
Big Data Research 25 (2021) 100235

Contents lists available at ScienceDirect

Big Data Research

www.elsevier.com/locate/bdr

OL-HeatMap: Effective Density Visualization of Multiple Overlapping

Rectangles

Niloy Eric Costa ∗,1, Tilemachos Pechlivanoglou ∗,1, Manos Papagelis

York University, 4700 Keele Street, Toronto, Ontario, Canada

a r t i c l e i n f o a b s t r a c t

Article history:
Received 1 October 2020
Received in revised form 11 February 2021
Accepted 11 April 2021
Available online 30 April 2021

Keywords:
Information visualization
Density-based visualization
Overlapping objects
Computational geometry
Heat-maps

Visualization of the density of multiple overlapping axis-aligned objects is a challenging computational
problem that can inform large-scale visual analytics, in diverse domains. For example, when dealing
with crowd simulations, we care about constructing interaction maps, and in urban planning we care
about city areas mostly frequented by people, to name a few. The primary objective of this research is,
given a large set of axis-aligned two-dimensional (2D) objects, or simply rectangles, to devise efficient
and effective data visualization methods that inform whether, where and how much these rectangles
overlap. Currently, such visualizations rely on inefficient implementations of determining the size of
the overlapping rectangles that do not scale well and are hard to accomplish. Approximate methods
have also been proposed in the literature. To the contrary of these approaches, we aim to address
this problem by exploiting state-of-the-art computational geometry methods based on the sweep line
paradigm. These methods are fast and can determine the exact size of the overlap of multiple axis-
aligned objects, therefore can effectively inform the visualization method. Towards that end, we present
OL-HeatMap, a novel type of a heat-map visualization that can be used to represent and perceive density
of overlapping rectangles. Our experimental evaluation demonstrates the effectiveness of the proposed
method in terms of both accuracy and running time for synthetic and real-world data-sets.

© 2021 Elsevier Inc. All rights reserved.
1. Introduction

Density-based information visualization methods are commonly
employed in big data visual analytics. They provide powerful ab-
stract representations of large data sets that can help one to
quickly perceive areas of interest due to a large concentration of
data points (or their absence). Amongst a plethora of visualization
techniques for density, such as scatter plots or treemaps, we fo-
cus on one of the most commonly used density-based visualization
methods, the heat-map. A heat-map is a graphical representation
of data where data values are represented as colors. These colors
depict the characteristics of the data based on problem-specific
requirements. Typically, darker colors depict regions with higher
amounts or concentrations of data values present, while the op-
posite is true for lighter colors. Variants of heat-maps have been
used to show the density or distribution of data on a given region
of interest. This technique provides a general view of numerical
data, and it can be customized to suit statistical and categorical

* Corresponding authors.
E-mail addresses: ericnc@eecs.yorku.ca (N.E. Costa), tipech@eecs.yorku.ca

(T. Pechlivanoglou), papaggel@eecs.yorku.ca (M. Papagelis).
1 These authors contributed equally.
https://doi.org/10.1016/j.bdr.2021.100235
2214-5796/© 2021 Elsevier Inc. All rights reserved.
data variants. It can also be employed to show the results of clus-
tering algorithms. As the rendered graphic is easy to understand,
it is typically used to check the expected results versus the actual
results of an algorithm.

A common tool employed in the construction of a heat-map vi-
sualization is related to bounding volumes, and specifically bounding
boxes. A bounding volume is a visual abstraction that is used to ap-
proximate complex objects and simplify the visualization process.
Such visual abstractions introduce some flexibility to the problem,
allowing for faster computation while avoiding significant losses
in the information visualized. For different objects in real life, dif-
ferent bounding volumes such as rectangles, cuboids, spheres, and
hyper-planes can be used. Furthermore, when the shapes used are
rectangles or cuboids, they can be axis-aligned, meaning that their
sides are parallel to the respective coordinate axis. In this work, we
focus on 2-dimensional axis-aligned bounding boxes which we refer
to as rectangles for ease of understanding. Previously, such rectan-
gles have been used to approximate geographical objects [1], for
the construction of spatial data structures [2], but also in VLSI de-
sign [3], to name a few.

We are interested in creating density-based visualizations that
offer insights about the interactions (relationships) of these rect-
angles on a Cartesian plane. To that end, we need to identify and

https://doi.org/10.1016/j.bdr.2021.100235
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/bdr
http://crossmark.crossref.org/dialog/?doi=10.1016/j.bdr.2021.100235&domain=pdf
mailto:ericnc@eecs.yorku.ca
mailto:tipech@eecs.yorku.ca
mailto:papaggel@eecs.yorku.ca
https://doi.org/10.1016/j.bdr.2021.100235

N.E. Costa, T. Pechlivanoglou and M. Papagelis Big Data Research 25 (2021) 100235

Fig. 1. Input data and rectangle density visualizations.
report the density value (i.e., the number of rectangles that over-
lap) of every point on the Cartesian plane. In addition, for each of
these overlaps we want to determine the size of the overlap and its
location in the Cartesian plane. There are a handful of approaches
to address this problem, with one of the most common being grid-
based [4]. According to grid-based methods, first a uniform grid is
defined that would separate the observation space into equal size
grid cells. Then, the method determines the overlap of each grid
cell to the input rectangles using well-established orthogonal range
query methods [5], such as R-trees [6]. However, grid-based meth-
ods inherit several limitations. Constructing a spatial grid-based
data structure and performing range queries for each grid cell is
computationally expensive. Furthermore, the accuracy of the visu-
alization results would greatly depend on the size of the grid (grid
granularity). This presents an interesting trade-off where a small
grid will be computationally more efficient but less accurate, and
a large grid will provide more accurate representation of the over-
laps, but at the expense of running cost. An illustrative example of
this trade-off is shown in Fig. 1. We further elaborate on this trade-
off in the methodology and experimental evaluation sections.

A more desirable outcome would be to be able to identify the
exact location, density and size of any overlap among the avail-
able rectangles in the data-set directly. The simplest, brute-force
approach to accomplish this is to compare every rectangle with
every other rectangle, pair-wise first, then proceed to compare the
overlap of every pair with every other object to find triple over-
laps, and so on. As is apparent, the computational cost of such
a method is prohibitively high. Instead, an approach that is com-
monly used to answer such geometric object overlap problems
efficiently is the algorithmic paradigm known as the sweep-line or
plane sweep algorithm [7]. Algorithms belonging to this category
utilize a conceptual line that sweeps across the plane and quickly
identify overlapping objects.

In this work, we employ a recently proposed variation of the
sweep-line algorithm that is able to determine the exact location,
size and number of multiple overlaps of n-dimensional geometric
objects [8]. That method is using a sweep-line to construct an aux-
iliary data structure known as a region intersection graph and has
the potential to significantly reduce the computation required for
the effective visualization of the density of overlapping rectangles.
Specifically, the main contributions of our work are as follows:

• We present OL-HeatMap (OverLap HeatMap), a fast and exact
density-based visualization method for effective representation
of the overlaps of multiple axis-aligned rectangles, based on
the sweep-line paradigm.

• We introduce an evaluation metric that can be used to deter-
mine the accuracy of grid-based heat-map visualizations.

• We conduct an extensive evaluation of the performance of
OL-HeatMap which demonstrates that it significantly outper-
forms competitive grid-based methods, in terms of both run-
ning time and accuracy.
2

Table 1
Summary of notations.

Notation Description

� A 2-dimensional square observation space in R2

l The length of the sides of �

R A set of n rectangles {R1, R2, . . . , Rn} in �

O Set of multiple overlapping rectangles
S O AB Surface area of the overlap O
C A set of square grid cells: {C1, C2, . . . , C g2 }
g Size of grid (nr. of rows or nr. of columns, since they are equal)
(x, y) XY -coordinates of a Cartesian point in �

z(x,y) z-index, i.e. number of rectangles a point (x, y) belongs to
zO z-index value of multiple overlapping rectangles set O
zCi z-index value of a grid cell
AC grid Percent of correct cells in a grid
A S grid Percent of correctly represented area inside the entire grid

• We build an interactive visualization system that demonstrates
the effectiveness of OL-HeatMap in practice.

• We make source code and data publicly available to encourage
reproducibility of method and results.2

The remainder of this paper is organized as follows: Section 2
introduces notation and formally defines the problem of interest
in this paper. Our proposed method, OL-HeatMap, along with the
grid-based competitors and the overall computational framework
are presented in Section 3. Section 4 presents a thorough experi-
mental evaluation of the methods and algorithms. After reviewing
the related work in Section 6, we conclude in Section 7.

2. The problem

In this section, we introduce notation, provide preliminaries
and formally define the problem of interest. A summary of all no-
tations used are present in Table 1.

2.1. Preliminaries

2.1.1. Rectangles
Consider a 2-dimensional observation space �, which is a sub-

space of the Cartesian plane R2. Without loss of generality, for the
remainder of this paper we assume that � is a square whose sides
have length l, therefore � = {(x, y) ∈ R2 | 0 ≤ x ≤ l and 0 ≤ y ≤ l}.
Let a rectangle R be defined by the (x, y)-coordinates of two points
in �, one point representing its bottom-left corner (x0

R , y0
R) and

one representing its top-right corner (x1
R , y1

R), respectively. As the
two points represent the diagonal corners of the rectangle R , it is
x0

R < x1
R and y0

R < y1
R .

