
Applied Network ScienceHeidari and Papagelis Applied Network Science (2020) 5:18
https://doi.org/10.1007/s41109-020-00257-3

RESEARCH Open Access

Evolving network representation
learning based on randomwalks
Farzaneh Heidari* and Manos Papagelis

*Correspondence:
farzanah@eecs.yorku.ca
1York University, M3J1P3 Toronto,
ON, Canada

Abstract
Large-scale network mining and analysis is key to revealing the underlying dynamics of
networks, not easily observable before. Lately, there is a fast-growing interest in
learning low-dimensional continuous representations of networks that can be utilized
to perform highly accurate and scalable graph mining tasks. A family of these methods
is based on performing random walks on a network to learn its structural features and
providing the sequence of random walks as input to a deep learning architecture to
learn a network embedding. While these methods perform well, they can only operate
on static networks. However, in real-world, networks are evolving, as nodes and edges
are continuously added or deleted. As a result, any previously obtained network
representation will now be outdated having an adverse effect on the accuracy of the
network mining task at stake. The naive approach to address this problem is to re-apply
the embedding method of choice every time there is an update to the network. But
this approach has serious drawbacks. First, it is inefficient, because the embedding
method itself is computationally expensive. Then, the network mining task outcome
obtained by the subsequent network representations are not directly comparable to
each other, due to the randomness involved in the new set of random walks involved
each time. In this paper, we propose EVONRL, a random-walk based method for
learning representations of evolving networks. The key idea of our approach is to first
obtain a set of random walks on the current state of network. Then, while changes
occur in the evolving network’s topology, to dynamically update the random walks in
reserve, so they do not introduce any bias. That way we are in position of utilizing the
updated set of random walks to continuously learn accurate mappings from the
evolving network to a low-dimension network representation. Moreover, we present
an analytical method for determining the right time to obtain a new representation of
the evolving network that balances accuracy and time performance. A thorough
experimental evaluation is performed that demonstrates the effectiveness of our
method against sensible baselines and varying conditions.

Keywords: Network representation learning, Evolving networks, Dynamic random
walks, Dynamic graph embedding

Introduction
Network science, built on the mathematics of graph theory, leverage network structures
to model and analyze pairwise relationships between objects (or people) (Newman 2003).
With a growing number of networks — social, technological, biological — becom-

© The Author(s). 2020 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were
made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless
indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

http://crossmark.crossref.org/dialog/?doi=10.1007/s41109-020-00257-3&domain=pdf
mailto: farzanah@eecs.yorku.ca
http://creativecommons.org/licenses/by/4.0/

Heidari and Papagelis Applied Network Science (2020) 5:18 Page 2 of 38

ing available and representing an ever increasing amount of information, the ability
to easily and effectively perform large-scale network mining and analysis is key to
revealing the underlying dynamics of these networks, not easily observable before.
Traditional approaches to network mining and analysis inherit a number of limita-
tions. First, networks are typically represented as adjacency matrices, which suffer from
high-dimensionality and data sparsity issues. Then, network analysis typically requires
domain-knowledge in order to carry out the various steps of network data modeling and
processing that is involved, before (multiple iterations of) analysis can take place. An
ineffective network representation along with a requirement for domain expertise, ren-
der the whole process of network mining cumbersome for non-experts and limits their
applicability to smaller networks.
To address the aforementioned limitations, there is a growing interest in learning

low-dimensional representations of networks, also known as network embeddings. These
representations are learned in an agnostic way (without domain-expertise) and have
the potential to improve the performance of many downstream network mining tasks
that now only need to operate in lower dimensions. Example tasks include node clas-
sification, link prediction and graph reconstruction (Wang et al. 2016), to name a few.
Network representation learning methods are typically based on either a graph factor-
ization or a random-walk based approach. The graph factorization ones (e.g., GraRep
(Cao et al. 2015), TADW (Yang et al. 2015), HOPE (Ou et al. 2016)) are known to
be memory intensive and computationally expensive, so they don’t scale well. On the
other hand, random-walk based methods (e.g., DeepWalk (Perozzi et al. 2014), node2vec
(Grover and Leskovec 2016)) are known to be able to scale to large networks. A com-
prehensive coverage of the different methods can be found in the following surveys
(Cai et al. 2018; Hamilton et al. 2017; Zhang et al. 2018).
A major shortcoming of these network representation learning methods is that they

can only be applied on static networks. However, in real-world, networks are continuously
evolving, as nodes and edges are added or deleted over time. As a result, any previ-
ously obtained network representation will now be outdated having an adverse effect on
the accuracy of the data mining task at stake. In fact, the more significant the network
topology changes are, the more likely it is for the mining task to perform poorly. One
would expect though that network representation learning should account for continuous
changes in the network, in an online mode. That way, (i) the low-dimensional network
representation could continue being employed for downstream data mining tasks, and
(ii) the results of the mining tasks obtained by the subsequent network representations
would be comparable to each other. Going one step further, one would expect that while
obtaining the network representation at any moment is possible, the evolving network
representation learning framework suggest the best time to obtain the representation
based on the upcoming changes in the network.
The main objective of this paper is to develop methods for learning representations

of evolving networks. The focus of our work is on random-walk based methods that
are known to scale well. The naive approach to address this problem is to re-apply the
random-walk based network representation learning method of choice every time there
is an update to the network. But this approach has serious drawbacks. First, it will be very
inefficient, because the embedding method is computationally expensive and it needs to
run again and again. Then, the data mining results obtained by the subsequent network

Heidari and Papagelis Applied Network Science (2020) 5:18 Page 3 of 38

representations are not directly comparable to each other, due to the differences involved
between the previous and the new set of random walks, as well as, the non-deterministic
nature of the deep learning process itself (see “Background and motivation” section for
a detailed discussion). Therefore the naive approach would be inadequate for learning
representations of evolving networks.
In contrast to the naive approach, we propose a novel random-walk based method for

learning representations of evolving networks. The key idea of our approach is to design
efficient methods that are incrementally updating the original set of random walks in
such a way that it always respects the changes that occurred in the evolving network.
As a result, we are able to continuously learn a new mapping function from the evolving
network to a low-dimension network representation, by only updating a small number
of random walks required to re-obtain the network embedding. The advantages of this
approach are multifold. First, since the changes that occur in the network topology are
typically local, only a small number of the original set of random walks will be affected,
giving rise to substantial time performance gains. In addition, since the network repre-
sentation will now be continuously informed, the accuracy performance of the network
mining task will be improved. Furthermore, since the original set of random walks is
maintained asmuch as possible, subsequent results of themining tasks will be comparable
to each other. In summary, the major contributions of this work include:

– a systematic analysis that illustrates the instability of the random-walk based network
representation methods and motivates our work.

– an algorithmic framework for efficiently maintaining a set of random walks that
respect the changes that occur in the evolving network topology. The framework
treats random walks as “documents” that are indexed using an open-source
distributed indexing and searching library. Then, the index allows for efficient ad hoc
querying and update of the collection of random walks in hand.

– a novel algorithm, EVONRL, for Evolving Network Representation Learning based
on random walks, which offers substantial time performance gains without loss of
accuracy. The method is generic, so it can accommodate the needs of different
domains and applications.

– an analytical method for determining the right time to obtain a new representation of
the evolving network. The method is based on adaptive evaluation of the degree of
divergence between the most recent random-walk set and the random-walk set
utilized in the most recent network embedding. The method is tunable so it can be
adjusted to meet the accuracy/sensitivity requirement of different domains, therefore
can provide support for a number of real-world applications.

– a thorough experimental evaluation on synthetic and real data sets that demonstrates
the effectiveness of our method against sensible baselines, for a varying range of
conditions.

An earlier version of this work appeared in the proceedings of the International Con-
ference on Complex Networks and their Applications 2018 (Heidari and Papagelis 2018).
The conference version addressed only the case of adding new edges. The current ver-
sion extends the problem to the cases of deleting existing edges, adding new nodes and
deleting existing nodes. In addition, it provides an analytical method that aims to provide
support to the decision making process of when to obtain a new network embedding.

Heidari and Papagelis Applied Network Science (2020) 5:18 Page 4 of 38

This decision is critical as it can effectively balance accuracy versus time performance
of the method extending its applicability in domains of diverse sensitivity. In addition, it
provides further experiments for the additional cases that offer substantial, new insights
of the problem’s complexity and the performance of our EVONRL method.
The remainder of this paper is organized as follows: “Background and motivation”

section provides background and motivates our problem. “Problem definition” section
formalizes the problem of efficiently indexing and maintaining a set of random walks
defined on the evolving network and “Algorithmic framework of dynamic random walks”
section presents our algorithmic framework for addressing it. Our evolving network
representation method and analytical method for obtaining new representations of the
evolving network are presented in “Evolving network representation learning” section.
“Experimental evaluation” section presents the experimental evaluation of our meth-
ods and “Extensions and variants” section discusses interesting variants and future
directions. After reviewing the related work in “Related work” section, we conclude in
“Conclusions” section.

Background andmotivation
As mentioned earlier, there are many different approaches for static network embedding.
A family of these methods is based on performing random walks on a network. Random-
walk based methods, inspired by the word2vec’s skip-gram model of producing word
embeddings (Mikolov et al. 2013b), try to establish an analogy between a network and a
document. While a document is an ordered sequence of words, a network can effectively
be described by a set of random walks (i.e., ordered sequences of nodes). Typical exam-
ples of these algorithms include DeepWalk (Perozzi et al. 2014) and node2vec (Grover
and Leskovec 2016). In fact, the latter can be seen as a generalization of the former, as
node2vec can be configured to behave as DeepWalk. We collectively refer to these meth-
ods as StaticNRL for the rest of the manuscript. A typical StaticNRLmethod, is operating
in two steps:

1. (i) a set of random walks, say walks, is collected by performing r random walks of
length l starting at each node in the network (typical values are r = 10, l = 80).

2. (ii) walks are provided as input to an optimization problem that is solved using
variants of Stochastic Gradient Descent using a deep neural network architecture
(Bengio et al. 2013). The context size employed in the deep learning phase is k
(typical value is k = 5). The outcome is a set of d-dimensional representations, one
for each node.

These representations are learned in an unsupervised way and can be employed for a
number of predictive tasks. It is important to note that there are many possible strate-
gies for performing random walks on nodes of a network, resulting in different learned
feature representations and different strategies might work better for specific prediction
tasks. The methods we will be presenting in this paper are orthogonal to what features
the random walks aim to learn, therefore they can accommodate most of the existing
random-walk based network representation learning methods.

Heidari and Papagelis Applied Network Science (2020) 5:18 Page 5 of 38

Evaluation of the stability of StaticNRL methods

In this paragraph, we present a systematic evaluation of the stability of the StaticNRL
methods, similar to the one presented in (Antoniak and Mimno 2018). The evaluation
aims to motivate our approach to address the problem of interest. Intuitively, a stable
embedding method is one in which successive runs of it on the same network would
learn the same (or similar) embedding. Our interest for such an evaluation is stemming
from the fact that StaticNRL methods are to a great degree dependent on two random
processes: (i) the set of randomwalks collected, and (ii) the initialization of the parameters
of the optimization method. Both factors can be a source of instability for the StaticNRL
method.
Comparing two embeddings can happen either by measuring their similarity or by

measuring their distance. Let us introduce the following measures of instability:

– Cosine Similarity: Cosine similarity is a popular similarity measure for real-valued
vector space models. It can also been used to compare two network embeddings
using the pairwise cosine similarity on the learned d-dimensional representations
(Kim et al. 2014; Hamilton et al. 2016). Formally, given the vector representations ni
and n′

i of the same node ni in two different network embeddings obtained at two
different attempts, their cosine similarity is represented as:

sim(ni, n′
i) = cos(θ) = ni · n′

i
‖ni‖‖n′

i‖
We can extend the similarity to two network embeddings E and E′ by summing and
normalizing over all nodes:

sim(E,E′) =
∑

i∈V sim
(
ni, n′

i
)

|V |
– Matrix Distance: Another possible way is to obtain the distance between two

network embeddings by subtracting the matrices that represent the embeddings of all
nodes, similarly to the approach followed in (Goyal et al. 2018). Formally, given a
graph G = (V ,E), a network embedding is a mapping f : V → R

d , where d � |V |.
Let F(V) ∈ R

|V |×d be the matrix of all node representations. Then, we can define the
following distance measure for the two network embeddings E, E′:

distance(E,E′) = ||F ′(V) − F(V)||F
Experimental scenario: We design a controlled experiment on two real-world networks,
namely Protein-Protein-Interaction (PPI) (Breitkreutz et al. 2007) and a collaboration net-
work, Digital Bibliography Library & Project (dblp) (Yang and Leskovec 2015) that aims
to evaluate the effect of the two random processes in the final network embeddings. In
these experiments, we have three settings. For each setting, we run StaticNRL on a net-
work (using parameter values: r = 10, l = 10, k = 5) two consecutive times, say t and
t + 1, and compute the cosine similarity and the matrix distance of the two network
embeddings Et , Et+1 obtained. We repeat the experiment 10 times and report averages.
The three settings are:

– StaticNRL: Each run collects independent random walks and random weights are
used in the initialization phase.

