far, we have described our framework for maintaining an always valid set
of random walks RWt at time t. Recall that our final objective is to be able to
learn a representation of the evolving network. The process begins by obtaining

8 Farzaneh Heidari et al.

an initial network embedding. For that, we resort to the StaticNRL method
of choice. EvoNRL has the overhead of first indexing the set of initial random
walks RW . At this time only (t = 0), we initialize the skip-gram model, but
we store and re-use the same initialization weights for the needs of subsequent
embeddings. As new edges are arriving, EvoNRL performs the necessary updates
as described earlier. At each time t a valid set of random walks RWt is available
that can be used to obtain an updated network embedding. While re-embedding
the network at every time t will result in more accurate embeddings, we only need
to do this once in a while. The timing of the embedding is domain-specific and
relates to the trade-off between accuracy and performance that an application
can accommodate. In Section 5 we present experiments that can support the
decision making process. For completeness, we describe next how to obtain an
embedding of the evolving network at time t, given a set of random walks RWt .
Learning Embeddings given RWt: Given a network Gt = (Vt ,Et), our goal is to
learn the network representation F(Vt) using the skip-gram model. F(Vt) is a
|Vt | × d matrix where each row is the vector representation of a node and d is
the vector’s dimension. The context of each node ni is found using the valid
RWt set, similar to works [7, 15]. To obtain an embedding we optimize the skip-
gram with negative sampling objective, using stochastic gradient decent, so that:
Pr(nj|ni) ∝ exp(nT

j ni), where ni is the vector representation of a node ni (F(ni) =

ni). Pr(nj|ni) is the probability of the observation of neighbor node n j, within
the window-size given that the window contains ni.

5 Experimental Evaluation

In this section, we experimentally evaluate the performance of our dynamic
random walk framework and EvoNRL. We aim to answer the following questions:

– Q1 How the importance of a new edge affects the random walks update time?
– Q2 How the network topology affects the number of random walks updated?
– Q3 What is the time performance of EvoNRL?
– Q4 What is the accuracy performance of EvoNRL?

Environment: All experiments are conducted on a workstation with 8x Intel(R)
Core(TM) i7-7700 CPU @ 3.60GHz and 64GB memory. For the embeddings, we
employ the gensim implementation of the skip-gram model2. We set the context-
size k = 5 and the number of dimensions d = 128. We use Python 3.6.
Data: We experiment with real networks coming from a Protein-to-Protein inter-
action network (PPI [4]) and a social network of bloggers (BlogCatalog [16]). In
addition, we experiment with a set of synthetic networks of different topologies,
obtained using the Watts-Strogatz model [14]. In particular, we set the model’s
rewiring probability parameter p, so as to obtain a Lattice (p = 0.0), a Small-
world (p = 0.5) and an Erdos-Reyni (p = 1.0) network, respectively. Details are
shown in Table 1.

2https://github.com/RaRe-Technologies/gensim

https://github.com/RaRe-Technologies/gensim

EvoNRL 9

name type # nodes # edges description
PPI real 3,890 76,584 50 different labels

BlogCatalog real 10,312 333,983 39 different labels
{Lattice, Small-world, ER} synthetic 10,000 70,000 p = {0,0.5,1.0}, respectively

Table 1. Description of the network data sets employed in the experimental evaluation.

Q1 Effect of New Edge Importance: It is easy to see that even a single new edge
can have a dramatic effect in the number of random walks affected. Apparently,
that number controls the time needed to update the affected random walks in
our framework. In this set of experiments we perform a systematic analysis of the
effect of the importance of an arriving edge to the time required for the update.
Importance of an incoming edge et+1