2 https://github .com /ericnc09 /OL-HeatMap.

https://github.com/ericnc09/OL-HeatMap

N.E. Costa, T. Pechlivanoglou and M. Papagelis Big Data Research 25 (2021) 100235

Fig. 2. Grid construction and z-index calculation for different values of g .
2.1.2. Pair-wise overlapping rectangles
Let a pair of rectangles A and B in � and the following two

conditions:

max(x0
A, x0

B) ≤ min(x1
A, x1

B) (1)

max(y0
A, y1

A) ≤ min(y0
B , y1

B) (2)

The two rectangles A and B are intersecting if and only if both (1)
and (2) are true. Note that (1), (2) check whether the rectangles
are intersecting in the X-axis and Y -axis, respectively. When two
rectangles A and B are intersecting, then their overlapping area
defines a new rectangle, called an overlap and denoted as O AB . The
rectangle coordinates of O AB are (max(x0

A, x0
B), max(y0

A, y1
A)) and

(min(x1
A, x1

B), min(y0
B , y1

B)). Note that the dimensions of the over-
lap O AB are given by:

widthO AB = min(x1
A, x1

B) − max(x0
A, x0

B) (3)

heightO AB = min(y0
B , y1

B) − max(y0
A, y1

A) (4)

The size S O AB of the overlap O AB is given by:

S O AB = widthO AB × heightO AB (5)

2.1.3. Multiple overlapping rectangles
Let R = {R1, R2, ..., RnR } be a set of rectangles in �. In order

to generalize the concept of overlap to more than two rectangles,
we need to consider all the different ways that overlaps can oc-
cur. For example, in Fig. 2a, rectangles A, D and E have some
pairwise overlaps (i.e., O AD and O D E), but they do not all over-
lap with each other forming a single multiple-overlap (O AD E). On
the other hand, for example, rectangles A, B , C , D are all overlap-
ping with each other forming the multiple-overlap O ABC D . Note
that every point with (x, y)-coordinates within the rectangle de-
fined by O ABC D belongs to all four rectangles. Formally, for every
point (x, y) of the observation space �, we define its z-index value
z(x,y) . The z-index refers to the number of distinct rectangles that
the point belongs to, or in other words the number of multiple
overlaps at that point. Since it corresponds to the data density at
that point, it determines its color in the visualization. For a set of
overlapping rectangles forming an overlap O , the z-index value zO

represents the number of rectangles in the set, otherwise referred
to as the set’s cardinality. Similarly, for a cell Ci in a grid, we de-
fine its z-index zCi as the number of rectangles overlapping with it.
3

Fig. 2 shows an example of the z-index. Let O represent a multiple-
overlap rectangle, and let (x0

O , y0
O) represent its bottom-left corner

and (x1
O , y1

O) represent its top-right corner, respectively. Then, the
size S O of the multiple-overlap O is given by:

S O = widthO × heightO (6)

where widthO = x1
O − x0

O and heightO = y1
O − y0

O .

2.2. Problem definition

We are now in position to formally define the problem of in-
terest.

Problem 1. Given a set of rectangles R = {R1, R2, ..., RnR } in an
observation space � = {(x, y) ∈ R2 | 0 ≤ x ≤ l and 0 ≤ y ≤ l}, find
the z-index z(x,y) of each point (x, y) ∈ �.

It is important to note here that all points of an area that repre-
sents a multiple-overlap will have the same z-index. Since the goal
is a density data visualization, we do not need to discretize the
space � into individual points and calculate all z(x,y) individually.
We merely need to produce a set of polygons that, when drawn,
cover the entirety of � and produce a visual result that matches
the corresponding areas of multiple overlaps. Furthermore, using
axis-aligned rectangles instead of arbitrary polygons greatly sim-
plifies the drawing process.

In this work, we present two approaches to produce this set of
rectangles: (i) a grid-based approximate method that relies on par-
titioning the space � and computing multiple overlap areas using
the grid cells; (ii) OL-HeatMap, our proposed exact method that
uses a sweep-line algorithm and an intersection graph.

3. Methodology

In this section, we present the steps required for the visual-
ization of bounding box heat-maps using the different approaches
mentioned in the previous section. We start by describing the
grid-based technique and the data structures necessary for its im-
plementation. We proceed by outlining the basic sweep-line algo-
rithm concept and specifically the multiple overlap identification
and the intersection graph data structure required for it. Finally,
we introduce an evaluation metric that can be used to determine
the accuracy of the grid-based approach.

N.E. Costa, T. Pechlivanoglou and M. Papagelis Big Data Research 25 (2021) 100235
3.1. Grid-based overlap detection

Algorithm 1: Grid-Based.

Input: Set R of n rectangles, sequence C of g2 grid cells, observation space
size l

Output: Sequence O of zCi values corresponding to the grid cells in C
cell_size = l/g
for row = 0 to g-1 do // iterate over cells to create grid

for col = 0 to g-1 do
cell.i = row * g + col
cell.x0 = col * cell_size; cell.x1 = (col + 1) * cell_size
cell.y0 = row * cell_size; cell.y1 = (row + 1) * cell_size
C .append(cell)

rect_id = 0
for rect in R do // insert rectangles into R-tree grid

RTree.insert(rect_id, rect)
index += 1

for cell in C do // query for overlaps at each cell
O = RTree.queryAt(cell.x0, cell.x1, cell.y0, cell.y1)
cell.z = length(O)
O .append(cell.z)

In the uniform grid-based approach, the observation space � is
divided into a set of g × g cells C : {C1, C2, . . . , C g2 }. This results in
grid cells with equal size l

g × l
g , and the parameter g corresponds

to the granularity of the grid.
In order to visualize the density of objects in the data, we seek

to determine the number of rectangles that intersect with each cell
(i.e., the cell’s z-index, zCi), so that we can assign a relevant color to
it. Since both the cell and the data objects are axis-aligned rectan-
gles, this is an exact instance of the orthogonal range query prob-
lem. While it is possible to answer this problem in a brute-force
way by comparing each cell with each rectangle in the data-set
for overlap, this would be extremely time-intensive and inefficient.
A number of well-established, state-of-the-art techniques exist; in-
stead, that are specifically targeted towards providing a solution to
this. Most of them employ tree-like data structures that allow for
fast spatial queries, with one of the most common being R-trees
[6]. In this approach, the tree is created by iteratively inserting
input rectangles into it as leaf nodes, while the root node repre-
sents the entire space R2

l and the intermediate nodes represent
groups of rectangles that lie within a minimum bounding box for
each group. After the tree is constructed, fast search queries can
be performed on it to identify all rectangles that intersect a given
point or area by traversing the tree from the root to the leaf nodes.
In conventional R-trees, the computation cost of the tree’s con-
struction is O (n log n), while the cost of each query is O (log n +k),
where k is the number of intersecting pairs found. The details of
the grid-based method are provided in Algorithm 1.

For our problem of interest, the process mentioned above is
followed and the R-tree data structure is constructed using all rect-
angles in the data-set. Afterwards, one query is performed for each
cell to identify all the rectangles overlapping with the cell, and the
count of retrieved results becomes the z-index value of every point
in the cell (or simply the cell itself). To visualize the results, all that
is necessary is drawing each grid cell using a color corresponding
to its z-index value. This process is illustrated in Fig. 2 for different
values of grid size g . As is apparent in the figure, higher gran-
ularity produces visualizations with greater accuracy, i.e., much
closer to the original rectangle overlaps. However, as g increases,
the number of grid cells (and therefore R-tree queries) increases
quadratically. A worst-case scenario exists where all the rectan-
gles in the data-set are overlapping at one or more grid cells, and
therefore k can be very high; this, however, is a degenerate case
4

for real-world scenarios and applications, as the heat-map visual-
ization of such a case offers little actual meaningful information.
Therefore, the total computation cost of the grid-based visualiza-
tion is O (n log n + g2(log n + k)). This often results in situations
where, depending on the value of grid size g selected, the end
product is either significantly low-accuracy or particularly slow ex-
ecution times. This trade-off between running time and accuracy is
illustrated in the example of Fig. 2.

3.2. OL-HeatMap

A different approach to the problem is to take advantage of the
fact that the objects to be drawn may overlap and some of them
are found in the foreground (in other words, are visible) as spec-
ified by their depth parameter. That allows one to visualize the
data by first identifying the exact location, size and z-index of any
overlaps within the data-set. This means that for every set of mul-
tiple overlapping rectangles, the details of those overlaps need to
be known. Once again, it is possible to address this problem in
a brute-force way by finding overlapping pairs of rectangles, then
finding overlapping triplets of rectangles, and so on. As is appar-
ent, the computational cost of the brute-force method increases
exponentially with the number of rectangles and quickly becomes
unfeasible.

Thankfully, better alternatives for addressing intersection prob-
lems exist in the literature. The most celebrated, state-of-the-art
methods for common intersection problems (e.g. finding pair-wise
interval/rectangle intersections) are based on the sweep-line or
plane-sweep algorithmic paradigm [9]. In this approach, a con-
ceptual sweep line is used to identify and report intersections in
Euclidean space. Given a set of 2-dimensional rectangles, the first
step of the algorithm involves constructing a list that includes the
left and right X coordinates of all rectangles and sorting them, as a
pre-processing phase. Then, the conceptual line, L moves (sweeps)
from left to right across the plane, examining the rectangles in
order. During the sweep, the Y-dimensional components of the ac-
tive regions (i.e., the ones that line L is currently traversing over)
are maintained in an interval tree structure. When L encounters a
new region, its Y coordinates are compared with all the currently
active regions to identify overlapping pairs, and the process com-
pletes after a single pass over the entire data-set. An example of
the process can be seen in Fig. 3.