Heidari and Papagelis Applied Network Science (2020) 5:18 Page 6 of 38

– StaticNRL-i : Each run collects independent random walks but employs the same set
of weights for the initialization phase, over all runs. The purpose is to eliminate one
of the random processes.

– StaticNRL-rw-i : Each run employs the same set of random walks and the same set of
weights for the initialization phase, over all runs. The purpose is to eliminate both
random processes.

Results: The results of the experiment are shown in Fig. 1a (cosine similarity) and Fig. 1
(matrix distance). They show that the set of random walks and the randomized initializa-
tion of the deep learning process have a significant role in moving the embedding despite
the fact that there is no actual change in the topology of the network. As a matter of fact,
when the same set of random walks and the same initialization is used then consecutive
runs of StaticNRL result in the same embedding (as depicted by the sim(·, ·) = 1 in Fig. 1a
or distance(·, ·) = 0 in Fig. 1b). However, when the set of random walks is independent or
both the random walks and the initialization are independent then substantial differences
are illustrated in consecutive runs of the StaticNRL methods.
Implications: Let us start by noting that the implications of the experiment is not that
StaticNRL is not useful. In fact, it has been shown to work very well. The problem is
that while each independent embedding is inherently correct and has approximately same
performance in downstream data mining task, these embeddings are not directly compa-
rable to each other. In reality, the embeddings will be approximately equivalent if we are
able to rotationally align them —most of similar work in the literature correct this prob-
lem by applying an alignment method (Hamilton et al. 2016). While alignment methods
can bring independent embeddings closer and eliminate the effect of different embed-
dings, this approach won’t work well in random walk based models. The main reason for
that is that as we have showed in the experiment, consecutive runs suffer from instability
that is introduced by the random processes. Therefore, in the case of evolving networks
(which is the focus of this work), changes that occur in the network topology will not
be easily interpretable in the changes observed in the network embedding (since differ-
ences might incorporate changes due to the two random processes). However, changes
in the evolving network need to be proportional to the changes in the learned network

Fig. 1 Instability of the StaticNRL methods. Controlled experiments on running StaticNRL multiple times on
the same network depict that the network representations learned are not stable, as a result of random
initialization and random walks collected. When any of these random processes are fixed, then the network
representations learned become more stable. a cosine similarity and bmatrix distance

Heidari and Papagelis Applied Network Science (2020) 5:18 Page 7 of 38

representation. For instance, minor changes in the network topology should cause small
changes in the representation, and significant changes in the network topology should
cause large changes in the network representation.
Key idea: This motivated us to consider learning representations of evolving networks by
efficiently maintaining a set of random walks that consistently respect the network topol-
ogy changes. At the same time, we eliminate the effect of the random processes by, first,
preserving, as much as possible, the original random walks that haven’t been affected by
the network changes. Then, by initializing the model with a previous run’s initialization
(Kim et al. 2014). There are twomain advantages in doing so. Changes to the network rep-
resentations of successive instances of an evolving network will be more interpretable and
data mining task results will be more comparable to each other. In addition, it is possible
to detect anomalies in the evolving network or extract laws of change in domain-specific
networks (e.g., a social network) that explain which nodes are more vulnerable to change,
similar to research in linguistics (Hamilton et al. 2016). Furthermore, our framework
makes it possible to quantify the importance of any occurring changes in the network
topology and therefore obtain a new network representation at an optimal time or when
is really needed.

Problem definition
In “Background and motivation” section, we have established the instability of random
walk based methods even when they are repeatedly applied to the same static network.
That observation alone highlights the main challenge of employing these methods for
learning representations of evolving networks. We have also introduced our key idea to
address this problem. Stemming from our key idea, in this Section, we present a few
definitions that allow to formally define the problem of interest in this paper.

Definition 1 (simple random walk or unbiased random walk on a graph) A simple ran-
dom walk or unbiased random walk on a graph is a stochastic process that describes a
path in a mathematical space (Pearson 1905), where the random walker transits from its
current state (node) to one of its potential new states (neighboring nodes) with an equal
probability. For instance, assume a graph G = (V ,E) and a source node v0 ∈ V. We uni-
formly at random select a node v1 to visit from the set �(v0) of all neighbors of v0. Then, we
uniformly at random select a node v2 to visit from the set �(v1) of all neighbors of v1, and
so on. Apparently, the sequence of vertices v0, v1, ..., vk , ... forms a simple random walk or
an unbiased random walk on G. Formally, at every step k, we have a random variable Xk
taking values on V, and the random sequence X0,X1, ...,Xk , ... is a discrete time stochastic
process defined on the state space V. Assuming that at time k we are at node vi, we select
to uniformly at randommove to one of its adjacent nodes vj ∈ �(vi) based on the following
transition probability:

pvi,vj = P(Xk+i = vj|Xk = vi) =
⎧
⎨

⎩

1
dvi

, if (vi, vj) ∈ E

0, otherwise
(1)

where dvi is the degree of node vi.

Definition 2 (biased random walk) A biased random walk is a stochastic process on
graph, where the random walker jumps from its current state (node) to one of its potential

Heidari and Papagelis Applied Network Science (2020) 5:18 Page 8 of 38

new states (neighboring nodes) with unequal probability. Formally, assuming that at time
k we are at node vi, we select to move to one of its adjacent nodes vj ∈ �(vi) based on the
following transition probability:

pvi,vj = P(Xk+i = vj|Xk = vi) =
⎧
⎨

⎩

p, if (vi, vj) ∈ E

0, otherwise
(2)

where p is unequal for each of the neighbours vj ∈ �(vi).

Definition 3 (evolving graph) Assume a connected, unweighted and undirected graph
Gt = (Vt ,Et) where Vt denotes the node set of Gt and Et denotes the edge set of Gt at time
t. Since all nodes are connected to at least another node it holds that ∀u ∈ Vt it is du ≥ 1.
Now assume that at time t + 1 a change occurs in the network topology of Gt forming
Gt+1 = (Vt+1,Et+1). This change can occur due to the following events:

– a new edge (u′, v′) 	∈ Et is added in Gt ; then Et+1 = Et ∪ (u′, v′).
– an existing edge (u, v) ∈ Et of Gt is deleted; then, Et+1 = Et \ (u, v).
– a new node u′ 	∈ Vt is added in Gt ; then Vt+1 = Vt ∪ u′.
– an existing node u ∈ Vt of Gt is deleted; then, Vt+1 = Vt \ u.

Note that since we have assumed that the graph is connected, the events of adding a new
node u′ 	∈ Vt in Gt or deleting an existing node u ∈ Vt from Gt can be treated as instances
of edge addition and edge deletion, respectively. We discuss construction of these cases in
“Algorithmic framework of dynamic random walks” section. Over time, nodes and edges
are added to and/or deleted from the graph at time t′ = t+ i, i ∈[1, 2, ...,+∞) forming an
evolving graph G′

t .

Definition 4 (a valid set of random walks) A set of random walks RWt at time t is valid,
if and only if, every random walk in RWt is an unbiased random walk on Gt.

Problem 1 (maintaining a valid set of random walks on an evolving network) Let a con-
nected, unweighted and undirected graph Gt = (Vt ,Et) where Vt denotes the node set of
Gt and Et denotes the edge set of Gt at time t. Assume a valid set of random walks RWt are
obtained on Gt at time t. As new edges are added to and/or deleted to the evolving graph,
at any time t′ = t + i, i ∈[1, 2, ...,+∞) forming G′

t , the original set of random walks RWt
will soon be rendered invalid, since many of its random walks will begin introducing a bias.
We would like to design and develop methods for efficiently updating any biased random
walk in RW ′

t with an unbiased random walk, so that RW ′
t always represents a valid set of

random walks of G′
t .

The premise is that if we are able to solve Problem 1 efficiently, then we will be in a
position to obtain an accurate representation of the evolving network at anytime.

Algorithmic framework of dynamic randomwalks
In this Section, we describe a general algorithmic framework and novel methods for incre-
mentally updating the set of random walks in reserve, obtained on the original network
Gt(Vt ,Et) at time t, so that they respect the updated network G′

t
(
V ′
t ,E′

t
)
at time t′, where

t′ > t, and do not introduce any bias. Recall that these are random walks that could have

Heidari and Papagelis Applied Network Science (2020) 5:18 Page 9 of 38

Table 1 Summary of notations used in the dynamic random walk framework

Notations Descriptions

Gt Network at time t

Vt Network’s vertices at time t

Et Network’s edges at time t

Gt+1 Network at time t + 1

E+ A set of the new edges

V+ A set of the new nodes

dit Degree of nodei at time t

l Length of a random walk

lsim Length of a simulated random walk

r Number of random walks per node

RWt A set of random walks at time t

nodei A node ∈ Vt
eij A new edge (nodei , nodej)

Indi The position of nodei in a random walk wk

walksi Walks that contain nodei

been obtained directly by performing random walks on G′
t . The framework we describe

is generic and can be used in any random walk-based embedding method. The first part
of the Section presents algorithms for incrementally updating the set of random walks
in hand, as edges and/or nodes are added to and/or deleted from the evolving network.
The second part, presents an indexing mechanism that supports the efficient storage and
retrieval (i.e., query, insert, update, deletion operations) of the set of random walks used
for learning subsequent representations of the evolving network. A summary of notations
is provided in Table 1.

Incremental update of randomwalks

Given a network Gt = (Vt ,Et) at time t, we employ a standard StaticNRL method1 to
simulate random walks. This method is configured to perform r random walks per node,
each of length l (default values are r = 10 and l = 80). Let RWt be the set of randomwalks
obtained, where |RWt| = |Vt| × r. We store the random walks in memory, using a data
structure that provides random access to its elements (i.e., a 2-D numpy matrix2). In
practice, each finite-length random walk is stored as a row of a matrix, and each matrix
element represents a single node of the network that is traversed by a random walk.
As we monitor changes in the evolving network, there are four distinct events that need

to be addressed: i) edge addition, ii) edge deletion, iii) node addition, and iv) node deletion.
These events can affect the network topology (and the set of random walks in hand) in
different ways, therefore they need to be studied separately. First, we provide details of
the edge addition and edge deletion events. This will bring up the challenges that need to
be addressed in updating random walks and will introduce our main methods. Then, we
visit node addition and node deletion and show that they can be treated as special cases of
edge addition and edge deletion, respectively.

1node2vec — code is available at https://github.com/aditya-grover/node2vec
2NumPy — https://www.numpy.org/

https://github.com/aditya-grover/node2vec

Heidari and Papagelis Applied Network Science (2020) 5:18 Page 10 of 38

Edge addition

Assume that a single new edge eij = (nodei, nodej) arrives in the network at time t + 1, so
Et+1 = Et ∪ (nodei, nodej). There are two operations that need to take place in order to
properly update the set RWt of the random walks in hand:

– Operation 1 : contain the new edge to existing random walks in RWt .
– Operation 2 : discard obsolete parts of random walks of RWt and replace them with

new random walks to form the new RWt+1.