i j = (ni,n j) at time t + 1 in a network can
be defined in different ways. Here, we define three metrics of edge importance,
based on properties of the nodes ni and n j that form the endpoints of an arriving
edge. These include the sum of frequencies of edge endpoints in RWt , sum of the
node degrees of edge endpoints in Gt and sum of the node-betweenness of edge
endpoints in Gt . Results are presented in Fig. 3. The first observation is that
important incoming edges are more expensive to update, up to three or four
times (1.6sec vs 0.4sec). This is expected, as more random walks need to be
updated. However, the majority of the edges are of least importance (lower left
dense areas in Fig. 3a, 3b, 3c), so fast updates are more common. Finally, the
behavior of sum of frequencies (Fig. 3a) and sum of degrees (Fig. 3b) of the
edge endpoints are correlated. This is because the node degree is known to be
directly related to the number of random walks that traverse it. On the other
hand, node-betweenness demonstrates more unstable behavior since it is related
to shortest paths and not just paths (which are traversed in randw3om walks).
Q2 Effect of Network Topology: We evaluate the effect of randomly adding new
edges in networks of different topologies, but same size (|V |= 10,000). For each
case, we report the number of the random walks that need to be updated. Fig. 4
shows the results, where it becomes clear that as more new edges are added, more
random walks are affected. The effect is more stressed in the case of the Small-
world and Erdos-Reyni networks; these networks have small diameter, therefore
every node is easily accessible from any other node. In contrast, Lattices have
larger diameter and nodes are more equally distributed in random walks.
Q3 Time Performance of EvoNRL: To evaluate the time performance of EvoNRL
we run experiments on two Small-world networks (Watts-Strogatz (p = 0.5)) of
different size (|V | = {1000,10000}). We evaluate EvoNRL against a standard
StaticNRL method from the literature [7]. Both algorithms start with the same
set of random walks RW . As new edges are arriving, StaticNRL needs to learn a
new network representation by re-simulating a new set of walks every time. On
the other hand, EvoNRL has the overhead of first indexing the set of initial ran-
dom walks RW . Then, for every new edge it just needs to perform the necessary
updates as described earlier. Fig. 5 shows the results, where it can be seen that
the performance of StaticNRL is linear to the number of new edges. At the same

10 Farzaneh Heidari et al.

(a) sum of frequencies (b) sum of node degrees (c) sum of node-betweenness

Fig. 3. Effect of the new edge importance to the running time of updates (PPI is used).

Fig. 4. Effect of network topology. Fig. 5. Time performance of EvoNRL.

time, EvoNRL can accommodate the changes more than 100 times faster than
staticNRL. This behavior is even more stressed in the larger network (where the
number of nodes is larger). By increasing the number of nodes, running Static-
NRL becomes significantly slower, because it needs to simulate a larger amount
of random walks. On the other hand, EvoNRL has a larger initialization over-
head, but after that it can easily accommodate new edges. This is because every
update is only related to the number of random walks affected and not the size
of the network. This is an important observation, as it means that the benefit
of EvoNRL will be more stressed in larger networks.
Q4 Accuracy Performance of EvoNRL: We run experiments that demonstrate
that EvoNRL has a similar accuracy to that obtained by StaticNRL, when it
is run again and again on instances of an evolving network. The experiment is
designed as follows: we randomly add new edges to the original network (Blog-
Catalog, PPI) and evaluate the accuracy on a downstream data mining task:
multi-label classification. In our multi-label classification experiments, we see
50% of nodes and their labels in the training phase and the goal is to predict
labels of the rest of the nodes. We use node vector representations as input to a
one-vs-rest logistic regression classifier with L2 regularization. Adding new edges
will impact the network embedding and thus the overall accuracy of the classi-
fication results. It is important to note here that we only care about observing
similar trends in the accuracy results of both methods, and not about the actual

EvoNRL 11

(a) BlogCatalog (b) PPI

Fig. 6. Accuracy performance of EvoNRL for the BlogCatalog and the PPI network.

accuracy values. For both experiments we report the Macro−F1 accuracy of the
multi-label classification task as a function of the fraction of new edges added.
For StaticNRL, since it is sensitive to the new set of random walks, we run it
10 times and report the averages. Fig. 6 shows the results. We observe that the
Macro-F1 accuracy of EvoNRL follows the same trend as the one of StaticNRL
in both the BlogCatalog (Fig. 6a) and the PPI (Fig. 6b) networks. It can be
seen that the accuracy of the two methods remains similar as more edges are
added. This provides strong evidence that our random walk updates are accurate
and able to reproduce the accuracy results obtained by applying a StaticNRL
method on multiple instance of the evolving network.

6 Related Work

A comprehensive coverage of methods for learning network representations of
static networks can be found in [5,9,19]. Work on learning representations of dy-
namic networks often apply static methods to snapshots of an evolving network
[8]. Similarly, graph factorization approaches attempt to learn the embedding
of dynamic graphs by smoothing over consecutive snapshots [1]. DANE [12] is a
dynamic representation framework that focuses on attributed networks. Know-
Evolve [17] proposes an entity embedding method of an evolving knowledge-
graph based on multivariate event detection. EvoNRL does not need to operate
on snapshots of the evolving network; instead, it directly learns the evolving
network representations by monitoring the changes in the topology. Our work
is also related to work on dynamic random walks. For instance, READS [10] is
an indexing scheme for Simrank computation in dynamic graphs. EvoNRL has
different semantics, sampling strategy and application focus to READS.