The process mentioned above identifies and reports all the pairs
of overlapping rectangles in the data-set, and the position of each
of those overlaps. However, to address the problem of interest, it
is necessary to find not only overlapping pairs, but also the areas
where more than two rectangles overlap. A recently proposed vari-
ation of the sweep-line algorithm called SLIG (Sweep Line using
Intersection Graph) can identify all multiple overlaps in a set of
regions (axis-aligned shapes) by utilizing a data structure known
as the Region Intersection Graph (RIG) [8]. A Region Intersection
Graph (RIG) is a graph where each vertex corresponds to a region
in the data-set and a connection between two vertices exists if and
only if the respective regions are overlapping. Given a RIG con-
structed during the sweep using the identified intersection pairs,
the problem of identifying multiple overlapping regions now be-
comes equivalent to that of enumerating all the possible cliques in
the RIG graph, a well-studied problem in graph theory with several
well-established state-of-the-art algorithms available [10,11]. SLIG

is a general algorithm and can be adopted in many domain-specific
problems.

We can now present OL-HeatMap, our approach to solving the
rectangle heat-map visualization problem. OL-HeatMap is relying
on SLIG, but needs to accommodate the specifics of the problem of
interest. The overview of the algorithm is as follows (three steps):
firstly, it uses a conceptual sweep-line over the observation area

N.E. Costa, T. Pechlivanoglou and M. Papagelis Big Data Research 25 (2021) 100235

Fig. 3. Overview of the OL-HeatMap method.
Algorithm 2: OL-HeatMap.
Input: Set R of n rectangles
Output: Set O = {O 1, O 2, . . .} of visible multiple overlap rectangles, with

corresponding z-index values zO i

for R in R do // get start and end points along sweep
dimension

Points.append(x0
R , x1

r)

Points.sort()
Graph = SLIG.GetIntersectionGraph(Points)
Cliques = EnumerateVisibleCliques(Graph)

for O in Cliques do // z-index is clique size
O .append((O , zO))

Procedure EnumerateVisibleCliques(Graph).

Visited = {}; Nbrs = {} // empty dictionaries
for u in Graph do // Get all neighbors based on order

Visited.append(u)
Nbrs[u] = {G.neighbors(u) - Visited}

// Deque: list-like, fast appends, pops on either end
Queue = deque(([u], sorted(nbrs[u])) for u in Graph)

while Queue not empty do
O old , Cnbrsi = queue.popleft()
visible = True;

for u in Cnbrs do // Iterate over common neighbors
O new = O old + [u] // New clique, prepare larger ones
Queue.append((O old , O new , {nbrs[u] if Cnbrs j ∈ nbrs[u], j > i}))

if length(O new) > 1 ∧ S Onew == S O old then // cover check
visible = False

if visible ∧ length(O) > 1 then // found visible rectangle
O .append(O old)

�. Secondly, it constructs a Region Intersection Graph (RIG) where
each vertex represents a rectangle. Finally, it utilizes a variant of a
state-of-the-art clique-enumeration algorithm [10,11] to enumer-
ate overlaps to be drawn. In addition, while SLIG identifies and
retrieves all possible overlaps of multiple rectangles, OL-HeatMap

will only need to find the rectangles that are visible when drawn as
a heat-map. This observation suggests running time savings, since
given a set or rectangles R as input, our final goal is to effec-
tively draw only visible rectangles and rectangle overlaps, with a
color value corresponding to the number of overlapping rectangles
in each area. More formally, if a rectangle R1 lies within or exactly
on another rectangle R2 (in other words x0

R2
≤ x0

R1
, y0

R2
≤ y0

R1
and

x1
R2

≥ x1
R1

, y1
R2

≥ y1
R1

), then their area of overlap O R1 R2 has the ex-
act same position and area as R1, effectively “covering” it. In the
example of Fig. 3, this can be seen with the rectangles E and D . It
is useful to note that since:

S O R R = widthO R R · heightO R R
1 2 1 2 1 2

5

= min(widthR1 , widthR2) · min(heightR1 ,heightR2),

widthR1 ≤ widthR2 , heightR1 ≤ heightR2 , then

S O R1 R2
= widthR1 · heightR1 = S O R1

In other words, a rectangle is covered if and only if it has the same
size as its overlap. In these cases, it is not necessary to draw the
non-visible rectangle.

OL-HeatMap employs a variant of SLIG, with the same sweep-
line step but an altered clique enumeration algorithm. Specifically,
while constructing the intersection graph, we maintain information
related to the area of each overlap S O in the corresponding nodes.
Afterwards, we calculate the (x, y) coordinates and size S O of each
resulting overlap, along with its z-index value. During the clique
enumeration step, when transitioning to a larger clique O new , this
allows us to compare the surface areas of the new multiple overlap
with that of each smaller clique/rectangle O i . If any of the rect-
angles O i have the same size S O i as Snew , they are marked as
covered and are filtered out of the output results. Finally, to pro-
duce the heat-map visualization, all that’s needed is to draw each
of the resulting overlap rectangles with a color corresponding to
the respective z-index, making sure that rectangles with higher
z-index are in the foreground (i.e., are drawn last). An overview
of the method’s steps and an illustrative visualization example is
shown in Fig. 3. The pseudocode of the OL-HeatMap is provided in
Algorithm 2.

Computational Complexity: The computational cost of OL-Heat-

Map is dominated by SLIG and is O (n log n + n · cmax), where cmax

is the number of maximal cliques found in the rectangle inter-
section graph, or otherwise the number of unique sets of multiple
overlapping rectangles that themselves are not all overlapping with
other rectangles. The worst-case scenario for this algorithm is the
same as the grid-based one, where all rectangles are overlapping
at some point. However, this is a degenerate case as discussed ear-
lier.

Advantages: OL-HeatMap offers several advantages to the grid-
based approach. First, as it does not involve the use of a grid,
its runtime cost is much smaller (the g2 multiplier of the com-
putation complexity is dropped). In practice, unless the grid size
is really small, OL-HeatMap can offer substantial runtime perfor-
mance gains. Furthermore, OL-HeatMap is an exact method, there-
fore our approach always computes the exact solution and leads to
the right visualization. This is in contrast to the grid-based method
that only provides an approximate solution, the quality of which
depends on the size of the grid utilized. Recall that the grid-based
method depicts a tradeoff between accuracy and runtime perfor-
mance – the larger the grid the more accurate the visualization,
but also the more time-consuming. Trying to achieve the exact so-
lution provided of OL-HeatMap, a grid-based approach would need
to utilize a theoretical infinite grid, which would also render the
runtime cost prohibitive. A comprehensive evaluation is provided
in section 4.

N.E. Costa, T. Pechlivanoglou and M. Papagelis Big Data Research 25 (2021) 100235

Fig. 4. Synthetically generated data-sets with various distributions (examples).

Table 2
Summary of data-sets. The numbers represent the actual number of overlaps found.

Density n = 100 n = 500 n = 1000 n = 1500 n = 2000

Distribution sparse dense denser sparse dense denser sparse dense denser sparse dense denser sparse dense denser

Uniform 1 7 59 15 343 1272 42 5347 1314 112 28473 11866 208 5078 21065
Triangular 3 20 93 16 616 2294 88 2397 10106 188 5520 22444 367 9256 39182
Gaussian 5 78 479 95 2462 10317 415 10367 39976 881 22192 95458 1634 38349 164205
Bi-modal 1 28 75 23 684 2851 112 2755 10712 216 5905 23390 405 11053 44216
4. Experimental evaluation

In this section we describe the design and execution of the ex-
perimental evaluation for the different methods mentioned. Details
on the data-sets and computational environment used are pro-
vided, and a comparison of performance and accuracy is presented
for the OL-HeatMap and baseline grid-based methods.

4.1. Environment

All experiments are conducted on a PC with 8x Intel® Core™

i7-7700 CPU @ 3.60 GHz and 64 GB memory using Python 3.7. For
each experiment, we execute the algorithm ten (10) independent
times and report the average result.

4.2. Data

To evaluate the performance of OL-HeatMap we rely on both
synthetic and real-world data. The synthetic data allows to ex-
amine the behavior of OL-HeatMap (and its competitor methods)
under a wide variety of conditions. The real-world data is used
to demonstrate the flexibility of OL-HeatMap or how easy it is to
adapt it in different domains and for variable definitions of a “rect-
angle”. Real-world data is also used to demonstrate how grid-based
methods (that are approximate) can draw a misleading conception
about a situation.

For the synthetic data, a data generator was implemented that
produces data sets with specific characteristics thanks to a con-
trolled number of parameters. For a square space with side l,
n rectangles were randomly generated with (x, y) coordinates in
[0, l]; unless otherwise noted l = 1000. The size of each rectan-
gle was randomly selected from the uniform range [0, r · l], where
r ∈ {1%, 5%, 10%}. Effectively, this means that the maximum length
for the sides of the generated rectangles was a specific percentage
of the total length of the space. As a result, the data-sets pro-
duced contain smaller or larger rectangles, which in turn means
that there were fewer or more overlaps and the data-sets displayed
lower or higher density, respectively. We refer to the data-sets pro-
duced with maximum length percentages {1%, 5%, 10%} as sparse,
dense and denser, respectively. The position of each rectangle was
randomly selected from one of four different probability distribu-
tions (uniform, triangular, gaussian, bi-modal). These distributions
6

and their properties were selected to reflect a wide variety of pos-
sible real-world conditions; the gaussian distribution has mean
value of 0.5l and sigma value of 0.2l, while the bi-modal one is
a combination of two gaussians with mean values 0.2l,0.8l and
sigma values 0.1l,0.1l, respectively. Therefore, the configurable pa-
rameters of the data generator are number of objects n, max length
ratio r and spatial distribution. Table 2 provides a summary of the
synthetic datasets employed and the number of resulting overlaps
for varying values of the these properties. An examples of these
distributions are shown on Fig. 4.