Details of each operation are provided in the next paragraphs.
Operation 1: contain a new edge in RW We want to update the set RWt to contain the
new edge (nodei, nodej). The update should occur in a way that it represents an instance
of a possible random walk on Gt+1, and at the same time, it preserves the previous set of
random walks RWt , as much as possible (to maintain network embedding stability). Note
that due to the way that the original set of random walks was obtained, both nodei and
nodej will occur in a number of random walks of RWt . We explain the update process
for nodei; the same process is followed for nodej. First, we need to find all the random
walks walksi ∈ RWt that include nodei. Then, we need to update them so as to reflect the
existence of the new edge (nodei, nodej). In practice, the new edge offers a new possibility
for each random walk in Gt+1 that reaches nodei to traverse nodej in the next step. The
number of these random walks that include (nodei, nodej) depends on the node degree
of nodei and it is critical for correctly updating random walks in RW. Formally, if the
node degree of nodei in Gt is dt then in Gt+1 it will be incremented by one, dt+1 = dt +
1. Effectively, a random walk that visits nodei in Gt+1 would have a probability 1

dt+1
to

traverse nodej. This means that if there are freqi occurrences of nodei in RWt , then freqi
dt+1

edges (nodei, nodej) need to be contained, by setting the next node of nodei to be nodej,
in the current random walk. If nodei is the last node in a random walk then, there is no
need to update the new edge in that random walk.
Naive approach: The naive approach to perform the updates is to visit all freqi occurrences
of nodei in walksi ∈ RW and for each of them to decide whether to perform an update of
the random walk (or not), by setting the next node to be nodej. The decision is based on
tossing a biased coin, where with probability psuccess = 1

dt+1
we update the random walk,

and with probability pfailure = 1 − psuccess we do not. While this method is accurate, it is
not efficient as all occurrences of nodei need to be examined, when only a portion of them
needs to be updated.
Faster approach: A more efficient way is to find all the freqi occurrences of nodei, and
then to uniformly at random sample freqi

dt+1
of them and update them by setting the next

node to be nodej. While this method will be faster than the naive approach, it still resides
on finding all the freqi occurrences of nodei in the set of random walks RW, which is an
expensive operation. We will soon describe how this method can be accelerated by using
an efficient indexing library that allows for fast querying and retrieval of all occurrences
a node in random walks.
Operation 2: replace obsolete random walks Once a new edge (nodei, nodej) is con-
tained in an existing random walk, it renders the rest of it obsolete, so it is best to be
avoided. Our approach is to replace the remainder of the random walk by simulating a
new random walk on the updated networkGt+1. The random walk starts at nodej and has
a length lsim = l − (Indi + 1), where Indi, 0 ≤ Indi ≤ l − 1, is the index of nodei in the

Heidari and Papagelis Applied Network Science (2020) 5:18 Page 11 of 38

Fig. 2 Illustrative example of EVONRL updates for edge addition and edge deletion (colored). a Example
addition of a new edge (1;4). Random walks in reserve need to be updated to adhere to the change in the
network topology. Our method guarantees that the new edge is equally represented in the updated set of
random walks. b Example deletion of an existing edge (1;4). Random walks in reserve need to be updated to
adhere to the change in the network topology. In this example, random walk #2 and #4 traverse edge (1;4)
and need to be updated

random walk that is currently updated. Once updates for nodei have been performed, the
updates that are due to nodej are computed and performed.
Figure 2a presents an illustrative example of how updates of random walks work, in the

case of a single incoming edge on a simple network. First, a set of random walks RWt are
obtained (say 5 as illustrated by the upper lists of random walks). Let us assume that a
new edge (1, 4) arrives. Note that now, the degree of node 1 and node 2 will increase by
1 (dt+1 = dt + 1). Because of the new edge, some random walks need to be updated to
account for the change in the topology. To perform the updates, we first search for all
occurrences of i, freqi. Then, we uniformly at random sample freqi

dt+1
= 2/2 = 1 of them

to determine where to contain the new edge. In the example, node 4 is listed after node
1 (i.e., the second node in the random walk #4 is now updated). The rest of the current
random walk is obsolete, so it needs to be replaced. To perform the replacement a new
random walk is simulated on the updated network Gt+1 that starts at node 4 and has a
length of lsim = l− (Ind1 + 1) = 10− (0+ 1) = 9. The same process is repeated for node
4 of the added edge (1, 4) (see the updates in random walks #2 and #5, respectively).
The details of the proposed algorithm are described in Algorithm 1. Lines 2 and 12 of

the algorithm invoke a Query operator. This operator is responsible for searching and
retrieving information about all the occurrences of nodei in the set of the random walks
RWt . In addition, lines 11 and 21 of the algorithm invoke a UpdateRandomWalks oper-
ator. This operator is responsible for updating any obsolete randomwalks of RWt with the
updated ones to form the new valid set of randomwalks RWt+1, related toGt+1. However,
these operators are very computationally expensive, especially for larger networks, and
therefore will perform very poorly. In paragraph 1, we describe how these two slow oper-
ators, UpdateRandomWalks and Query, can be replaced by similar operators offered
off-the-shelf by high performance indexing and searching open-source technologies. In
addition, so far, we have relied on maintaining the set of random walks RWt in memory.
However, this is unrealistic for larger networks — while storing a network in memory as
an edge list requires O(E), storing the set of random walks requires O(V · r · l) that is typ-
ically much larger for sparse networks. The indexing and searching technologies we will
employ are very fast and at the same time are designed to scale to very large number of
documents. Therefore, they are in position to scale well to very large number of random
walks, as we discuss in “Extensions and variants” section.

Heidari and Papagelis Applied Network Science (2020) 5:18 Page 12 of 38

Algorithm 1 Update RW— edge addition
1: procedure UPDATEWALKS

2: walksi ← Query(nodei)
3: pi ← 1

dit+1

4: pj ← 1
djt+1

5: si ← Sample(walksi, pi)
6: if len(si) > 0 then
7: for wk in si do
8: Indi ← Position(nodei, wk)
9: lsim = l − (Indi + 1)

10: wk[Indi+1:] ← SimulateWalk(nodej, lsim)

11: UpdateRandomWalks()

12: walksj ← Query(nodej)
13: sj ← Sample(walksj, pj)
14: if len(sj) > 0 then
15: for wk in sj do
16: Indj ← Position(nodej, wk)
17: lsim = l − (Indj + 1)
18: wk[Indj+1:] ← SimulateWalk(nodei, lsim)

19: if dit == 0 then RW += SimulateWalk (nodei, l)

20: if djt == 0 then RW += SimulateWalk (nodej, l)

21: UpdateRandomWalks()

To accommodate a set of new edges E+, the same algorithm needs to be applied repeat-
edly. The main assumption is that edges become available in a temporal order (a stream of
edges), which is a common assumption for evolving networks. The premise of ourmethod
is that every time, only a small portion of the random walks need to be updated, therefore
large performance gains are possible, without any loss in accuracy. In fact, the number of
random walks affected depends on the node centrality of the nodes nodei and nodej that
form the new edge (nodei, nodej). While our approach suggests that a new representation
is required every time a single change occurs in the network that is not the case in real-
world use cases. In fact, in paragraph 1, we provide an analytical method for determining
the right time to obtain a new representation of the evolving network. As will see the
method is based on an adaptive evaluation of the degree of divergence between the most
recent random-walk set and the random-walk set utilized in the most recent network
embedding. The method is tunable so it can be adjusted to meet the accuracy/sensitivity
requirement of different domains, therefore can provide support for a number of real-
world applications. We discuss also the implications of this issue to the time performance
of the method in “Experimental evaluation” section.

Edge deletion

Assume a single existing edge eij = (nodei, nodej) is deleted from the network. Similar to
edge addition, there are two operations that need to take place:

Heidari and Papagelis Applied Network Science (2020) 5:18 Page 13 of 38

– Operation 1 : delete the existing edge from current random walks in RWt by
removing any consecutive occurrence of edge’s endpoints in the set.

– Operation 2 : discard obsolete parts of random walks of RWt and replace them with
new random walks to form the new RWt+1.

Details of each operation are provided in the next paragraphs.
Operation 1: delete an existing edge from RW In edge deletion, unlike with the case of
edge addition (where we had to sample over all the occurrences of a specific node), all the
walks that have traversed the existing edge (nodei, nodej) should be modified because all
of them are now invalid. Other than that, the rest of the process is similar to that of edge
addition. First, all randomwalks that have occurrences of (nodei, nodej) and (nodej, nodei)
need to be retrieved. Then, the retrieved random walks need to be modified according
to the method described in 1. Algorithm 2 describes this procedure in detail. Figure 2b
presents an illustrative example of updates that need to take place due to a single edge
deletion. First, a set of random walks are obtained. Let us assume that a new edge (1, 4)
is deleted, therefore random walks that traverse it, need to be updated. First, we retrieve
randomwalks where node 1 and node 4 occur the one right after the other. For example, in
random walk #4 of Fig. 2b, node 4 appears right after 1. Since now that edge doesn’t exist
anymore in the network, we need to update the random walk so as to allow an existing
neighbor of node 1 to appear after node 4. This action is performed in operation 2.
Operation 2: replace obsolete random walks This operation is similar to the one in the
case of adding a new edge. We just need to replace the remainder of any random walk
affected by the Operation 1 by simulating a new random walk on the updated network
Gt+1 of the right length. Following up with the running example, to perform the replace-
ment of the obsolete random walk, a new random walk is simulated on networkGt+1 that
starts at node 1 and has a length of lsim = l − (Ind1 + 1) = 10 − (0 + 1) = 9.

Algorithm 2 Update RW— edge deletion
1: procedure UPDATEWALKS

2: walks ← Query(nodei, nodej)
3: for wk in walks do
4: Indi ← Position(nodei, wk)
5: lsim = l − (Indi + 1)
6: wk[Indi+1:] ← SimulateWalk(nodei, lsim)
7: UpdateRandomWalks()

8: walks ← Query(nodej, nodei)
9: for wk in walks do

10: Indj ← Position(nodej, wk)
11: lsim = l − (Indj + 1)
12: wk[Indj+1:] ← SimulateWalk(nodej, lsim)

13: if dit+1 == 0 then � disconnected nodei
14: Remove from RW walks starting with nodei
15: if djt+1 == 0 then � disconnected nodej
16: Remove from RW walks starting with nodej
17: UpdateRandomWalks()

Heidari and Papagelis Applied Network Science (2020) 5:18 Page 14 of 38

A Note About Disconnected Nodes: During the process of deleting edges, any of the edge
nodes might be disconnected from the rest of the network, forming isolated nodes. In that
case, all r random walks in RW that start from an isolated node need to be deleted. In the
case that only one of the nodes of a deleted edge becomes isolated, then the simulated
randomwalk is obtained by starting a randomwalk from the node that remains connected
in the network.

Node addition

Assume that a new node nodei is added to the network at time t+1, soVt+1 = Vt∪{nodei}.
Initially, this node forms an isolated node (i.e., dt+1

i = 0) and therefore there is no need to
update the set of random walks RW. Now, assume that at a later time the node connects
to the rest of the network through an edge (nodei, nodej). In that case, we treat the new
edge as described earlier in paragraph 1. In addition to that we need to simulate a set of
r new random walks, each of length l, all of which start from the new node nodei (recall
that our original set of random walks consisted of r random walks of length l for each
node in the graph). The newly obtained random walks are appended to RWt (i.e., it is
|RWt+1| = |RWt| + r) and are utilized in subsequent network embeddings. There is also
a special case where two isolated nodes are connected. In that case we need to simulate
r random walks of length l starting from each node of nodei and nodej, respectively and
append them to RWt .

Node deletion

Assume that an existing node nodei is deleted from the network at time t + 1, so Vt+1 =
Vt \ {nodei}. In this case, first we obtain the set of neighbors �(nodei) of nodei. For each
nodej ∈ �(nodei) there is an edge (nodei, nodej) in the network that needs to be deleted.
We delete each of these edges as described earlier in paragraph 1 and obtain the updated
set RW. The deletes occur in an arbitrary order, without any side effect. Eventually, this
process forms an isolated node, which is removed from the graph. Deletion of the isolated
node itself doesn’t further affect the set RW.

Efficient storage and retrieval of randomwalks

Themethods of updating randomwalks presented in the previous paragraph are accurate.
However, they depend on operators Query and UpdateRandomWalks that are compu-
tationally expensive and cannot scale to larger networks. The most expensive operation is
to search the random walks RWt to find occurrences of nodei and nodej of the new edge
(nodei, nodej). In addition, updates of random walks can be expensive as large number of
existing random walks might need to be updated.
To address these shortcomings, our framework of efficiently updating random walks

relies on popular open-source indexing and searching technologies. These technologies
offer operations for efficiently indexing and searching large collections of documents. For
example, they support efficient full-text search capabilities where given a query term q, all
documents in the collection that contain q are retrieved. In our framework we treat each
random walk as a text “document”. Therefore, each node visited by a random walk would
be represented as a text “term”, and all randomwalks would represent “a collection of doc-
uments”. Using this analogy, we build an inverted randomwalk index, IRW . IRW is an index
data structure that stores a mapping from nodes (terms) to random walks (documents).