7 Conclusions

Our focus in this paper is on learning representations of evolving networks. To
extend static random walk based network representation methods to evolving

12 Farzaneh Heidari et al.

networks, we proposed a general framework for updating random walks as new
edges are arriving. The updated random walks leverage time and space efficiency
of inverted indexing methods. Our proposed method, EvoNRL, utilizes the con-
tinuously valid set of random walks to obtain new network representations that
respect the changes that occurred in the network. We demonstrated that our
proposed method, EvoNRL, is both accurate and fast. Therefore, it can be suc-
cessfully employed in a number of predictive tasks that arise in the study of
networks that evolve over time.

References
1. Ahmed, A., Shervashidze, N., Narayanamurthy, S., Josifovski, V., Smola, A.J.:

Distributed large-scale natural graph factorization. ACM (2013)
2. Antoniak, M., Mimno, D.: Evaluating the stability of embedding-based word sim-

ilarities. TACL 6, 107–119 (2018)
3. Bengio, Y., Courville, A., Vincent, P.: Representation learning: A review and new

perspectives. IEEE TPAMI 35(8), 1798–1828 (2013)
4. Breitkreutz, B.J., Stark, C., Reguly, T., Boucher, L., Breitkreutz, A., Livstone, M.,

Oughtred, R., Lackner, D.H., Bähler, J., Wood, V., et al.: The biogrid interaction
database: 2008 update. Nucleic acids research 36(suppl_1), D637–D640 (2007)

5. Cai, H., Zheng, V.W., Chang, K.: A comprehensive survey of graph embedding:
Problems, techniques and applications. IEEE TKDE (2018)

6. Goyal, P., Kamra, N., He, X., Liu, Y.: Dyngem: Deep embedding method for
dynamic graphs. IJCAI Workshop on Representation Learning for Graphs (2018)

7. Grover, A., Leskovec, J.: node2vec: Scalable feature learning for networks. In:
KDD, pp. 855–864 (2016)

8. Hamilton, W.L., Leskovec, J., Jurafsky, D.: Diachronic word embeddings reveal
statistical laws of semantic change. CoRR abs/1605.09096 (2016)

9. Hamilton, W.L., Ying, R., Leskovec, J.: Representation learning on graphs: Meth-
ods and applications. IEEE Data Eng. Bulletin (2017)

10. Jiang, M., Fu, A.W.C., Wong, R.C.W.: Reads: A random walk approach for efficient
and accurate dynamic simrank. Proc. VLDB Endow. 10(9), 937–948 (2017)

11. Kim, Y., Chiu, Y., Hanaki, K., Hegde, D., Petrov, S.: Temporal analysis of language
through neural language models. CoRR abs/1405.3515 (2014)

12. Li, J., Dani, H., Hu, X., Tang, J., Chang, Y., Liu, H.: Attributed network embed-
ding for learning in a dynamic environment. In: CIKM, pp. 387–396 (2017)

13. Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed represen-
tations of words and phrases and their compositionality. In: NIPS, pp. 3111–3119
(2013)

14. Newman, M.E.: The structure and function of complex networks. SIAM review
45(2), 167–256 (2003)

15. Perozzi, B., Al-Rfou, R., Skiena, S.: Deepwalk: Online learning of social represen-
tations. CoRR abs/1403.6652 (2014)

16. Reza, Z., Huan, L.: Social computing data repository
17. Trivedi, R., Dai, H., Wang, Y., Song, L.: Know-evolve: Deep temporal reasoning

for dynamic knowledge graphs. In: ICML, vol. 70, pp. 3462–3471 (2017)
18. Yang, J., Leskovec, J.: Defining and evaluating network communities based on

ground-truth. KAIS 42(1), 181–213 (2015)
19. Zhang, D., Yin, J., Zhu, X., Zhang, C.: Network representation learning: A survey.

IEEE Transac. on Big Data (2018)

	EvoNRL: Evolving Network Representation Learning based on Random Walks