For the real-world scenarios, we use data from the Storm Event
Database [12], an official publication of the National Oceanic and
Atmospheric Administration (NOAA). It contains data related to
extreme natural events recorded in the United States of Amer-
ica for the last 70 years, with details on tornadoes, storms, hail
storms and snowfall. We use this dataset to demonstrate the flex-
ibility of OL-HeatMap, where we are able to represent extreme
natural events as rectangles spanning a geographic area. Then we
can apply OL-HeatMap (or competitor methods) to extract mean-
ingful insights. Events (rectangles) defined in the Storm Events
Database have density comparable to the “dense” synthetic data-
sets, and follow a roughly uniform distribution with potentially a
small number of overlap “hot-spots”, similar to the ones in the bi-
modal one.

4.3. Accuracy evaluation metrics

The baseline grid-based approach described in Section 3 does
not provide exact results, but instead produces an approximation
of the overlaps present in the data-set. As can be intuitively un-
derstood from Fig. 2, a larger grid size g produces a visualization
that is closer to the actual overlaps that are present in the data-
set. However, in order to thoroughly and objectively evaluate the
effectiveness of the presented methods, it is necessary to utilize
a definitive and unambiguous metric to quantify the accuracy of
each visualization. To that end, we propose two evaluation metrics
that quantify the accuracy of grid-based overlap visualizations:

1) Percent of correct cells: A simple, straightforward way to de-
termine the accuracy of a grid visualization is by only considering
what percentage of the grid cells has a completely correct z-index
value (and therefore color). If a grid cell contains any rectangle
boundaries, not all points within the cell should have the same z-

N.E. Costa, T. Pechlivanoglou and M. Papagelis Big Data Research 25 (2021) 100235
index value; however, as a single grid cell can have a single z-index
value, it cannot represent the z-index values (and therefore colors)
of its points correctly. A single cell Ci is considered completely cor-
rect if, in the original data-set, all the points (x, y) within that cell
have the same z-index value as the cell. Formally, the accuracy of
that cells can be defined as:

ACCi =
{

1 if zCi = z(x,y),∀ (x, y) ∈ Ci

0 otherwise

With overall grid accuracy being:

AC grid =
∑g2

i=1 ACCi

g2
· 100%

Although this metric is easier to compute and simple to un-
derstand intuitively, it may not correctly reflect the accuracy of a
visualization; if a grid cell’s z-index value is the same for most,
but not all of the corresponding areas in the data-set, the entire
cell will be considered incorrect, while the actual error in visual-
ization would be small.

2) Percent of correct area: A more refined and fair metric to
evaluate the accuracy of a grid visualization is to consider what
percentage of each cell’s area correctly reflects the overlaps in the
data-set. Each cell is compared to the area it corresponds to in
the original data-set, and the extent of that area with the same
z-index value as the cell is determined. Afterwards, this is used
to calculate what percentage of that specific cell is correct or not,
and the resulting percentages are averaged throughout the entire
grid. Effectively, the value of this metric roughly corresponds to
what percentage of the visualization has the correct z-index value
(i.e., color). The definition of this area-based accuracy metric for a
single cell is:

A SCi =
∑

∀Rk
SCi ,Rk

|C |
where Rk are all rectangles with the same z-index value as Ci and
SCi ,Rk is the overlap of these rectangles with the grid cell. Overall
grid accuracy is once again:

A S grid =
∑g2

i=1 A SCi

g2
· 100%

As the second metric is more refined, we only use that one for
reporting the accuracy of a grid-based visualization in the experi-
ments.

4.4. Experiments

Our experiments aim to evaluate the following aspects:

• OL-HEATMAP Accuracy Performance (versus Grid-Based Meth-
ods) While OL-HeatMap is an exact method, the accuracy of
grid-based methods depends on the grid size. What is the ef-
fect of the grid size in the accuracy of the grid-based method,
for data-sets of varying size and density?

• OL-HEATMAP Runtime Performance How does our proposed
method OL-HeatMap compare to the baseline grid-based
method for the heat-map visualization problem in terms of
execution time, for data-sets of varying size and distribution?

• OL-HEATMAP Scalability How does our proposed method OL-

HeatMap scale for data-sets of larger sizes, compared to the
grid-based method?
7

• OL-HEATMAP Flexibility OL-HeatMap can be applied for the
visualization of various real-world datasets from various do-
mains, as explained in Section 1. To demonstrate its versatility,
we apply OL-HeatMap to visualize multiple real-world data-
sets.

4.4.1. OL-HeatMap accuracy performance (versus grid-based methods)
As mentioned preciously, the size and granularity of the grid

can have significant impact on the accuracy of the resulting grid-
based visualization. As the visualization that OL-HeatMap produces
is always exactly correct, it is therefore of interest to examine what
grid size and granularity values are required to achieve an accuracy
that comes sufficiently close to the true results. To that end, we
examined the visualization accuracy of the grid-based algorithm
for data-sets of different densities, all selected from the uniform
distribution and with n = 1000 rectangles. Furthermore, we mea-
sured the resulting accuracy for data-sets of different sizes, this
time with the same density “dense” and once again uniformly dis-
tributed. The results for these experiments can be seen in Fig. 5a
and Fig. 5b, respectively.

As expected, larger grids result in more accurate visualizations.
However, it can also be seen that larger or denser data-sets require
accordingly large grids to achieve satisfactory results. This further
highlights the value of OL-HeatMap, since it produces exact results
that can be matched only by very large grids.

4.4.2. OL-HeatMap runtime performance
We evaluated the time performance of OL-HeatMap against the

baseline grid-based method, as a function of the number of rectan-
gles n in the data-set. Furthermore, in order to explore a wide vari-
ety of scenarios and highlight the behavior of the two approaches
for both convenient and unfavorable scenarios, we compared the
time performance of the OL-HeatMap and grid-based approaches
for the different distributions available. The spatial distribution of
the rectangles is uniform in the first experiment, while the num-
ber of rectangles n is fixed to 1000 in the second, while in both
cases the data-sets are of “dense” density.

As can be seen in Fig. 6a and Fig. 6b, in most cases OL-HeatMap

outperforms the baseline for all but the smallest grid sizes, which
were the ones with the lowest accuracy. This highlights the trade-
off between time and accuracy in the grid-based algorithm, and
shows that OL-Heatmap should outperform it in either or both
metrics. A notable exception is when the objects follow a gaus-
sian distribution; in that case, most objects are concentrated in
the center of the space, producing a large number of overlaps and
getting close to the worst possible scenario for the OL-HeatMap

algorithm. Even in that case, however, the time performance of
our approach is only slightly worse if not equivalent to the grid
based approach for the largest grid granularity, which has accu-
racy comparable to OL-HeatMap. Furthermore, as discussed ear-
lier, real-world data have distributions closer to the uniform or
bi-modal ones with many “hot-spots”, whereas concentrated gaus-
sian distributions with most objects overlapping together are less
meaningful.

4.4.3. OL-HeatMap scalability
So far, we have limited our comparative performance analysis

to smaller data-sets, up-to 2000 overlapping rectangles, in order
to ensure quicker data visualization. Here, we examine the scala-
bility of both algorithms for much larger number of overlapping
objects. As mentioned before, there is a trade-off between speed
and accuracy in the grid-based algorithm. Therefore, we select ap-
propriate grid sizes to produce two baselines: grids producing 75%
and 95% area accuracy A S grid . We compared the execution time of
OL-HeatMap against those two baselines for 100 up to 105 rectan-
gles using a dense dataset following the bi-modal distribution. Fig. 7

N.E. Costa, T. Pechlivanoglou and M. Papagelis Big Data Research 25 (2021) 100235

Fig. 5. Accuracy of grid-based method vs OL-HeatMap’s exact results. (For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

Fig. 6. OL-HeatMap vs. grid-based time performance comparison.
Fig. 7. OL-HeatMap vs. grid-based times for 102 to 105 objects in dense bi-modal
distribution.

shows the results in logarithmic scale. OL-HeatMap consistently
outperforms the 75%- and 95%- accuracy grid-based approaches
by one and two orders of magnitude, respectively. This is a sig-
nificant improvement, allowing for the visualization of very large
numbers of objects in reasonable execution time and while always
being 100% accurate. On the other hand, for the case of 105 rect-
angles, the less accurate grid-based method (75% accurate) would
require more than 105 seconds (≈ 28 hours) to complete (best es-
timates). The execution time would be even longer if we require
an accuracy of 95%.

4.4.4. OL-HeatMap flexibility
We present two cases that utilize different information in the

Storm Event data-set to highlight the strengths of OL-Heatmap. In
both cases, we represent each event as a rectangle defined by an
event’s beginning and end coordinates.
8

Table 3
Overview of overlaps and accuracy of storm data.