Heidari and Papagelis Applied Network Science (2020) 5:18 Page 15 of 38

Fig. 3 Example inverted random walk index. Given a graph, five random walks are performed. Each random
walk is treated as a document and is indexed using an open-source distributed indexing and searching
library. The result is an inverted index that provides information about the frequency of any node in the
random walks and information about where in the random walk the node is found

The purpose of IRW is to enable fast querying of nodes in random walks, and fast updates
of random walks that can inform Algorithm 1. Figure 3 provides an illustrative example
of a small inverted random walk index. In addition, we briefly describe how to create the
index and use it in our setting.
Indexing Random Walks: We obtain the initial set of random walks RWt at time t by
performing random walks on the original network, similarly to the process followed
in standard StaticNRL methods. Each random walk is transformed to a document by
properly concatenating the ids of the nodes in the walk. For example, a short walk
(x → y → z) over nodes x, y and z, will be represented as a document with content “x
y z”. These random walks are indexed to create IRW . It is important to note that once an
index is available, there is no need to maintain the random walks in memory any more.
Querying Random Walks: We rely on the index IRW to perform any Query operation.
Note, however, that there are additional advantages on using an efficient index. Besides
searching and retrieving all random walks that contain a specific nodei, the index IRW

can be configured to provide more quantities of interest. Specifically, we configure IRW so
that every query retrieves additional information about the frequency of nodei, freqi and
the position Indi of nodei in a retrieved random walk (see Fig. 3). The first quantity (freqi)
is used to determine the number of updates that are required as discussed earlier. The
second (Indi), is used to inform the operator Position in Algorithm 1 (lines 8 and 16).
Note that there is a slight variation of how the Query operation is configured in the case
of the edge deletion. Recall that in that event we need to retrieve random walks where
the two nodes nodei and nodej are found the one right after the other (i.e., they form a
step of the randomwalk). To accommodate this case we just need to configure the Query
operation to retrieve all random walks that contain the bigram “nodei nodej”. A bigram is
a pair of contiguous sequence of words in a document or, following the analogy, a pair of

Heidari and Papagelis Applied Network Science (2020) 5:18 Page 16 of 38

contiguous sequence of nodes in a random walk. The indexing and searching technology
we employ can handily support such queries.
Updating RandomWalks: We rely on the index IRW for any UpdateRandomWalk oper-
ation. An update of a random walk is analogous to an update of a document in the index.
In practice, any update of the index IRW is equivalent to deleting an old random walk and
then indexing a new random walk. While querying using an inverted index is a fast pro-
cess, updating an index is a slower process. Therefore, the performance of our methods
is dominated by the number of random walks updates required. Still, our methods would
perform multitude of times faster than StaticNRL methods. A detailed analysis of this
issue is provided in “Experimental evaluation” section. Following the discussion about the
edge deletion/addition, special care is required when these events involve isolated nodes.
In particular, if a new edge connects a previously isolated node nodei to the network, then
r new random walks need to be added in the index, each of which starts from nodei. The
process of indexing the new random walks is similar to the process described in para-
graph 1. Similarly, if an edge deletion event resulted in a node nodei being isolated, then all
the r random walks that start from nodei need to be removed from the index. Removing
a random walk from the index is analogous to deleting a document from the index.
Bulk updates: Additional optimizations are available as a result of employing an inverted
index for the random walks. For example, we can take advantage of bulk updates, where
the index need only be updated when a number of new edges have arrived. This means
that changes of single incoming edges won’t be reflected in IRW right away. While this
optimization has the premise to make our methods faster (since updates occur once
in a while), it risks harming its accuracy. In practice, it offers an interesting trade-off
between accuracy and time performance that domain-specific applications need to tune.
Experiments in “Experimental evaluation” section demonstrate this tradeoff.

Evolving network representation learning
So far we have described our framework for maintaining an always valid set of random
walks RWt at time t. Recall that our final objective is to be able to learn a representation
of this evolving network. For the embedding process we resort to the same embedding
of standard StaticNRL methods. Below we describe how embeddings of the evolving net-
work are obtained, given a set of randomwalks RWt . Then, a general strategy for obtaining
an embedding only when it is mostly needed.

Learning embeddings

Given a general network, Gt = (Vt ,Et), our goal is to learn the network representa-
tion f (Vt) using the skip-gram model. f (Vt) is a |Vt| × d matrix where d is the network
representation dimension and each row is the vector representation of a node. At the
first time-stamp, the node vector representations (neural network’s weights) are initial-
ized randomly and we use this initialization for other timestamps’ training. The training
objective function is to maximize the log-probability of the nodes appearing in the con-
text of the node ni. Context of each node ni is provided by the valid set of random walks
RWt , similarly to the process described in previous work (Perozzi et al. 2014; Grover
and Leskovec 2016). Using the approximate objective, skip-gram with negative sampling
(Mikolov et al. 2013a), these embeddings are optimized by stochastic gradient decent
so that:

Heidari and Papagelis Applied Network Science (2020) 5:18 Page 17 of 38

Pr(nj|ni) ∝ exp
(
nTj ni

)
(3)

where ni is the vector representation of a node ni (f (ni) = ni). Pr(nj|ni) is the probability
of the observation of neighbor node nj, within the window-size given that the window
contains ni. In our experiments, we use the gensim implementation of the skip-gram
model3. We set our context-size to k = 5 and the number of dimensions to d = 128,
unless otherwise stated.

Analytical method for determining the timing of a network embedding

EVONRL has the overhead of first indexing the set of initial random walks RW. At that
time, we randomly initialize the skip-grammodel and keep these initialization weights for
the learning phase of subsequent times. As new edges/nodes are added/deleted, EVONRL
performs the necessary updates as described earlier. At each time step a valid set of ran-
dom walks is available that can be used to obtain a network embedding. As we show in
“Experimental evaluation” section an embedding obtained by our incrementally updated
set of random walks effectively represents embeddings obtained by applying a Static-
NRLmethod directly on the updated network. However, while re-embedding the network
every time a change occurs in it will result in accurate embeddings, this process is very
expensive and risks to render the method non-applicable in real-world scenarios. There-
fore, and depending on the domain, it is reasonable to assume that only a limited number
of re-embeddings be obtained. This introduces a new problem: when is the right time to
obtain a network embedding? In fact, this decision process demonstrates an interesting
tradeoff between accuracy and time performance of the method proposed. In the rest of
the paragraph we introduce two strategies for determining the time to obtain network
embeddings.
PERIODIC: This is a sensible baseline where, as the name reveals, obtains embeddings
periodically, every q time steps. Depending on the sensitivity of the domain we operate on,
the period can be shorter or longer. This method is easy to implement, but it is obtaining
network embedding being agnostic of the different changes that occur in the network and
whether they are significant (or not).
ADAPTIVE:We introduce an analytical method for determining the right timing of obtain-
ing a network embedding. The key idea of the method is to continuously monitor the
changes that occur in the network. Then, if significant changes are detected it obtains a
new network embedding. In fact, we monitor two conditions, the first is able to detect
occurrence of a critical change (e.g., addition of a very important edge) and is based on the
idea of peak detection; the second is able to evaluate cumulative effects due to a number
changes. We discuss the structure of these conditions in the following paragraphs.
Peak detection: We start by providing background of a z-score. A z-score (or standard
score) is a popular statistical measure that indicates how many standard deviations away
an observation is from itsmean. When the population mean and the population standard
deviation are unknown, the standard score may be calculated using the sample mean and
sample standard deviation as estimates of the population values. In that case, the z-score
of observed values x can be calculated from the following formula:

z = x − x̂
σ̂

(4)

where x̂ is the mean of the sample and σ̂ is the standard deviation of the sample.

3https://github.com/RaRe-Technologies/gensim

https://github.com/RaRe-Technologies/gensim

Heidari and Papagelis Applied Network Science (2020) 5:18 Page 18 of 38

In our setting, we want to detect when important changes occur in the network, so
as to obtain a timely network representation. As we described earlier a good proxy for
what consists an important change in a network is the number of random walks that are
affected because of the change (edge addition/deletion, node addition/deletion). We can
utilize the z-score of Eq. (4) to detect peaks. A peak or spike is a generic term which
describes a sudden increase or outburst in a sequenced data (Barnett and Lewis 1974).
In our problem, the number of random walk changes are monitored and peaks represent
significant changes in the number of randomwalks affected. Formally, let lag be the num-
ber of changes observed in the sample. The observation window is spanning from t − lag
to t and we compute the mean of the sample at t as avg[t]. In a similar way, we calculate
the standard deviation of the sample at t to be std[t]. Let N[t] be the observation at time
t that represents the number of random walks that have been updated due to a network
change. Now, given N[t], avg[t], std[t] and a threshold τ , a peak occurs at time t if the
following condition holds:

N[t]> τ × std[t]+avg[t] (5)

If the condition of Eq. (5) holds, then we know that a significant change has occurred and
we decide to obtain a new network representation. The details of the procedure are shown
in Algorithm 3. Notations used in this algorithm are summarized in Table 2. Figure 4
provides an illustrative example of the peak detection method. In this example we set
lag = 10 and τ = 3. The figure shows the results of the peak detection method for 100
changes occurring in a network (BlogCatalog network, edge addition; edges are added one
by one and are randomly selected from the potential edges of the network). Our peak
detection algorithm detects a total of 6 peaks occurring at t = {13, 19, 48, 53, 57, 60}.

Algorithm 3 Peak Detection Algorithm
Input: lag, τ , RW
Output: peaks

1: procedureOBTAINREPRESENTATION

2: UpdateRandomWalks()

3: N[t] ← Length(RWt − (RWt ∩ RWt+1)

4: avg[lag − 1] ← mean(N[0] , ..,N[lag])
5: std[lag − 1] ← std(N[0] , ..,N[lag])
6: for i in [lag + 1 : t] do
7: if |N[i]−avg[i − 1] | < threshold ∗ std[i − 1] then
8: if N[i]> avg[i − 1] then
9: peak[i] ← +1

10: else peak[i] ← 0
11: avg[i] ← mean(N[i - lag] , ..,N[i])
12: std[i] ← std(N[i - lag] , ..,N[i])

Cut-off score: Sometimes, changes in the network can be smooth, without any acute
changes. In that case the peak detection method will fail to obtain any embedding as
peaks (almost) never occur. To avoid these cases, besides the peak detection method, we
employ an additional metric that monitors the cumulative effect of all the changes since

Heidari and Papagelis Applied Network Science (2020) 5:18 Page 19 of 38

Table 2 Summary of notations used in decision-making algorithm

Notations Descriptions

RWt A set of random walks at time t

RWt+1 A set of random walks at time t

Nt+1
t Number of the nodes changed from t to t + 1

#RWt+1
t Number of random walks changed from t to t + 1

τ Threshold where algorithm signals

lag The size of the moving window

avg Moving average of the lag window

std Standard deviation of the lag window

the last embedding was obtained. Formally, let N[t] be the observation at time t that rep-
resents the number of random walks that have been updated due to a network change.
Then, the total number of random walks that have been changed between the time that
the last embedding told was obtained and the current time t is given by:

#RWt
told =

t∑

t=told
N[t] (6)

Now, given #RWt
told and a threshold cutoff, we monitor the following condition:

#RWt
told > cutoff (7)

Fig. 4 Example peak detection method for the case of adding edges in the BlogCatalog network. The upper
plot shows the number of random walks that are updated in RW as a function of new edges added. It is
evident that some edges have a larger effect in RW as depicted by higher values. The middle plot, shows the
mean (middle almost straight line), as well as the boundaries defined by the current threshold of τ × std (the
two lines above and below the mean line). The bottom plot provides the signal for decision making; every
time that the current change at time t is outside the threshold it signals that a network embedding should be
obtained. In the example this is the case for five times t = {13, 19, 48, 53, 57, 60}

Heidari and Papagelis Applied Network Science (2020) 5:18 Page 20 of 38

If at any time t Eq. (7) holds, then we know that significant cumulative changes have
occurred in the network and we decide to obtain a new network representation.
As we show in “Experimental evaluation” section combining both conditions of Eqs. (5)
and (7) gives the best results, as it balances locally significant as well as cumulative effect
of changes.