US (2017-2018) Florida (1953-2018)

Total overlaps 130651 43834
Visible overlaps 94621 32774
Accuracy (AC grid) 96.26% 71.37%
Accuracy (A S grid) 96.35% 75.78%

(a) Storms in US from 2017 to 2018. For this analysis, we exam-
ine all Tornado events in the United States for the years 2017 and
2018. After constructing the rectangles, we use both the grid-based
and OL-Heatmap methods to find the density of overlaps and visu-
alize them. In the resulting visualization, denser zones indicate a
higher amount of storms taking place in different areas within the
US. Fig. 8 showcases the resulting heat-maps produced. The inter-
esting trend to note from these visualizations is the frequency of
tornadoes in and around the East Coast states. This area, combined
with Lower Mississippi valley has been aptly named as Dixie Alley

or Tornado Alley due to the fact that the highest concentration
of Tornadoes in the US happens here. Comparing the visualiza-
tions produced by OL-Heatmap versus the less accurate grid-based
method reveals a more accurate rhetoric about the area – only
smaller, very specific areas hold to the characterization. Table 3
shows the accuracy results of the grid-based method.

(b) Hurricanes in Florida from 1953 to 2018. We provide an
overview of all the hurricanes happening in Florida from 1953 to
2018. We form individual rectangles for each recorded event by us-
ing the beginning and end coordinates and used OL-HeatMap to
effectively find and visualize the events. Every year Florida is rav-
aged by catastrophic natural calamities. An estimated 123 billion
dollars worth of damage have been recorded from 2000 till to this

N.E. Costa, T. Pechlivanoglou and M. Papagelis Big Data Research 25 (2021) 100235

Fig. 8. Visualization of all storms in US from 2017-18.

Fig. 9. Visualization of all hurricane events in Florida from 1953-2018.
date. As United States’ densest hurricane zone, we visualized each
hurricane as its own rectangle, found overlaps and subsequently
visualized using OL-HeatMap. The data contains all recorded hur-
ricanes from 1953 to 2018 and each rectangle represent the area
of impact for each hurricane. Table 3 shows the accuracy results of
the grid-based method.

As can be seen from Fig. 9, we determine the locations of our
bounding boxes to be south of 82 Degrees Latitude, which would
be north of the Florida State. All Hurricane events which has a
begin-latitude value of 82 have been counted in as an event hurl-
ing towards or originated in Florida. From Fig. 9, it can be noted
that almost all major cities in Florida have been under Hurricane
attack since 1953, with the densest regions being Jacksonville, Fort
Lauderdale, Miami, Daytona Beach, Port Orange and West Palm
Beach. Fig. 9a shows the grid based visualization of Florida and
Fig. 9b shows the OL-HeatMap of the storms in Florida since
1953. As can be seen from Fig. 9a, a grid-based visualization of
all the hurricane events provides a view of a hurricane-ravaged
Florida, where approximately the entire state (and its neighbors)
have been hit. However, a more accurate visualization provided by
OL-HeatMap paints a completely different picture, where it can ac-
tually be seen that Florida has several much more limited areas
where hurricanes have hit the hardest.

5. Proof-of-concept demo system

In this section, we discuss the demo dashboard of OL-HeatMap.
We have designed our dashboard to have a client-server archi-
tecture which provides the functionality to effectively generate or
load data-sets, find the overlaps of the bounding boxes, and visu-
alize them accordingly.
9

Fig. 10. System architecture overview.

5.1. System architecture overview

We provide an overview of the demo dashboard and its two
distinct components: the front-end and the back-end. The front-
end serves as a User Interface (UI), handling visualization and user
interaction, while computationally intensive operations happen in
the back-end asynchronously. Fig. 10 provides an overview of the
architecture.

5.1.1. Front-end
The front-end is responsible for the actual heat-map visualiza-

tion and all interaction with the user. It is implemented in HTML,
CSS and JavaScript, making use of the Data Driven Documents (D3)
and JQuery JavaScript libraries for visualization and for commu-
nication with the back-end, plus other general functionality. The
interface allows the user to generate and store synthetic data-
sets by specifying parameter values for the random data generator
through form fields, or alternatively loading their own input data.
The UI provides a preview of this input data, as well as the OL-

HeatMap and grid-based heat-map visualization of overlaps in said
data. The grid size value g , as well as the color scale used for

N.E. Costa, T. Pechlivanoglou and M. Papagelis Big Data Research 25 (2021) 100235

Fig. 11. The user interface (UI) of the demo. Highlighted features: 1. Random generator parameters. 2. Data load/store operations. 3. Data-set rectangles visualization. 4.
OL-HeatMap/grid-based selection. 5. Grid granularity parameter. 6. Color scale selection. 7. Grid accuracy values. 8. Rectangle/overlap/grid cell details. 9. Overlap visualization.
the visualization can also be modified through form fields, while
the visualization contains several useful features such as pan/zoom
capability and details for each data point on hover. Finally, an eval-
uation of the grid-based approach’s accuracy is displayed, including
both AC grid and A S grid . The user interface views for the data load-
ing/generation and visualization can be seen in Fig. 11.

5.1.2. Back-end
The dashboard demo is structured as a lightweight WebApp-

style application, with a Python Flask back-end. The back-end
contains the implementation of the data generator, as well as
the OL-HeatMap and grid-based algorithms. For the grid-based
algorithm, a grid is constructed over the input data-set accord-
ing to the specified granularity value g , and each cell’s overlap
value is determined using an R-tree based index, with the help
of Python’s Rtree library. Likewise, the overlap rectangles for
the OL-HeatMap visualization are calculated using OL-HeatMap. Fi-
nally, the accuracy evaluation scores for the grid-based approach
are shown; recall that the OL-HeatMap method by definition pro-
duces exact results.

5.2. Visualization limitations

The visualization of OL-HeatMap inherits limitations of browser-
based systems, including limitations of the drawing methodology
and data loading. The main limitation is due to the limited abil-
ity of the browser to utilize all available GPU resources. D3 uses
HTML5 GPU acceleration, but better performance could potentially
be achieved with a more low-level interaction with the GPU. Our
work is orthogonal to any (implementation) optimization related
to rendering data to graphics and can therefore take advantage of
it.

6. Related work

The work in this paper is related to density-based visualization
methods and methods for computing rectangle overlaps. Several key
ideas have already been referenced throughout this paper, and here
we present a more comprehensive view of existing work on these
topics.

6.1. Density-based visualization methods

A density-based visualization is adequate for noticing changes
in the data, visualizing clusters and pointing out outliers [13].
There are several proposals which address the topic of representing
density. Local data density can be visualized by either aggregation,
10
using area or usage of color [14]. Due to their utility, several meth-
ods have been proposed over the years for density-based represen-
tations. As standard scatterplots started to become obsolete due to
big data and overplotting issues [15], de-cluttering methods started
being proposed, including adding opacity [16], color, smoothing
[13] and/or binning the data. Ellis and Dix [17] discussed these
strategies to eliminate visual cluttering. Bertini, Di Girolamo and
Santucci discussed about optimizing the visualization process by
using various quality metrics and density distribution [18].

Kernel Density Estimation (KDE), along with its variants, such
as Approximate KDE (AKDE) [19] and Super KDE (SKDE) are used
to calculate levels of abstraction from the data-set. The problem
with KDE is that the computation needs to be repeated for every
pixel visualized. Therefore, if there are n number of data points
with p number of pixels, the complexity would be O (n · p), which
means it cannot scale well with very large data. Methods such as
Curve Density Estimates [20] have also been proposed that use a
KDE-based operation for rendering smoothed data. Histograms can
perform similar operations at a lower computational cost but in-
troduce higher opportunity costs. For instance, using a histogram
to calculate a density distribution means the outcome will be less
smooth. Histograms are also limited in high dimensions and there
are constraints on sub-bandwidth [21].

Sampling-Based Approximation Methods: Sampling reduces the
data size as it removes data points. This method is applicable when
there is less variance in the data-set as it can remove interest-
ing data points as well. Chen, et al. [22] discussed the advantages
and disadvantages of using an adaptive hierarchical multi-class
sampling technique to visualize multi-class scatter-plots while the
features of the data-set are preserved. Local density can also be
measured by stacking of visual components of overlapping cases,
as discussed by Dang, Wilkinson and Anand [14]. Van Liere and De
Leeuw [23] use graphs to compute density in irregularly-sampled
data. They find the underlying density by transforming a graph into
two-dimensional scalar fields and rendering the graph into a color-
coded map.

Clustering Clustering provides the opportunity to merge data
points which eventually reduces data points. For density-based vi-
sualizations, clustering is repeated to create a hierarchical data
structure, such as a cluster tree [24,25]. An antichain can be se-
lected which serves as an abstraction. This abstraction can be used
to make the visualization interactive as well. Cottam, Lumsdaine
and Wang provide an unified solution by creating visual abstrac-
tions to avoid overplotting [26].

Binned Aggregation: The cost of KDE can be avoided by using
binned aggregation. Liu, Jiang and Heer proposed ImMens [27]
which groups data points into predefined “bins”. These “bins” are
not dependent on others, which ensures that parallel computing

N.E. Costa, T. Pechlivanoglou and M. Papagelis Big Data Research 25 (2021) 100235
can be used too. Li et al. [21] used KDE to binned data points for
creating a multilevel heat-map. A combination of a binned aggre-
gation with KDE-based methodologies has been used to visualize
dense time series [13] [20].

Distributed Methods for Density Visualization: Big data architec-
tures are used to scale up to larger data-sets. For large spatio-
temporal data-sets, a specialized system [28] has been proposed
to process data and render images of heat-maps. The MapReduce
framework has also been used [29] to distribute existing algo-
rithms. Perrot, Bourqui, Hanusse and Auber discussed using the
Apache Spark framework to perform canopy clustering in order
to create low-latency heat-maps [30]. For large temporal data-sets,
Spectogram has also been proposed as a tool to visualize high den-
sity data [31].