Experimental evaluation
In this Section, we experimentally evaluate the performance of our dynamic randomwalk
framework and EVONRL4. In particular, we aim to answer the following questions:

– Q1 effect of network topologyHow the topology of the network affects the number
of random walks that need to be updated?

– Q2 effect of arriving edge importance How edges of different importance affect
the overall random walk update time?

– Q3 accuracy performance of EVONRLWhat is the accuracy performance of
EVONRL compared to the ground truth provided by StaticNRL methods?

– Q4 classification performance of EVONRLWhat is the accuracy performance of
EVONRL in a downstream data-mining task?

– Q5 time performance of EVONRLWhat is the time performance of EVONRL?
– Q6 decision-making performance of EVONRL How well does the strategy of

EVONRL for obtaining network representations work?

Q1 and Q2 aim to shed light on the behavior of our generic computational framework
for dynamically updating random walks in various settings. Q3, Q4, Q5 and Q6 aim to
demonstrate how EVONRL performs. Before presenting the results, we provide details of
the computational environment and the data sets employed.
Environment: All experiments are conducted on a workstation with 8x Intel(R)
Core(TM) i7-7700 CPU @ 3.60GHz and 64GB memory. Python 3.6 is used and the static
graph calculations use the state-of-the-art algorithms for the relevant metrics provided
by the NetworkX network library.
Data: For the needs of our experiments both synthetic data and real data sets have been
employed.

– Protein-Protein Interactions (PPI): We use a subgraph of PPI for Homo Sapiens and
use the labels from the preprocessed data used in (Grover and Leskovec 2016). The
network consists of 3890 nodes, 76584 edges and 50 different labels.

– BlogCatalog (Reza and Huan): BlogCatalog is a social network of blogers which each
edge indicates a social interaction among them. This network consists of 10312
nodes, 333983 edges and 39 different labels.

– Facebook Ego Network (Leskovec and Krevl 2014): Facebook ego network is the
combined ego network of each node. There is an edge from a node to each of its
friends. This network consists of 4039 nodes, 88234 edges.

– Arxiv HEP-TH (Leskovec and Krevl 2014): Arxiv HEP-TH (high energy physics
theory) network is the citation network from e-print Arxiv. If paper i cites paper j,
there is a directed edge from i to j. This network consists of 27770 nodes, 352807
edges.

4code is available at https://github.com/farzana0/EvoNRL

https://github.com/farzana0/EvoNRL

Heidari and Papagelis Applied Network Science (2020) 5:18 Page 21 of 38

– Synthetic Networks: We create a set of Watts-Strogatz (Newman 2003) random
networks of different sizes (n = {1000, 10000}) and different rewiring probabilities
(p = {0, 0.5, 1.0}). The rewiring probability is used to create representative Lattice
(p = 0), Small-world (p = 0.5) and Erdos-Reyni (p = 1) networks, respectively.

Q1 effect of network topology

We evaluate the effect of randomly adding a number of new edges in networks of different
topologies, but same size. For each case, we report the number of the random walks that
need to be updated. Figure 5 shows the results, where it becomes clear that as more new
edges are added, more random walks are affected. The effect is more stressed in the case
of the Small-world and Erdos-Reyni networks. This is to be expected, since these networks
are known to have small diameter, therefore every node is easily accessible from any other
node. As a result, every node has a high chance to appear in any randomwalk. In contrast,
Lattices are known to have larger diameter, therefore only a small number of nodes (out
of all nodes in the network) can be accessible by any random walk. As a result, nodes are
more equally distributed in all random walks.

Q2 effect of arriving edge importance

By answering Q1, it becomes evident that even a single new edge can have a dramatic
effect in the number of random walks that need to be updated. Eventually, the number
of random walks affected, will have an effect to the time performance of updating these
random walks in our framework. In this set of experiments we perform a systematic anal-
ysis of the effect of the importance of an arriving edge to the time required for the update
to occur. Importance of an incoming edge et+1

ij = (ni, nj) at time t + 1 in a network can
be defined in different ways. Here, we define three metrics of edge importance, based on
properties of the endpoints ni, nj of the arriving edge:

Fig. 5 Effect of network topology (the axis of #RW affected is in logarithmic scale). As more new edges are
added, more random walks are affected. The effect is more stressed in the case of the Small-world and
Erdos-Reyni networks, than the Lattice network

Heidari and Papagelis Applied Network Science (2020) 5:18 Page 22 of 38

– Sum of frequencies of edge endpoints in RWt .
– Sum of the node degrees of edge endpoints in Gt .
– Sum of the node-betweenness of edge endpoints in Gt .

Results of the different experiments are presented in Fig. 6. The first observation is that
important incoming edges are more expensive to update, sometimes up to three or four
times (1.6sec vs 0.4sec). This is expected, asmore randomwalks need to be updated. How-
ever, the majority of the edges are of least importance (lower left dense areas in Fig. 6a,
b, and c), so fast updates are more common. Finally, the behavior of sum of node fre-
quencies (Fig. 6a) and sum of node degrees (Fig. 6b) of the edge endpoints are correlated.
This is because the node degree is known to be directly related to the number of random
walks that traverse it. On the other hand, node-betweenness demonstrates more unstable
behavior since it is mostly related to shortest paths and not just paths (which are related
to random walks).

Q3 accuracy performance of EVONRL

In this set of experiments we evaluate the accuracy performance of EVONRL and show
that it is very accurate. At this point, it is important to note that evidence of our EVONRL
performing well is provided by demonstrating it obtains similar representations to the
ground truth provided by running StaticNRL on different instances of the evolving net-
work. This is because the objective of our method is to resemble as much as possible
what the actual changes in the original network are by incrementally maintaining a set of

Fig. 6 Dependency of EVONRL running time on importance of added edge as described by various metrics
on PPI Network. a frequency of the new edge endpoints, b node degree of the new edge endpoints, and
c node betweenness of the new edge endpoints

Heidari and Papagelis Applied Network Science (2020) 5:18 Page 23 of 38

randomwalks andmonitoring the changes. In practice, we aim to show that our proposed
algorithm is able to update random walks in reserve such that they are always represent-
ing unbiased random walks that could have been obtained by running StaticNRL on the
updated network. In these experiments, we show the representation learned by EvoNRL
and the ground truth provided by the StaticNRL are similar to each other by using a
representational similaritymetric.

Similarity of two representations

Our goal here is to compare the representations learned by the neural network and show
that EvoNRL results in a similar representations to ground truth provided by StaticNRL
methods. Comparing representations in neural networks is difficult as the representa-
tions vary even across the neural networks trained on the same input data with the same
task (Raghu et al. 2017). In this paper, representations are weights of the representation
learned by either our EvoNRL method or the StaticNRL method, and they represent the
representation learned by a skip-gram neural network. In order to determine the corre-
spondence between these representations, we use the recent similarity measures of neural
networks studied in (Morcos et al. 2018) and (Kornblith et al. 2019). Dynamics of neu-
ral networks call for a similarity metric that is invariant to orthogonal transformation and
invariant to isotropic scaling. Assuming two representations X ∈ R

n×d and Y ∈ R
n×d ,

we are concerned about a scalar similarity index s(X,Y) which can be used to compare
the two neural network representations. There are many methods for comparing two
finite set of vectors and measure the similarity between them. The simplest approach is to
employ a dot-product based similarity. By summing the square dot-product of each cor-
responding pair of vectors in X and Y, we can have a similarity index between matrices
X and Y. This approach is not practical as representations of the neural networks can be
described on two different basis and result in a misleadingly similarity index. Therefore
invariance to linear transforms is crucial in neural network representational similarity
metrics. Recently, Canonical Correlation Analysis (CCA) (Hotelling 1992) is used as a
tool to compare representations across networks. Canonical Correlation Analysis has
been widely used to evaluate the similarity between computing models and brain activity.
CCA can find similarity between representations where they are superficially dissimilar.
Its invariance to linear transforms makes CCA a useful tool to quantify the similarity of
EvoNRL and StaticNRL representations (Morcos et al. 2018).
Canonical correlation analysis (CCA): Canonical Correlation Analysis (Hotelling 1992)
is a statistical technique to measure the linear relationship between twomultidimensional
set of vectors. Ordinary Correlation analysis is highly dependent on the basis which the
vectors are described on. The important property of CCA is that it is invariant to affine
transformations of the variables which makes it a proper tool to measure representation
similarity by. If we have two sets of matrices X ∈ R

n×d and Y ∈ R
n×d , Canonical Correla-

tion Analysis will find two bases, one for X and one for Y such that after their projections
into these bases, their correlation will be maximized. for 1 ≤ i ≤ d, the ith, canonical
correlation coefficient is given by:

ρi = max
wi
X ,w

i
Y

corr
(
Xwi

X ,Ywi
Y
)

subject to ∀j<i Xwi
X⊥Xwj

X

∀j<i Ywi
Y⊥Ywj

Y

(8)

Heidari and Papagelis Applied Network Science (2020) 5:18 Page 24 of 38

where the vectors wi
X ∈ R

d and wi
Y ∈ R

d transform the original matrices into canonical
variables Xwi

X and Ywi
Y .

R2
CCA = �d

i=1ρ
2
i

d
(9)

The mean squared CCA correlation (J. Ramsay et al. 1984), R2
CCA reports the sum of the

squared canonical correlations. This sum is a metric that shows the similarity of the two
multidimensional sets of vector.
Experimental scenario: In these experiments, the original network is the initial network
at the beginning. We simulate random walks on this network and learn its representa-
tion. After that, we sequentially make changes (add edges, remove edges, add nodes and
remove nodes) to the initial network and keep the random walks updated using EvoNRL.
In certain points (for example after every 1000 edge addition in the PPI network), we learn
the network representation in two ways. One is by simulating new random walks on the
updated network (original network with new edges/nodes or missing edges/nodes) and
second is learning the representation using EvoNRL. Now we have two representations
of the same network and the goal is to compare them to see how similar EvoNRL is to
StaticNRL. Note that StaticNRL simulates walks on the updated networks while EvoNRL
has been updating the original random walk set. Representations obtained by Static-
NRL are results of simulating random walks on the network. Because of the randomness
involved in the process, it is typical that two differnet StaticNRL representations of the
same network are not identical. We can measure, the similarity of the different represen-
tations using CCA. In our evaluation, we aim to demonstrate that EvoNRL is as similar
to StaticNRL and that this similarity is comparable to the similarity obtained by applying
StaticNRLmultiple times on the same network. At any stage of the change (edge addition,
edge deletion, node addition, node deletion) in the network, EvoNRL is updating the ran-
domwalk set in a way that it is representing the network. First, we run StaticNRLmultiple
times (x5) on a network. Each StaticNRL is simulating a random walk set on the evolving
network at certain times. Representations are two finite sets of vectors in d-dimensional
space and compare how similar these two sets are.
Adding edges: Given a network G = (V ,E), we can add a new edge by randomly picking
two nodes in the network that are not currently connected and connect them. Adding
new edges to the network should have an effect on the network embedding. By adding
edges, as the network diverges from its original state, the embedding will diverge from the
original network as well. Figure 7 shows the accuracy results of EvoNRL. We observe that
the CCA similarity index of EVONRL follows the same trend as the StaticNRL in all the
networks: BlogCatalog (Fig. 7a) and the PPI (Fig. 7b), Facebook (Fig. 7c) and Cit-HepTh
(Fig. 7d) networks. The similarity of the two methods remains consistent as more edges
are added (up to 12% of the number of edges in the original PPI; up to 14% of the num-
ber of edges in the original BlogCatalog, Facebook and Cit-HepTh). In Fig. 7, there are
two sorts of comparison. First, The similarity of EvoNRL and the Original Network (The
network before changes occur to it) is measured. The decreasing trend in orange stars in
Fig. 7 shows that the EvoNRL is updating the set of randomwalks and the representations
of the updated networks are diverging from the representation of the original network. On
the other hand, we see that EvoNRL is more correlated to the original set of the random

Heidari and Papagelis Applied Network Science (2020) 5:18 Page 25 of 38

Fig. 7 Accuracy performance of EVONRL— adding edges. a BlogCatalog, b PPI, c Facebook, d Cit-HepTh

walk (orange stars), compared to StaticNRL (Blue Triangles). Blue Triangles are the aver-
age of canonical correlation of the original network with 4 different runs of StaticNRL.
It shows that the representation of the evolving network is diverging from the original
network. So far we have showed that EvoNRL is consistently updating the original set of
random walks and makes difference in the network’s representation. The question is are
these updates accurate? To answer this question we add edges step by step to the original
network. Using EvoNRL we keep updating a set of random walk and get the represen-
tation of the network in a certain points. On the other hand, we run StaticNRL on the
updated network at the same certain points. Because of the randomness of the random
walks we repeat StaticNRL 4 times. We compare the StaticNRL representations obtained
from the same network with each other to have a baseline of the similarity metric. The
red squares showing as ’StaticNRL vs StaticNRL’ in Fig. 7 are showing the average simi-
larity of representations of StaticNRL compared to each other 2 by 2. Our goal is to show,
EvoNRL keeps updating the random walk set in an accurate way and the representation
obtained by EvoNRL is as accurate as StaticNRL. To show this, we measure the canonical
correlation of EvoNRL representation and the StaticNRl. We observe that (green circles)
EvoNRL representations is very similar to the StaticNRL representations and can be an
instance on StaticNRL.
Removing edges: Given a networkG = (V ,E), we can remove an edge by randomly choos-
ing an existing edge e ∈ E and remove it from the network. Removing existent edges
should have an effect in the network embedding. Figure 8 show the accuracy results of

Heidari and Papagelis Applied Network Science (2020) 5:18 Page 26 of 38

Fig. 8 Accuracy performance of EVONRL— removing edges. a BlogCatalog, b PPI, c Cit-HepTh, d Facebook

edge deletion. Similar to edge addition, We observe that the CCA similarity of EVONRL
follows the same trend as the StaticNRL in all the networks: BlogCatalog (Fig. 8a) and the
PPI (Fig. 8b), Facebook (Fig. 8c) and Cit-HepTh (Fig. 8d) networks.
Adding nodes: As we described in “Evolving network representation learning” section
node addition can be treated as a special case of edge addition. This is because when-
ever a node is added in a network, a number of edges attached to that node need to be
added as well. To emulate this process, given a network G = (V ,E), first we create a net-
work G′ = (V ′,E′), where V ′ ⊆ V ,E′ ⊆ E as follows. We uniformly at random sample
nodes V ′ ⊆ V from G and then remove these nodes and all their attached edges E′ ⊆ E
from G, forming G′. Following that process, we obtain a new network for BlogCatalog
with V ′ = 8312 and a new network for PPI with V ′ = 3390 nodes, respectively. Then,
we start adding the nodes v ∈ V ′′ = V \ V ′ that have been removed from G, one by one.
Whenever, a node v ∈ V ′′ is added to G′, any edge between v and nodes existing in the
current state of network G′ are added as well. Adding nodes to the network should have
an effect in the network embedding. Figure 9 shows the accuracy results of node addition.
CCA compares two sets of vectors with the same cardinality. Because the number of the
nodes and therefore the number of the vectors in the representation are variant, we can
not compare the updated representations with the original network. In these experiments
we show that EvoNRL and StaticNRL on the same network are very similar to each other
and EvoNRL is an accurate instance of StaticNRL.

Heidari and Papagelis Applied Network Science (2020) 5:18 Page 27 of 38

Fig. 9 Accuracy performance of EVONRL— adding nodes. a BlogCatalog, b PPI, c Cit-HepTh, d Facebook

Removing nodes: As we described in “Evolving network representation learning” section
node deletion can be treated as a special case of edge deletion. Given a network G =
(V ,E), we start removing nodes v ∈ V from the network, one by one. When a node is
removed all the edges connecting this node to the network are removed as well. The pro-
cess of removing nodes will result in a new networkG′(V ′,E′), where V ′ ⊆ V and E′ ⊆ E.
Removing existing nodes from the networ effect in the network embedding. Figure 10
shows the accuracy result of node deletion. In the evolving network, nodes are removed
from the network sequentially and EvoNRL always maintains a valid set of random walks.
we show that the representations obtained from these random walks are similar to Stat-
icNRL representations. Same as node addition, because the number of the nodes are
changing, we can not compare the representations with the original network’s representa-
tion. The experiments above provides strong evidence that our random walk updates are
correct and can incrementally maintain a set of random walks that is their corresponding
representations are similar to that of obtained by StaticNRL.

Q4 classification performance of EVONRL

In this set of experiments we evaluate the accuracy performance of EVONRL and show
that it is very accurate. At this point, it is important to note that evidence of our EVONRL
performing well is provided by demonstrating it has similar accuracy to StaticNRL, for
the various aspects of the evaluation (and not by demonstrating loss/gains in accuracy).
This is because the objective of our method is to resemble as much as possible what

Heidari and Papagelis Applied Network Science (2020) 5:18 Page 28 of 38

Fig. 10 Accuracy performance of EVONRL— removing nodes. a BlogCatalog, b PPI, c Cit-HepTh, d Facebook

the actual changes in the original network are by incrementally maintaining a set of ran-
dom walks and monitoring the changes. In practice, we aim to show that our proposed
algorithm is able to update random walks in reserve such that they are always represent-
ing unbiased random walks that could have been obtained by running StaticNRL on the
updated network.
Experimental scenario: To evaluate our random walk update algorithm, we resort to
accuracy experiments performed on a downstream data mining task:multi-label classifi-
cation. The network topology of many real-world networks can change over time due to
either adding/removing edges or adding/removing nodes in the network. In our exper-
imental scenario, given a network we simulate and monitor network topology changes.
Then, we run StaticNRL multiple times, one time after each network change and learn
multiple network representations over time. The same process is followed for EVONRL
but this time we only need to update the random walks RWt at each time t and use these
for learning multiple network representations over time. In multi-label classification each
node has one or more labels from a finite set of labels. In our experiments, we see 50% of
nodes and their labels in the training phase and the goal is to predict labels of the rest of
the nodes.We use node vector representations as input to a one-vs-rest logistic regression
classifier with L2 regularization. Finally, we report theMacro − F1 accuracy of the multi-
label classification of StaticNRL and EVONRL as a function of the fraction of the network
changes. For StaticNRL, since it is sensitive to the fresh set of random walks obtained

Heidari and Papagelis Applied Network Science (2020) 5:18 Page 29 of 38

every time, we run multiple times (10x) and report the averages. We experiment with the
BlogCatalog and PPI networks. In the following paragraphs we present and discuss the
results for each of the interesting cases (adding/removing edges, adding/removing nodes).
Adding edges: Given a network G = (V ,E), we can add a new edge by randomly picking
two nodes in the network that are not currently connected and connect them. Adding
new edges to the network should have an effect on the network embedding and thus in
the overall accuracy of the classification results. Figure 7 shows the results. We observe
that the Macro-F1 accuracy of EVONRL follows the same trend as the one of StaticNRL in
both the BlogCatalog (Fig. 11a) and the PPI (Fig. 11b) networks. The accuracy of the two
methods remains consistent as more edges are added (up to 12% of the number of edges
in the original PPI; up to 14% of the number of edges in the original BlogCatalog). This
provides strong evidence that our randomwalk updates are correct and can incrementally
maintain a set of randomwalks that is similar to that obtained by StaticNRL when applied
in an updated network.
Removing edges: Given a networkG = (V ,E), we can remove an edge by randomly choos-
ing an existing edge e ∈ E and remove it from the network. Removing existent edges
should have an effect in the network embedding and thus in the overall accuracy of the
classification results. We evaluate the random walk update algorithm for the case of edge
deletion in a way similar to that of adding edges. The only difference is that every time an
edge is deleted at t we update random walks to obtain RWt . Then, the updated RWt can
be used for obtaining a network representation. Same setting is used in multi-label clas-
sification. Figure 12 shows the results. Again we observe that the Macro-F1 accuracy of
EVONRL follows the same trend as the one of StaticNRL in both the BlogCatalog (Fig. 12a)
and the PPI (Fig. 12b) networks.
Adding nodes: As we described in “Evolving network representation learning” section
node addition can be treated as a special case of edge addition. This is because whenever
a node is added in a network, a number of edges attached to that node need to be added
as well. To emulate this process, given a network G = (V ,E), first we create a network
G′ = (V ′,E′), where V ′ ⊆ V ,E′ ⊆ E as follows. We uniformly at random sample nodes
V ′ ⊆ V from G and then remove these nodes and all their attached edges E′ ⊆ E from
G, forming G′. Following that process, we obtain a new network for BlogCatalog with
V ′ = 8312 and a new network for PPI with V ′ = 3390 nodes, respectively. Then, we start

Fig. 11 Accuracy performance of EVONRL— adding new edges. a BlogCatalog, b PPI

Heidari and Papagelis Applied Network Science (2020) 5:18 Page 30 of 38

Fig. 12 Accuracy performance of EVONRL— removing edges. a BlogCatalog, b PPI

adding the nodes v ∈ V ′′ = V \ V ′ that have been removed from G, one by one. When-
ever, a node v ∈ V ′′ is added to G′, any edge between v and nodes existing in the current
state of network G′ are added as well. Adding nodes to the network should have an effect
in the network embedding and thus in the overall accuracy of the classification results.
We evaluate the random walk update algorithm for the case of node addition in a way
similar to that of adding edges. The only difference is that every time a node is added at t
we update random walks to obtain RWt , by adding a number of edges. Then, the updated
RWt can be used for obtaining a network representation. Figure 13 shows the results.
Again we observe that the Macro-F1 accuracy of EVONRL follows the same trend as the
one of StaticNRL in both the BlogCatalog (Fig. 13a) and the PPI (Fig. 13b) networks.
Removing nodes: As we described in “Evolving network representation learning” section
node deletion can be treated as a special case of edge deletion. Given a network G =
(V ,E), we start removing nodes v ∈ V from the network, one by one. When a node
is removed all the edges connecting this node to the network are removed as well. The
process of removing nodes will result in a new network G′(V ′,E′), where V ′ ⊆ V and
E′ ⊆ E. Removing existing nodes from the network should have an effect in the network
embedding and thus in the overall accuracy of the classification results. We evaluate the
random walk update algorithm for the case of node deletion in a way similar to that of
deleting edges. The only difference is that every time a node is deleted at t we update

Fig. 13 Accuracy performance of EVONRL— adding new nodes. a BlogCatalog, b PPI

Heidari and Papagelis Applied Network Science (2020) 5:18 Page 31 of 38

random walks to obtain RWt , by removing a number of edges. Then, the updated RWt
can be used for obtaining a network representation. Figure 14 shows the results. Again
we observe that the Macro-F1 accuracy of EVONRL follows the same trend as the one of
StaticNRL in both the BlogCatalog (Fig. 14a) and the PPI (Fig. 14b) networks.
Discussion about accuracy value fluctuations: While we have demonstrated that
EVONRL is able to resemble the accuracy performance obtained by StaticNRL, one can
observe that in some cases the accuracy values of the methods can substantially fluctu-
ate. This behavior can be explained by the sensitivity of the StaticNRL methods to the set
of random walks obtained from the network, as discussed in the motivating example of
“Evaluation of the stability of StaticNRL methods” section. EVONRL would also inherit
this problem, as it depends on an initially obtained set of random walks that is subse-
quently updated at every network topology change. To demonstrate this sensitivity effect,
we run control experiments on the PPI network for the case of adding new nodes in the
network G, similar to the experiment in Fig. 13b. However, this time, instead of reporting
the average over a number of runs for the StaticNRL method, we report all its instances
(ref(Fig. 15)). In particular, as we add more nodes (the number of nodes increases from
3390 to 3990) a new network is obtained. We report the accuracy values obtained by run-
ning StaticNRL multiple times (40x) on the same network. We also depict the values of
two different runs for EVONRL. Each run obtains an initial set of random walks that is
incrementally updated in subsequent network topology changes. It becomes evident that
the StaticNRL values can significantly fluctuate due to the sensitivity to the set of random
walks obtained. It is important to note that EVONRL manages to fall within the range of
these fluctuations.