6.2. Computation of rectangle overlaps

Several data mining and knowledge discovery problems can be
modeled and solved by reducing them to the rectangle overlap
problem, where we seek to find information about the overlap-
ping behavior of a large number of rectangles in a data-set. We
discuss a few methods that have been proposed in this area.

Sweep-Line Based Methods: Shamos and Hoey proposed the
sweep-line algorithm, reducing the complexity of the naive ap-
proach of detecting intersections of n elements with a more ef-
ficient complexity of O (n · logn) from the naive O (n2) [7]. For a
1-dimensional approach, sweep-line-based algorithms tend to per-
form better than other methods. One of the methods that have
been common in detecting overlaps is to use the 1D approach on
a 2D plane at the beginning, which is to run the conceptual sweep
line and then use brute force on each pair of intersections to test
for intervals. In this case, sweep-line is used as a part of the pro-
cess of detecting intersections. A tree-based data structure, such as
an interval tree, can be used simultaneously for better performance
[32]. However, for denser data-sets, this method is computationally
expensive. The resulting structure of the intersections and overlays
is defined as “arrangement”. Alt and Schraf count arrangements in
AABBs by designing parallel sweep-line-based methods [33].

Division into Sub-Spaces: A plane that contains all the rectan-
gles/bounding boxes can be subdivided into grids or cells and then
individual operations can take place for each cell. The idea of a
uniform grid has been proposed to detect collisions [4], which pro-
vides an opportunity for parallel computation as well. However,
the problem with this approach is that the accuracy of finding
overlaps or creating correct visual abstraction depends entirely on
the cell size (or grid granularity). Another drawback of using a uni-
form grid is that getting the right grid size is a process of trial and
error. Van Hook, Rak and Calvin proposed a 2d data structure for
dynamic adjusting of the grid cell size [34]. Antochi, Juurlink, Vas-
siliadis and Liuha discussed about optimizing tile based rendering
to improve overlap detection [35]. One of the interesting applica-
tions of uniform grid can be found in geotechnical engineering[36],
where a grid-based approach outperforms Binary Volume Hierar-
chy based collision detection from a memory perspective.

Partition-Based Data Structure: The key idea of this method is
to recursively insert rectangles into the root of a tree-based data
structure. Bounding Volume Hierarchies have been proposed, such
as Axis Aligned Bounding Boxes (AABB). Afterwards, the objects
are tested in an iterative way against these data structures and
inserted into the resulting tree. The R-tree is one of the most dis-
cussed approaches to detecting overlaps [6]. R-tree helps to group
the objects into bounding rectangles of increasing size. Other
methods include a range tree based algorithms [37], or streaming
algorithms [38] which requires huge memory space to build and
store the range tree.
11
7. Conclusion

Density-based visualizations, such as heat-maps, constitute a
popular approach to visualize and perceive large amounts of com-
plex data points effectively. In this research, we focused on a heat-
map-like representation for the case of overlapping rectangles. This
is a visualization problem that can guide powerful big data visual
analytics and inform several applications in diverse domains. How-
ever, current state-of-the-art approaches to the problem rely on
ad hoc naive implementations or methods that are known to not
scale well, such as grid-based methods. Also, in order to perform
reasonably fast, most of these methods provide approximations of
the problem. To address these limitations, we have proposed OL-

HeatMap, an effective method for finding and visualizing the exact
density of overlapping rectangles, along with other useful infor-
mation, including the actual position of the formed overlapping
rectangle (overlap) and its size. Our method is based on a recently
proposed variant of the sweep-line method that can accommodate
multiple overlaps in n-dimensions.

To demonstrate the effectiveness of OL-HeatMap against grid-
based sensible baselines, we designed a thorough experimental
evaluation incorporating various parameters and settings, includ-
ing both synthetic and real-world data-sets. Our proposed method
is much more accurate as it always finds the exact solution and
not an approximation of it. Furthermore, it performs several orders
of time faster than its competitors. We can approximate different
shapes with rectangles as well. An exception to this is the case of
extremely dense data sets (i.e., almost all rectangles overlapping
with each other), in which case OL-HeatMap can perform compa-
rably to baselines; this behavior is due to an inherent limitation of
the sweep-line method and this is a degenerate case, as most large
data sets are typically very sparse. Overall, we expect OL-HeatMap

to be integrated in information visualization software and libraries.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

References

[1] T. Matsuyama, M. Nagao, et al., A file organization for geographic information
systems based on spatial proximity, Comput. Vis. Graph. Image Process. 26 (3)
(1984) 303–318.

[2] D. Papadias, Y. Theodoridis, Spatial relations, minimum bounding rectangles,
and spatial data structures, Int. J. Geogr. Inf. Sci. 11 (2) (1997) 111–138.

[3] J. Fang, J. Wong, K. Zhang, P. Tang, A new fast constraint graph generation algo-
rithm for VLSI layout compaction, in: IEEE International Symposium on Circuits
and Systems, 1991.

[4] W.R. Franklin, C. Narayanaswaml, M. Kankanhalll, D. Sun, M. chu Zhou, P.Y. Wu,
Uniform grids: a technique for intersection detection on serial and parallel ma-
chines, in: Proceedings of Auto-Carto 9, Springer-Verlag, Baltimore, Maryland,
US, 1989, p. 100109.

[5] Y. Nekrich, A linear space data structure for orthogonal range reporting and
emptiness queries, Int. J. Comput. Geom. Appl. 19 (01) (2009) 1–15, https://
doi .org /10 .1142 /s0218195909002800.

[6] A. Guttman, R-trees: a dynamic index structure for spatial searching, SIG-
MOD Rec. 14 (2) (1984) 47–57, https://doi .org /10 .1145 /971697.602266, http://
doi .acm .org /10 .1145 /971697.602266.

[7] M.I. Shamos, D. Hoey, Geometric intersection problems, in: 17th Annual Sym-
posium on Foundations of Computer Science, IEEE, Houston, Texas, 1976,
pp. 208–215.

[8] T. Pechlivanoglou, V. Chu, M. Papagelis, Efficient mining and exploration of
multiple axis-aligned intersecting objects, in: Proceedings of the 19th IEEE In-
ternational Conference on Data Mining, IEEE, Piscataway, NJ, USA, 2019.

[9] J.L. Bentley, T.A. Ottmann, Algorithms for reporting and counting geometric in-
tersections, IEEE Trans. Comput. C-28 (9) (1979) 643–647.

[10] D. Eppstein, M. Löffler, D. Strash, Listing all maximal cliques in sparse graphs
in near-optimal time, in: Algorithms and Computation, in: Lecture Notes in
Computer Science, vol. abs/1006, 2010, pp. 403–414.

http://refhub.elsevier.com/S2214-5796(21)00052-6/bibEA28C817B53AA134E28600EE36B53C7As1
http://refhub.elsevier.com/S2214-5796(21)00052-6/bibEA28C817B53AA134E28600EE36B53C7As1
http://refhub.elsevier.com/S2214-5796(21)00052-6/bibEA28C817B53AA134E28600EE36B53C7As1
http://refhub.elsevier.com/S2214-5796(21)00052-6/bib2A02360B3AABF64A673D152AD5481A33s1
http://refhub.elsevier.com/S2214-5796(21)00052-6/bib2A02360B3AABF64A673D152AD5481A33s1
http://refhub.elsevier.com/S2214-5796(21)00052-6/bib7BCCB1586E4ADB34A98D5A5E5F0CD21Fs1
http://refhub.elsevier.com/S2214-5796(21)00052-6/bib7BCCB1586E4ADB34A98D5A5E5F0CD21Fs1
http://refhub.elsevier.com/S2214-5796(21)00052-6/bib7BCCB1586E4ADB34A98D5A5E5F0CD21Fs1
http://refhub.elsevier.com/S2214-5796(21)00052-6/bib4282F3E45A677B85761CD81950E067F8s1
http://refhub.elsevier.com/S2214-5796(21)00052-6/bib4282F3E45A677B85761CD81950E067F8s1
http://refhub.elsevier.com/S2214-5796(21)00052-6/bib4282F3E45A677B85761CD81950E067F8s1
http://refhub.elsevier.com/S2214-5796(21)00052-6/bib4282F3E45A677B85761CD81950E067F8s1
https://doi.org/10.1142/s0218195909002800
https://doi.org/10.1142/s0218195909002800
https://doi.org/10.1145/971697.602266
http://doi.acm.org/10.1145/971697.602266
http://doi.acm.org/10.1145/971697.602266
http://refhub.elsevier.com/S2214-5796(21)00052-6/bib7F8BBD5B3CCB4FF19E3E9B87ECCD922Es1
http://refhub.elsevier.com/S2214-5796(21)00052-6/bib7F8BBD5B3CCB4FF19E3E9B87ECCD922Es1
http://refhub.elsevier.com/S2214-5796(21)00052-6/bib7F8BBD5B3CCB4FF19E3E9B87ECCD922Es1
http://refhub.elsevier.com/S2214-5796(21)00052-6/bib89E73C01D01C91903B8038134176FEBFs1
http://refhub.elsevier.com/S2214-5796(21)00052-6/bib89E73C01D01C91903B8038134176FEBFs1
http://refhub.elsevier.com/S2214-5796(21)00052-6/bib89E73C01D01C91903B8038134176FEBFs1
http://refhub.elsevier.com/S2214-5796(21)00052-6/bib321F4992508CD4FA2820C18531DED8B2s1
http://refhub.elsevier.com/S2214-5796(21)00052-6/bib321F4992508CD4FA2820C18531DED8B2s1
http://refhub.elsevier.com/S2214-5796(21)00052-6/bibB520ADA3B1E65476D873EDA83E7059A3s1
http://refhub.elsevier.com/S2214-5796(21)00052-6/bibB520ADA3B1E65476D873EDA83E7059A3s1
http://refhub.elsevier.com/S2214-5796(21)00052-6/bibB520ADA3B1E65476D873EDA83E7059A3s1

N.E. Costa, T. Pechlivanoglou and M. Papagelis Big Data Research 25 (2021) 100235
[11] C. Bron, J. Kerbosch, Algorithm 457: finding all cliques of an undirected graph,
Commun. ACM 16 (9) (1973) 575–577.