Q5 time performance of EVONRL

In this set of experiments we evaluate the time performance of our method and show
that EVONRL is very fast. We run experiments on two Small-world networks (Watts-
Strogatz (p = 0.5)), with two different number of nodes (|V | = 1000 and |V | = 10000).
We evaluate EVONRL against a standard StaticNRL method from the literature (Grover
and Leskovec 2016). Both algorithms start with the same set of random walks RW. As
new edges are arriving, StaticNRL needs to learn a new network representation by resim-
ulating a new set of walks every time. On the other hand, EVONRL has the overhead of

Fig. 14 Accuracy performance of EVONRL— removing new nodes. a BlogCatalog, b PPI

Heidari and Papagelis Applied Network Science (2020) 5:18 Page 32 of 38

Fig. 15 Accuracy values obtained by running StaticNRL multiple times on the same network. The values are
significantly fluctuating due to sensitivity to the set of random walks obtained. Similarly, EVONRL is sensitive
to the initial set of random walks obtained. Two instances of EVONRL are shown, each of which operates on a
different initial set of random walks

first indexing the set of initial random walks RW. Then, for every new edge that is arriv-
ing it just needs to perform the necessary updates as described earlier. Figure 16 shows
the results. It can be seen that the performance of StaticNRL is linear to the number of
new edges, since it has to run again and again for every new edge. At the same time,
EVONRL is able to accommodate the changes more than 100 times faster than Static-
NRL. This behavior is even more stressed in the larger network (where the number of
nodes is larger). By increasing the number of nodes, running StaticNRL becomes signifi-
cantly slower, because by design it needs to simulate larger amount of random walks. On
the other hand, EVONRL has a larger initialization overhead, but after that it can easily
accommodate new edges. This is because every update is only related to the number of
random walks affected and not the size of the network. This is an important observation,
as it means that the benefit of EVONRL will be more stressed in larger networks.

Q6 decision-making performance of EVONRL

In this experiment, we compare the two different strategies for deciding when to obtain
a network representation, PERIODIC and ADAPTIVE. The experiment is performed using
the BlogCatalog network and the changes in the network are related to edge addition.
For presentation purposes, we limit the experiment to 1000 edges. The evaluation of this
experiment is based on the number of random walk changes RWt

told between a random
walk set obtained at time t (one edge is added at each time) and a previously obtained
network representation as defined by each strategy. Results are shown in Fig. 17. The
PERIODIC strategy represents a “blind” strategy where new embeddings are obtained peri-
odically (every 50 times steps or every 100 time steps). On the other hand, the ADAPTIVE

method is able to make informed decisions as it monitors the importance of every edge
added in the network. The ADAPTIVE method is basing its decisions on the a peak detec-
tion method (τ = 3.5) and a method that monitors cumulative effects due to a number

Heidari and Papagelis Applied Network Science (2020) 5:18 Page 33 of 38

Fig. 16 EVONRL scalability (running time axis is in logarithmic scale). StaticNRL scales linearly to the number
of new edges added in the network, since it has to run again and again for every new edge. At the same time,
EVONRL is able to accommodate the changes more than 100 times faster than StaticNRL. This behavior is
even more stressed in the larger network (where the number of nodes is larger)

of changes (cutoff = 4000). As a result, ADAPTIVE is able to perform much better, as
depicted by many very low values in the RWt

told .

Extensions and variants
While our algorithms have been described and evaluated on a single machine, they have
been designed with scalability in mind. Recall that our indexing and searching of random

Fig. 17 Comparative analysis of different strategies for determining when to obtain a network representation.
The PERIODIC methods will obtain a new representation every 50 or 100 time steps (i.e., network changes).
Our proposed method, ADAPTIVE, is combining a peak detectionmethod and a cumulative changes cut-off
method to determine the time to obtain a new network representation. As a result it is able to make more
informed decisions and perform better. This is depicted by smaller (on average) changes of the RWt

told , which
implies that a more accurate network representation is available for down-stream network mining tasks

Heidari and Papagelis Applied Network Science (2020) 5:18 Page 34 of 38

walks is supported by Elasticsearch5, which itself is based on Apache Lucene6. Elastic-
search is a distributed index and search engine that can naturally scale to very large
number of documents (i.e., a very large number of random walks in our setting). There
are a couple of basic concepts that make a distributed index and search engine scalable
enough to be suitable for the needs of our problem:

– Index sharding: One of the great features of a distributed index is that it’s designed
from the ground up to be horizontally scalable, meaning that more nodes can be
added to the cluster to match the capacity required by the problem. It achieves
horizontal scalability by sharding its index and assigning each shard to a node in the
cluster. This allows each node to have to deal with only part of the full random walk
index. Furthermore, it also has the concept of replicas (copies of shards) to allow
fault tolerance and redundancy, as well as an increased throughput.

– Distributed search : Searching a distributed index is done in two phases:

– Querying: Each query q is sent to all shards of the distributed index and each
shard returns a list of the matching random walks. Then, the lists are merged,
sorted and returned along with the random walk ids.

– Fetching: Each random walk is fetched by the shard that owns it using the
random walk id information. Random walks that lie in different shards can be
processed in parallel by the method requesting them.

Therefore, while our algorithms are demonstrated in smaller networks for clarity of cover-
age and better representation of the algorithmic comparison, in practice they can be easily
and naturally expanded to very large graphs. Extensions of the algorithms to a distributed
environment are out of the scope of this work.

Related work
Our work is mostly related to research in the area of static network representations learn-
ing and dynamic network representation learning. It is also related to research in random
walks.
Static network representations learning: Starting with Deepwalk (Perozzi et al. 2014),
these methods use finite length random walks as their sampling strategy and inspired by
word2vec (Mikolov et al. 2013b) use skip-gram model to maximize likelihood of observ-
ing a node’s neighborhood given its low dimensional vector. This neighborhood is based
on random walks. LINE (Tang et al. 2015) proposes a breadth-first sampling strategy
which captures first-order proximity of nodes. In (Grover and Leskovec 2016), authors
presented node2vec that combines LINE and Deepwalk as it provides a flexible control of
random walk sampling strategy. HARP (Chen et al. 2017) extends random walks by per-
forming them in a repeated hierarchical manner. Also there have been further extensions
to the random walk embeddings by generalizing either the embeddings or random walks
(Chamberlain et al. 2017; Perozzi et al. 2016). Role2Vec (Ahmed et al. 2018) maps nodes
to their type-functions and generalizes other random walk based embeddings. Our work
is focusing on how many of the above methods introduced for static networks (the ones
that use random walks) can be extended to the case of evolving networks.

5Elasticsearch: https://www.elastic.co
6Apache Lucene: http://lucene.apache.org/core/

https://www.elastic.co
http://lucene.apache.org/core/

Heidari and Papagelis Applied Network Science (2020) 5:18 Page 35 of 38

Dynamic network representation learning: Existing work on embedding dynamic net-
works often apply static embedding to each snapshot of the network and then rotationally
align the static embedding across each time-stamp (Hamilton et al. 2016). Graph fac-
torization approaches attempted to learn the embedding of dynamic graphs by explicitly
smoothing over consecutive snapshots (Ahmed et al. 2013). DANE (Li et al. 2017) is a
dynamic attributed network representation framework which first proposes an offline
embedding method, then updates the embedding results based on the changes in the
attributed evolving network. Know-Evolve (Trivedi et al. 2017) proposes an evolving
network embedding method in a knowledge-graph for entity embeddings based on mul-
tivariate event detection. EvoNRL is a more general method which extracts the network
representation without using node features or explicit use of events. CTDN (Nguyen et al.
2018) is a random walk-based continuous-time dynamic network embedding. Our work
is different from this paper in two aspects. First the random walk in CTDN is a tempo-
ral random walk and second CTDN is not an online framework and you need to have all
the snapshots of the network before embedding it. HTNE (Zuo et al. 2018) tries to model
the temporal network as a self-excited system and using Hawkes process model neigh-
bourhood formation in the network and optimize the embedding based on point-time
process. HTNE is an online dynamic network embedding framework which is different
from EvoNRL as it uses history in its optimization and it needs to be tuned for history
in each step. NetWalk (Yu et al. 2018) is a random walk based clique embedding. The
random walk update in that paper is different from EvoNRL. First in NetWalk, the reser-
voir is in memory which finds the next step based on the reservoir and it doesn’t benefit
the sampling method used in EvoNRL which is based on node degrees. Also, EvoNRL
leverages the speed of the inverted-indexing tools. In (Du et al. 2018), authors propose
a dynamic skip-gram framework which is orthogonal to our work. Moreover, (Rudolph
and Blei 2018) proposes a dynamic word embedding which uses Gaussian random walks
to project the vector representations of words over time. The random walks in that work
are based on vector representations and are defined over time-series, which is different to
our approach.
Random walks: Our work is also related to general concept of random walks on net-
works (Lovász 1993) and its applications (Craswell and Szummer 2007; Page et al. 1999).
READS (Jiang et al. 2017) is an indexing scheme for Simrank computation in dynamic
graphs which keeps an online set of reverse-random walks and re-simulates the walks on
all of the instances of the node queries. Our proposed method, keeps a set of finite-length
random walks which is different from pagerank random walks and has a different sam-
pling strategy and application compared to READS. Another aspects of randomwalk used
in streaming data are continuous-time random walks . Continuous Time Random Walks
(CTRW) (Kenkre et al. 1973) are widely studied in time-series analysis and has applica-
tions in Finance (Paul and Baschnagel 2010). CTRW is orthogonal to our work as we are
not using time-variant random walks and our random walks do not jump over time.

Conclusions
Our focus in this paper is on learning representations of evolving networks. To extend
static random walk based network representation methods to evolving networks, we
proposed a general framework for updating random walks as new edges and nodes are
arriving in the network. The updated random walks leverage time and space efficiency

Heidari and Papagelis Applied Network Science (2020) 5:18 Page 36 of 38

of inverted indexing methods. By indexing an initial set of random walks in the network
and efficiently updating it based on the occurring network topology changes, we man-
age to always keep a valid set of random walks with minimum possible divergence from
the initial random walk set. Our proposed method, EVONRL, utilizes the always valid
set of random walks to obtain new network representations that respect the changes
that occurred in the network. We demonstrated that our proposed method, EVONRL is
both accurate and fast. We also discussed the interesting trade-off between time perfor-
mance and accuracy when obtaining subsequent network representations. Determining
the right time for obtaining a network embedding is a challenging problem. We demon-
strated that simple strategies for monitoring the changes that occur in the network can
provide support in decision making. Overall, the methods presented are easy to under-
stand and simple to implement. They can also be easily adopted in diverse domains and
applications of graph/network mining.
Reproducibility: We make source code and data sets used in the experiments publicly
available7 to encourage reproducibility of results.

Abbreviations
CCA: Canonical correlation analysis; Cit-HepTh: High energy physics theory citation network; CTDN: Continious-time
dynamic network embedding; CTRW: Continuous time random walks; DANE: Dynamic attributed network embedding;
DBLP: Digital bibliography & library project; EvoNRL: Evolving network representation learning; HOPE: High-order
proximity preserved embedding; HTNE: Hawkes process based temporal network embedding; NSERC: Natural sciences
and engineering research council of Canada PPI: Protein-protein interaction; READS: Randomized efficient accurate
dynamic SimRank computation; StaticNRL: Static network representation learning; TADW: Text-associated DeepWalk

Acknowledgements
Not applicable.

Authors’ contributions
FH has made substantial contributions to the design of the work; the acquisition, analysis, and interpretation of data; the
creation of new software used in the research; has drafted and revised the work. MP has made substantial contributions
to the conception and design of the work; interpretation of data and results; has drafted and revised the work. The
author(s) read and approved the final manuscript.

Funding
This research has been supported by a Natural Sciences and Engineering Research Council of Canada (NSERC) Discovery
Grant (#RGPIN-2017-05680).

Availability of data andmaterials
Both real and synthetic data sets have been employed.

– Protein-Protein Interactions (PPI): This a real data set of a subgraph of the protein-to-protein network for Homo
Sapiens (Breitkreutz et al. 2007). We use the labels from the pre-processed data used in (Grover and Leskovec 2016).
They are available through the following links: http://thebiogrid.org/download.php https://snap.stanford.edu/
node2vec/Homo_sapiens.mat

– BlogCatalog (Reza and Huan): This is a real data set of a social network of bloggers. It is available through the
following link: http://socialcomputing.asu.edu/datasets/BlogCatalog3

– DBLP (?dblp): This is a real data set of a collaboration network (dblp) [38]. It is available through the following link:
https://snap.stanford.edu/data/com-DBLP.html

– Synthetic Networks: We create a set of Watts-Strogatz (Newman 2003) random networks of different sizes
(n = {1000, 10000}) and different rewiring probabilities (p = {0, 0.5, 1.0}). The rewiring probability is used to create
representative Lattice (p = 0), Small-world (p = 0.5) and Erdos-Reyni (p = 1) networks, respectively. The networks
are created using the graph generator of the NetworkX library: https://networkx.github.io/

Competing Interests
The authors declare that they have no competing interests.