[12] N. C. for Environmental Information, Storm events database, https://www.ncdc .
noaa .gov, 1953.

[13] H. Wickham, Bin-summarise-smooth: a framework for visualising large data,
Tech. rep, University of Auckland, 2013.

[14] T.N. Dang, L. Wilkinson, A. Anand, Stacking graphic elements to avoid over-
plotting, IEEE Trans. Vis. Comput. Graph. 16 (6) (2010) 1044–1052.

[15] D.B. Carr, R.J. Littlefield, W.L. Nicholson, J.S. Littlefield, Scatterplot matrix tech-
niques for large n, J. Am. Stat. Assoc. 82 (398) (1987) 424–436.

[16] J. Matejka, F. Anderson, G. Fitzmaurice, Dynamic opacity optimization for scat-
ter plots, in: Proceedings of the 33rd Annual ACM Conference on Human Fac-
tors in Computing Systems, ACM, 2015, pp. 2707–2710.

[17] G. Ellis, A. Dix, A taxonomy of clutter reduction for information visualisation,
IEEE Trans. Vis. Comput. Graph. 13 (6) (2007) 1216.

[18] E. Bertini, A. Di Girolamo, G. Santucci, See what you know: analyzing data
distribution to improve density map visualization, in: EuroVis, vol. 7, 2007,
pp. 163–170.

[19] A. Perrot, R. Bourqui, N. Hanusse, F. Lalanne, D. Auber, Large interactive vi-
sualization of density functions on big data infrastructure, in: 2015 IEEE 5th
Symposium on Large Data Analysis and Visualization, LDAV, IEEE, Chicago, Illi-
nois, USA, 2015, pp. 99–106.

[20] O.D. Lampe, H. Hauser, Curve density estimates, in: Computer Graphics Forum,
in: Wiley Online Library, vol. 30, The Eurographics Association and Blackwell
Publishing Ltd, Llandudno, UK, 2011, pp. 633–642.

[21] C. Li, G. Baciu, Y. Han, Interactive visualization of high density streaming points
with heat-map, in: 2014 International Conference on Smart Computing, IEEE,
Hong Kong, China, 2014, pp. 145–149.

[22] H. Chen, W. Chen, H. Mei, Z. Liu, K. Zhou, W. Chen, W. Gu, K. Ma, Visual ab-
straction and exploration of multi-class scatterplots, IEEE Trans. Vis. Comput.
Graph. 20 (12) (2014) 83–92.

[23] R. Van Liere, W. De Leeuw Graphsplatting, Visualizing graphs as continuous
fields, IEEE Trans. Vis. Comput. Graph. 9 (2) (2003) 206–212.

[24] D. Auber, F. Jourdan, Interactive refinement of multi-scale network clusterings,
in: Ninth International Conference on Information Visualisation, IV’05, IEEE,
London, UK, 2005, pp. 703–709.

[25] J.-Y. Delort, Vizualizing large spatial datasets in interactive maps, in: 2010 Sec-
ond International Conference on Advanced Geographic Information Systems,
Applications, and Services, IEEE, IEEE, St. Maarten, Netherlands Antilles, 2010,
pp. 33–38.

[26] J. Cottam, A. Lumsdaine, P. Wang, Overplotting: unified solutions under ab-
stract rendering, in: 2013 IEEE International Conference on Big Data, IEEE,
2013, pp. 9–16.

[27] Z. Liu, B. Jiang, J. Heer, Immens: real-time visual querying of big data, in: Com-
puter Graphics Forum, in: Wiley Online Library, The Eurographics Association
and, vol. 32, John Wiley Sons Ltd, Leipzig, Germany, 2013, pp. 421–430.

[28] A. Eldawy, M.F. Mokbel, S. Alharthi, A. Alzaidy, K. Tarek, S. Ghani, Shahed: a
MapReduce-based system for querying and visualizing spatio-temporal satellite
data, in: 2015 IEEE 31st International Conference on Data Engineering, IEEE,
IEEE, Seoul, South Korea, 2015, pp. 1585–1596.

[29] H.T. Vo, J. Bronson, B. Summa, J.L. Comba, J. Freire, B. Howe, V. Pascucci, C.T.
Silva, Parallel visualization on large clusters using MapReduce, in: 2011 IEEE
Symposium on Large Data Analysis and Visualization, IEEE, IEEE, Providence,
Rhode Island, USA, 2011, pp. 81–88.

[30] A. Perrot, R. Bourqui, N. Hanusse, D. Auber, Heatpipe: high throughput, low
latency big data heatmap with spark streaming, in: 2017 21st International
Conference Information Visualisation, IV, IEEE, London,UK, 2017, pp. 66–71.

[31] S. Zarina, O. Krasts, Spectrogram based toolkit for high density visualization of
data, in: 2016 International Conference on Computational Science and Compu-
tational Intelligence, CSCI, 2016, pp. 1393–1394.

[32] J.D. Cohen, M.C. Lin, D. Manocha, M. Ponamgi, I-collide: an interactive and ex-
act collision detection system for large-scale environments, in: Proceedings of
the 1995 Symposium on Interactive 3D Graphics, I3D’95, ACM, New York, NY,
USA, 1995, pp. 189–ff.

[33] H. Alt, L. Scharf, Computing the depth of an arrangement of axis-aligned rect-
angles in parallel, in: Abstracts 26th European Workshop on Computational
Geometry, 2010, pp. 33–36.

[34] D.J. Van Hook, S.J. Rak, J.O. Calvin, Approaches to RTI implementation of HLA
data distribution management services, in: Proceedings of the 15th DIS Work-
shop, 1996, pp. 535–544.

[35] I. Antochi, B. Juurlink, S. Vassiliadis, P. Liuha, Efficient tile-aware bounding-
box overlap test for tile-based rendering, in: 2004 International Symposium
on System-on-Chip, 2004, Proceedings, 2004, pp. 165–168.

[36] R. Lubbe, W.-J. Xu, D.N. Wilke, P. Pizette, N. Govender, Analysis of parallel spa-
tial partitioning algorithms for GPU based DEM, Comput. Geotech. 125 (2020)
103708.

[37] J. Bentley, D. Wood, An optimal worst case algorithm for reporting intersections
of rectangles, IEEE Trans. Comput. 29 (07) (1980) 571–577.

[38] A. Zomorodian, H. Edelsbrunner, Fast software for box intersections, Int. J. Com-
put. Geom. Appl. 12 (1) (2002).
12