Received: 29 March 2019 Accepted: 12 February 2020

References
Computer science bibliography

7https://github.com/farzana0/EvoNRL

http://thebiogrid.org/download.php
https://snap.stanford.edu/node2vec/Homo_{s}apiens.mat
https://snap.stanford.edu/node2vec/Homo_{s}apiens.mat
http://socialcomputing.asu.edu/datasets/BlogCatalog3
https://snap.stanford.edu/data/com-DBLP.html
https://networkx.github.io/
https://github.com/farzana0/EvoNRL

Heidari and Papagelis Applied Network Science (2020) 5:18 Page 37 of 38

Ahmed A, Shervashidze N, Narayanamurthy S, Josifovski V, Smola AJ (2013) Distributed large-scale natural graph
factorization. In: Proceedings of the 22nd international conference on World Wide Web - WWW ’13. ACM Press.
https://doi.org/10.1145/2488388.2488393

Ahmed NK, Rossi R, Lee JB, Kong X, Willke TL, Zhou R, Eldardiry H (2018) Learning role-based graph embeddings. arXiv
preprint arXiv:1802.02896

Antoniak M, Mimno D (2018) Evaluating the stability of embedding-based word similarities. TACL 6:107–119
Barnett V, Lewis T (1974) Outliers in statistical data; 3rd ed. Wiley series in probability and mathematical statistics. Wiley,

Chichester
Bengio Y, Courville A, Vincent P (2013) Representation learning: A review and new perspectives. IEEE TPAMI

35(8):1798–1828
Breitkreutz B-J, Stark C, Reguly T, Boucher L, Breitkreutz A, Livstone M, Oughtred R, Lackner DH, Bähler J, Wood V, et al.

(2007) The biogrid interaction database: 2008 update. Nucleic Acids Res 36(suppl_1):D637–D640
Cai H, Zheng VW, Chang K (2018) A comprehensive survey of graph embedding: Problems, techniques and applications.

IEEE TKDE 30(9):1616–1637. https://doi.org/10.1109/tkde.2018.2807452
Cao S, Lu W, Xu Q (2015) Grarep: Learning graph representations with global structural information. In: Proceedings of

the 24th ACM International on Conference on Information and Knowledge Management, CIKM ’15. ACM, New York.
pp 891–900

Chamberlain BP, Clough J, Deisenroth MP (2017) Neural embeddings of graphs in hyperbolic space. arXiv preprint
arXiv:1705.10359

Chen H, Perozzi B, Hu Y, Skiena S (2017) Harp: Hierarchical representation learning for networks. arXiv preprint
arXiv:1706.07845

Craswell N, Szummer M (2007) Random walks on the click graph. In: Proceedings of the 30th annual international ACM
SIGIR conference on Research and development in information retrieval - SIGIR ’07. ACM Press. https://doi.org/10.
1145/1277741.1277784

Du L, Wang Y, Song G, Lu Z, Wang J (2018) Dynamic network embedding: an extended approach for skip-gram based
network embedding. In: Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence.
International Joint Conferences on Artificial Intelligence Organization. https://doi.org/10.24963/ijcai.2018/288

Goyal P, Kamra N, He X, Liu Y (2018) Dyngem: Deep embedding method for dynamic graphs
Grover A, Leskovec J (2016) node2vec: Scalable feature learning for networks. In: Proceedings of the 22nd ACM SIGKDD

International Confer- ence on Knowledge Discovery and Data Mining, KDD ’16. Association for Computing
Machinery, New York. pp 855–864

Hamilton WL, Leskovec J, Jurafsky D (2016) Diachronic word embeddings reveal statistical laws of semantic change. In:
Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers).
Association for Computational Linguistics, Berlin. pp 1489–1501

Hamilton WL, Ying R, Leskovec J (2017) Representation learning on graphs: Methods and applications. IEEE Data Eng Bull
Heidari F, Papagelis M (2018) Evonrl: Evolving network representation learning based on random walks. In: Proceedings

of the 7th International Conference on Complex Networks and Their Applications. Springer International Publishing.
pp 457–469. https://doi.org/10.1007/978-3-030-05411-3_37

Hotelling H (1992) Relations between two sets of variates. In: Breakthroughs in statistics. Springer, New York. pp 162–190
Jiang M, Fu AW-C, Wong RC-W (2017) Reads: A random walk approach for efficient and accurate dynamic simrank. Proc

VLDB Endow 10(9):937–948
Kenkre VM, Montroll EW, Shlesinger MF (1973) Generalized master equations for continuous-time random walks. J Stat

Phys 9:45–50
Kim Y, Chiu Y, Hanaki K, Hegde D, Petrov S (2014) Temporal analysis of language through neural language models. In:

Proceedings of the ACL 2014 Workshop on Language Technologies and Computational Social Science. Association
for Computational Linguistics. https://doi.org/10.3115/v1/w14-2517

Kornblith S, Norouzi M, Lee H, Hinton G (2019) Similarity of neural network representations revisited. In: Chaudhuri K,
Salakhutdinov R (eds). Proceedings of the 36th International Conference on Machine Learning, volume 97 of
Proceedings of Machine Learning Research, Long Beach. pp 3519–3529

Leskovec J, Krevl A (2014) SNAP Datasets: Stanford large network dataset collection. http://snap.stanford.edu/data.
Accessed 1 June 2019

Li J, Dani H, Hu X, Tang J, Chang Y, Liu H (2017) Attributed network embedding for learning in a dynamic environment.
ACM Press. https://doi.org/10.1145/3132847.3132919

Lovász L (1993) Random walks on graphs. Comb Paul erdos is eighty 2(1-46):4
Mikolov T, Chen K, Corrado G, Dean J (2013a) Efficient estimation of word representations in vector space. In: Bengio Y,

LeCun Y (eds). 1st International Conference on Learning Representations, ICLR 2013. Workshop Track Proceedings,
Scottsdale

Mikolov T, Sutskever I, Chen K, Corrado GS, Dean J (2013b) Distributed representations of words and phrases and their
compositionality. In: Proceedings of the 26th International Conference on Neural Information Processing Systems -
Volume 2, NIPS’13. Curran Associates Inc., Red Hook. pp 3111–3119

Morcos A, Raghu M, Bengio S (2018) Insights on representational similarity in neural networks with canonical correlation.
In: Proceedings of the 32nd International Conference on Neural Information Processing Systems, NIPS’18. Curran
Associates Inc., Red Hook. pp 5727–5736

Newman ME (2003) The structure and function of complex networks. SIAM Rev 45(2):167–256
Nguyen GH, Lee JB, Rossi RA, Ahmed NK, Koh E, Kim S (2018) Continuous-time dynamic network embeddings. In:

Companion of the The Web Conference 2018 on The Web Conference 2018 - WWW ’18. ACM Press. https://doi.org/
10.1145/3184558.3191526

Ou M, Cui P, Pei J, Zhang Z, Zhu W (2016) Asymmetric transitivity preserving graph embedding. In: Proceedings of the
22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining - KDD ’16. ACM Press.
pp 1105–1114. https://doi.org/10.1145/2939672.2939751

https://doi.org/10.1145/2488388.2488393
https://doi.org/10.1109/tkde.2018.2807452
https://doi.org/10.1145/1277741.1277784
https://doi.org/10.1145/1277741.1277784
https://doi.org/10.24963/ijcai.2018/288
https://doi.org/10.1007/978-3-030-05411-3_37
https://doi.org/10.3115/v1/w14-2517
http://snap.stanford.edu/data
https://doi.org/10.1145/3132847.3132919
https://doi.org/10.1145/3184558.3191526
https://doi.org/10.1145/3184558.3191526
https://doi.org/10.1145/2939672.2939751

Heidari and Papagelis Applied Network Science (2020) 5:18 Page 38 of 38

Page L, Brin S, Motwani R, Winograd T (1999) The pagerank citation ranking: Bringing order to the web. Technical report,
Stanford InfoLab

Paul W, Baschnagel J (2010) Stochastic Processes: From Physics to Finance. Springer, Berlin Heidelberg
Pearson K (1905) The problem of the random walk. Nature 72(1867):342
Perozzi B, Al-Rfou R, Skiena S (2014) Deepwalk: Online learning of social representations. Association for Computing

Machinery, New York
Perozzi B, Kulkarni V, Chen H, Skiena S (2016) Don’t walk, skip! online learning of multi-scale network embeddings. In:

Proceedings of the 2017 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining
2017, ASONAM ’17. Association for Computing Machinery, New York. pp 258–265

Raghu M, Gilmer J, Yosinski J, Sohl-Dickstein J (2017) Svcca: Singular vector canonical correlation analysis for deep learning
dynamics and interpretability. In: Guyon I, Luxburg UV, Bengio S, Wallach H, Fergus R, Vishwanathan S, Garnett R (eds).
Advances in Neural Information Processing Systems 30. Curran Associates, Inc., Red Hook. pp 6076–6085

J. Ramsay J, Berge Jt, Styan G (1984) Matrix correlation. Psychometrika 49(3):403–423
Reza Z, Huan L Social computing data repository
Rudolph M, Blei D (2018) Dynamic embeddings for language evolution. In: Proceedings of the 2018 World Wide Web

Conference on World Wide Web - WWW ’18. ACM Press. https://doi.org/10.1145/3178876.3185999
Tang J, Qu M, Wang M, Zhang M, Yan J, Mei Q (2015) LINE: large-scale information network embedding. In: Proceedings

of the 24th International Conference on World Wide Web, WWW ’15. pp 1067–1077. Republic and Canton of Geneva,
CHE, 2015. International World Wide Web Conferences Steering Committee

Trivedi R, Dai H, Wang Y, Song L (2017) Know-evolve: Deep temporal reasoning for dynamic knowledge graphs. ICML
70:3462–3471

Wang D, Cui P, Zhu W (2016) Structural deep network embedding. In: Proceedings of the 22Nd ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, KDD ’16. ACM, New York. pp 1225–1234

Yang C, Liu Z, Zhao D, Sun M, Chang EY (2015) Network representation learning with rich text information. In:
Proceedings of the 24th International Conference on Artificial Intelligence, IJCAI’15. AAAI Press. pp 2111–2117

Yang J, Leskovec J (2015) Defining and evaluating network communities based on ground-truth. KAIS 42(1):181–213
Yu W, Cheng W, Aggarwal CC, Zhang K, Chen H, Wang W (2018) Netwalk: A flexible deep embedding approach for

anomaly detection in dynamic networks. In: Proceedings of the 24th ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining KDD ’18. ACM, New York. pp 2672–2681

Zhang D, Yin J, Zhu X, Zhang C (2018) Network representation learning: A survey. IEEE Transac Big Data:1. https://doi.org/
10.1109/tbdata.2018.2850013

Zuo Y, Liu G, Lin H, Guo J, Hu X, Wu J (2018) Embedding temporal network via neighborhood formation. In: Proceedings
of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. ACM. https://doi.org/10.
1145/3219819.3220054

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1145/3178876.3185999
https://doi.org/10.1109/tbdata.2018.2850013
https://doi.org/10.1109/tbdata.2018.2850013
https://doi.org/10.1145/3219819.3220054
https://doi.org/10.1145/3219819.3220054

	Abstract
	Keywords

	Introduction
	Background and motivation
	Evaluation of the stability of StaticNRL methods

	Problem definition
	Algorithmic framework of dynamic random walks
	Incremental update of random walks
	Edge addition
	Edge deletion
	Node addition
	Node deletion

	Efficient storage and retrieval of random walks

	Evolving network representation learning
	Learning embeddings
	Analytical method for determining the timing of a network embedding

	Experimental evaluation
	Q1 effect of network topology
	Q2 effect of arriving edge importance
	Q3 accuracy performance of EvoNRL
	Similarity of two representations

	Q4 classification performance of EvoNRL
	Q5 time performance of EvoNRL
	Q6 decision-making performance of EvoNRL

	Extensions and variants
	Related work
	Conclusions
	Abbreviations
	Acknowledgements
	Authors' contributions
	Funding
	Availability of data and materials
	Competing Interests
	References
	Publisher's Note