http://refhub.elsevier.com/S2214-5796(21)00052-6/bib0D8AE21135C37ECD6160A266213F9684s1
http://refhub.elsevier.com/S2214-5796(21)00052-6/bib0D8AE21135C37ECD6160A266213F9684s1
https://www.ncdc.noaa.gov
https://www.ncdc.noaa.gov
http://refhub.elsevier.com/S2214-5796(21)00052-6/bib0EC1EB39787D4A697241A61E5D11BAD7s1
http://refhub.elsevier.com/S2214-5796(21)00052-6/bib0EC1EB39787D4A697241A61E5D11BAD7s1
http://refhub.elsevier.com/S2214-5796(21)00052-6/bib6E74A166BAC63BB4588143704A7C14FCs1
http://refhub.elsevier.com/S2214-5796(21)00052-6/bib6E74A166BAC63BB4588143704A7C14FCs1
http://refhub.elsevier.com/S2214-5796(21)00052-6/bib78575C3D0DD1AE311B22AF702C08C375s1
http://refhub.elsevier.com/S2214-5796(21)00052-6/bib78575C3D0DD1AE311B22AF702C08C375s1
http://refhub.elsevier.com/S2214-5796(21)00052-6/bib7BBE71A4190870F7CAE86395D11109D3s1
http://refhub.elsevier.com/S2214-5796(21)00052-6/bib7BBE71A4190870F7CAE86395D11109D3s1
http://refhub.elsevier.com/S2214-5796(21)00052-6/bib7BBE71A4190870F7CAE86395D11109D3s1
http://refhub.elsevier.com/S2214-5796(21)00052-6/bib3AFD62308494B8971B0D3B19F110741Cs1
http://refhub.elsevier.com/S2214-5796(21)00052-6/bib3AFD62308494B8971B0D3B19F110741Cs1
http://refhub.elsevier.com/S2214-5796(21)00052-6/bibE642B864833F826AF1BF7CB474FB1CDBs1
http://refhub.elsevier.com/S2214-5796(21)00052-6/bibE642B864833F826AF1BF7CB474FB1CDBs1
http://refhub.elsevier.com/S2214-5796(21)00052-6/bibE642B864833F826AF1BF7CB474FB1CDBs1
http://refhub.elsevier.com/S2214-5796(21)00052-6/bibF895693482E177543BDF557BD3025230s1
http://refhub.elsevier.com/S2214-5796(21)00052-6/bibF895693482E177543BDF557BD3025230s1
http://refhub.elsevier.com/S2214-5796(21)00052-6/bibF895693482E177543BDF557BD3025230s1
http://refhub.elsevier.com/S2214-5796(21)00052-6/bibF895693482E177543BDF557BD3025230s1
http://refhub.elsevier.com/S2214-5796(21)00052-6/bibF5343D9CD8B92C0464776A3D32DE2818s1
http://refhub.elsevier.com/S2214-5796(21)00052-6/bibF5343D9CD8B92C0464776A3D32DE2818s1
http://refhub.elsevier.com/S2214-5796(21)00052-6/bibF5343D9CD8B92C0464776A3D32DE2818s1
http://refhub.elsevier.com/S2214-5796(21)00052-6/bibE6D26A387C3B96F303C4CB3A0D0808A4s1
http://refhub.elsevier.com/S2214-5796(21)00052-6/bibE6D26A387C3B96F303C4CB3A0D0808A4s1
http://refhub.elsevier.com/S2214-5796(21)00052-6/bibE6D26A387C3B96F303C4CB3A0D0808A4s1
http://refhub.elsevier.com/S2214-5796(21)00052-6/bib896796B3FA8DDA160C40DE617B406774s1
http://refhub.elsevier.com/S2214-5796(21)00052-6/bib896796B3FA8DDA160C40DE617B406774s1
http://refhub.elsevier.com/S2214-5796(21)00052-6/bib896796B3FA8DDA160C40DE617B406774s1
http://refhub.elsevier.com/S2214-5796(21)00052-6/bib8CFB4AA1FE92AEE7FED1C383A70C7C54s1
http://refhub.elsevier.com/S2214-5796(21)00052-6/bib8CFB4AA1FE92AEE7FED1C383A70C7C54s1
http://refhub.elsevier.com/S2214-5796(21)00052-6/bib614066409D100F1D179CAD4587DACA94s1
http://refhub.elsevier.com/S2214-5796(21)00052-6/bib614066409D100F1D179CAD4587DACA94s1
http://refhub.elsevier.com/S2214-5796(21)00052-6/bib614066409D100F1D179CAD4587DACA94s1
http://refhub.elsevier.com/S2214-5796(21)00052-6/bibFC451D3ABEE4A185551BE0BD06C61757s1
http://refhub.elsevier.com/S2214-5796(21)00052-6/bibFC451D3ABEE4A185551BE0BD06C61757s1
http://refhub.elsevier.com/S2214-5796(21)00052-6/bibFC451D3ABEE4A185551BE0BD06C61757s1
http://refhub.elsevier.com/S2214-5796(21)00052-6/bibFC451D3ABEE4A185551BE0BD06C61757s1
http://refhub.elsevier.com/S2214-5796(21)00052-6/bibDBFD1D61295494969AB729DFCFEADB27s1
http://refhub.elsevier.com/S2214-5796(21)00052-6/bibDBFD1D61295494969AB729DFCFEADB27s1
http://refhub.elsevier.com/S2214-5796(21)00052-6/bibDBFD1D61295494969AB729DFCFEADB27s1
http://refhub.elsevier.com/S2214-5796(21)00052-6/bib49EC72803758D00D2E22599FE5267848s1
http://refhub.elsevier.com/S2214-5796(21)00052-6/bib49EC72803758D00D2E22599FE5267848s1
http://refhub.elsevier.com/S2214-5796(21)00052-6/bib49EC72803758D00D2E22599FE5267848s1
http://refhub.elsevier.com/S2214-5796(21)00052-6/bibBCD3B35B1BAC77F61046D8516CB4EEB5s1
http://refhub.elsevier.com/S2214-5796(21)00052-6/bibBCD3B35B1BAC77F61046D8516CB4EEB5s1
http://refhub.elsevier.com/S2214-5796(21)00052-6/bibBCD3B35B1BAC77F61046D8516CB4EEB5s1
http://refhub.elsevier.com/S2214-5796(21)00052-6/bibBCD3B35B1BAC77F61046D8516CB4EEB5s1
http://refhub.elsevier.com/S2214-5796(21)00052-6/bibBB604F430B1CF35B3E1856E4134DD3DDs1
http://refhub.elsevier.com/S2214-5796(21)00052-6/bibBB604F430B1CF35B3E1856E4134DD3DDs1
http://refhub.elsevier.com/S2214-5796(21)00052-6/bibBB604F430B1CF35B3E1856E4134DD3DDs1
http://refhub.elsevier.com/S2214-5796(21)00052-6/bibBB604F430B1CF35B3E1856E4134DD3DDs1
http://refhub.elsevier.com/S2214-5796(21)00052-6/bibCC968D27B0AD9405CD0C78B3FA54AC52s1
http://refhub.elsevier.com/S2214-5796(21)00052-6/bibCC968D27B0AD9405CD0C78B3FA54AC52s1
http://refhub.elsevier.com/S2214-5796(21)00052-6/bibCC968D27B0AD9405CD0C78B3FA54AC52s1
http://refhub.elsevier.com/S2214-5796(21)00052-6/bibE222B294C0D4D8E44E1B06C82FFEC30Ds1
http://refhub.elsevier.com/S2214-5796(21)00052-6/bibE222B294C0D4D8E44E1B06C82FFEC30Ds1
http://refhub.elsevier.com/S2214-5796(21)00052-6/bibE222B294C0D4D8E44E1B06C82FFEC30Ds1
http://refhub.elsevier.com/S2214-5796(21)00052-6/bib3F502F8BACC01F6B3B94148D95B5EE6As1
http://refhub.elsevier.com/S2214-5796(21)00052-6/bib3F502F8BACC01F6B3B94148D95B5EE6As1
http://refhub.elsevier.com/S2214-5796(21)00052-6/bib3F502F8BACC01F6B3B94148D95B5EE6As1
http://refhub.elsevier.com/S2214-5796(21)00052-6/bib3F502F8BACC01F6B3B94148D95B5EE6As1
http://refhub.elsevier.com/S2214-5796(21)00052-6/bib02FBA1B20BFFFB7D4C3EF10DF1C235F4s1
http://refhub.elsevier.com/S2214-5796(21)00052-6/bib02FBA1B20BFFFB7D4C3EF10DF1C235F4s1
http://refhub.elsevier.com/S2214-5796(21)00052-6/bib02FBA1B20BFFFB7D4C3EF10DF1C235F4s1
http://refhub.elsevier.com/S2214-5796(21)00052-6/bib13F47CF2FA2339BF8D4FB1A0201BB48Es1
http://refhub.elsevier.com/S2214-5796(21)00052-6/bib13F47CF2FA2339BF8D4FB1A0201BB48Es1
http://refhub.elsevier.com/S2214-5796(21)00052-6/bib13F47CF2FA2339BF8D4FB1A0201BB48Es1
http://refhub.elsevier.com/S2214-5796(21)00052-6/bibC70EFE4854DA7C5F7805EE149422C168s1
http://refhub.elsevier.com/S2214-5796(21)00052-6/bibC70EFE4854DA7C5F7805EE149422C168s1
http://refhub.elsevier.com/S2214-5796(21)00052-6/bibC70EFE4854DA7C5F7805EE149422C168s1
http://refhub.elsevier.com/S2214-5796(21)00052-6/bib4257A6D26A3D32D8BC5C1E3D4F497A01s1
http://refhub.elsevier.com/S2214-5796(21)00052-6/bib4257A6D26A3D32D8BC5C1E3D4F497A01s1
http://refhub.elsevier.com/S2214-5796(21)00052-6/bib4257A6D26A3D32D8BC5C1E3D4F497A01s1
http://refhub.elsevier.com/S2214-5796(21)00052-6/bibC710D862CF3397AD6A1E818D9957E4B7s1
http://refhub.elsevier.com/S2214-5796(21)00052-6/bibC710D862CF3397AD6A1E818D9957E4B7s1
http://refhub.elsevier.com/S2214-5796(21)00052-6/bib212A6C1C26C1AF3F3CA4F335A2E1CBF0s1
http://refhub.elsevier.com/S2214-5796(21)00052-6/bib212A6C1C26C1AF3F3CA4F335A2E1CBF0s1

	OL-HeatMap: Effective Density Visualization of Multiple Overlapping Rectangles
	1 Introduction
	2 The problem
	2.1 Preliminaries
	2.1.1 Rectangles
	2.1.2 Pair-wise overlapping rectangles
	2.1.3 Multiple overlapping rectangles

	2.2 Problem definition

	3 Methodology
	3.1 Grid-based overlap detection
	3.2 OL-HeatMap

	4 Experimental evaluation
	4.1 Environment
	4.2 Data
	4.3 Accuracy evaluation metrics
	4.4 Experiments
	4.4.1 OL-HeatMap accuracy performance (versus grid-based methods)
	4.4.2 OL-HeatMap runtime performance
	4.4.3 OL-HeatMap scalability
	4.4.4 OL-HeatMap flexibility

	5 Proof-of-concept demo system
	5.1 System architecture overview
	5.1.1 Front-end
	5.1.2 Back-end

	5.2 Visualization limitations

	6 Related work
	6.1 Density-based visualization methods
	6.2 Computation of rectangle overlaps

	7 Conclusion
	Declaration of competing interest
	References

