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ABSTRACT

The movement of people can influence the spread of diseases, es-
pecially in populated areas. While measures like quarantine can
curb disease spread by restricting the movement of those infected,
they come with socioeconomic consequences. Furthermore, not
everyone might adhere to these restrictions, undermining their
effectiveness. A more effective strategy is to educate people on the
risks tied to their movement habits and recommend safer options. In
this research, we introduce the problem of optimal risk-aware point-
of-interest (POI) recommendations during epidemics, where people
get recommendations on what POI to visit that reduces the risk of
getting infected. The risk of infection at a POI is modeled based
on its capacity and visit patterns over time. Then, we present a
method that provides personalized recommendations which, when
universally adopted, the overall risk is minimized. Unlike existing
strategies, our method considers simultaneous user requests made
in the same time period, which might influence the relative risk at
POIs. An extensive evaluation was conducted, using real-world data
coming from three major cities in Canada, which showed that our
method outperforms the current state of practice method and other
sensible baselines, on varying settings. Specifically, our method pre-
sented a decrease in the relative added risk of infection by 99.87%,
71.56% and 61.54% at each city, respectively. We also examined how
the optimal solution is impacted if only a specific portion of the
population follows the recommendation. Our optimal risk-aware
recommendation method has the potential to reduce infection risk
by promoting responsible behaviors within communities.
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Figure 1: An illustrative example of how different models

form POI recommendations. The black pins show all the

POI options available to two users within their search ra-

dius (random); the pins bounded by a blue square represent
the POIs closest to each user (closest); the pin bounded by
an orange circle represents the least risky POI at that time

(local); the pins bounded by a green diamond represent our

method (global). If both people follow local, then they will

visit the same place at the same time, leading to suboptimal

results (i.e., higher risk), as opposed to following our globally

optimal risk-aware recommendation model global.

1 INTRODUCTION

Motivation & the problem of interest. Human mobility can
significantly affect the spread of epidemics. When people move
from one place to another, they can carry the pathogen with them
and introduce it to new populations. Densely populated areas and
crowded places are associated with higher risk of transmission that
can lead to outbreaks and the rapid spread of the disease. Mobility
can also play a role in containing epidemics. For instance, quaran-
tine and isolation measures can be implemented by controlling the
movement of infected individuals and preventing further spread of
the disease [13, 30]. However, such policies have significant draw-
backs — they can lead to decreased economic activity, they can
have a psychological impact, and they can infringe the privacy
of individuals and our civil liberties. They can also be ineffective,
as individuals might not conform with them. A better approach
is to inform people about the risks associated with their mobility
patterns, present them with alternatives, allow them to weight their
choices and help them to make more informed decisions. These
observations, along with the advancement of location tracking tech-
nologies [17, 28, 38], have highlighted the need for location-based
services (or mobile apps) that can suggest points of interest (POI)
with reduced risk of infection. The task is to provide personalized
recommendations that minimize the overall risk of infection.
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Current approaches & their limitations. Current approaches
have been based on the assumption that individuals can reduce their
risk of contracting an infection by opting for less crowded locations.
Therefore, given as input their current location and a search radius,
they provide a ranked list of the safest POIs. An illustrative example
is shown in Figure 1, where multiple users, located at different
locations, submit queries about POIs in their vicinity (defined by a
radius parameter) that satisfy specific risk-aware preferences. The
safety of a POI is determined by mining historical visit patterns, and
providing predictions about a POI’s occupancy at the time of visit
[3, 31], or by mining historical real-world check-in datasets [19].
A critical limitation of this approach is that it does not consider
concurrent user requests, requests made by different people within
the same geographic area and time period. Concurrent queries
may lead to suboptimal results as multiple individuals might end
up at the same place, at the same time. The problem can be more
stressed in busy urban areas, where suboptimal recommendations
might end up turning supposedly safe POIs to risky ones. The mere
consequence of this is that current methods fail to minimize the
risk for certain people, and the community as a whole.
Our approach & contributions. In contrast to this local optimiza-
tion strategy, our proposed solution follows a global optimization
strategy by thoroughly exploring the entire solution space and rec-
ommending POIs to individuals that minimize the overall risk of
the community. A summary of our contributions is provided below:
• We present a model that incorporates mobility data to assess
the risk of infection at POIs. The risk model factors in (i)
the expected occupancy of a POI at a certain time using
historical data, and (ii) the expected number of visits in the
near future due to real-time recommendations.
• We introduce the novel optimization problem of risk-aware
POI recommendations during epidemics. We formally char-
acterize the computational complexity of the problem.
• We model the optimization problem as a generalized assign-
ment problem (GAP) where individuals are assigned to POIs.
We solve the problem using a mixed-integer quadratic pro-
gramming (MIQP) solver. Compared to a locally optimal
recommendation method (local), our globally optimal rec-
ommendation method (global) minimizes the overall risk
of infection for all individuals.
• We present a comprehensive experimental evaluation that
demonstrates the superiority of global against state of prac-
tice and other sensible baselines. For instance, we witness
that global yields a 99.87%, 71.56% and 61.54% improvement
compared to local, in the relative added risk of infection
for Toronto, Montreal, and Calgary, respectively.
• We make our source code publicly available to encourage
the reproducibility of our work1.

Paper organization. The remainder of the paper is organized as
follows: section 2 provides preliminaries and a formal definition
of the problem. Section 3 presents our proposed recommendation
model and scientific approach. Our experimental evaluation and a
discussion of the results are presented in section 4. We review the
related work in section 5, and conclude in section 6.

1https://github.com/Nina1234y/RiskAwarePOIRecommender

2 PRELIMINARIES AND PROBLEM

DEFINITION

In this section, we briefly introduce definitions and notations (refer
to Table 1). Then, we formally define the problem of interest, present
its computational complexity and characterize its hardness.

2.1 Preliminaries

Definition 1 (Map). LetM be a map over a predefined, finite, and
continuous geographical area.
Definition 2 (Block). LetB = {b1, b2, . . . , b | B | } be a set of disjoint
hexagonal shaped blocks that fully tessellate mapM. All b𝑘 ∈ B
are polygons with the same arbitrary area 𝑋 .
Definition 3 (POI). Let P = {𝑝1, 𝑝2, . . . , 𝑝 | P | } be a set of points of
interests on a mapM. Each 𝑝 𝑗 ∈ P has a a surface area 𝑎 𝑗 , average
dwell time of 𝑎𝑑𝑡 𝑗 , and an expected, time-varying occupancy 𝑜𝑡

𝑗
at

time 𝑡 . Due to the tessellation of the mapM to blocks, each 𝑝 𝑗 con-
sists of ⌈𝑎 𝑗

𝑋
⌉ finite disjoint hexagonal blocks of area𝑋 . Furthermore,

we assume availability of surface areas and average dwell-times,
which are generally available by third-party data providers, as dis-
cussed in section 4. In addition, we assume a taxonomy of POIs,
such that individuals can query for a certain POI type, including
restaurants, grocery stores, pharmacies, and so on.
Definition 4 (Contact). Let 𝑛 be the number of individuals in the
same POI and in the same block 𝑏𝑘 ∈ B. These individuals form
contacts with each other, which can be represented as the number
of edges in a complete graph𝑛(𝑛−1)/2. As individuals move around
over time, this value changes accordingly. Let Γ𝑡

𝑗
be the number

of contacts at time 𝑡 for POI 𝑝 𝑗 . Let 𝑜𝑡𝑗 be the number of people in
𝑝 𝑗 at time 𝑡 . As previously defined, 𝑝 𝑗 consists of ⌈

𝑎 𝑗
𝑋
⌉ hexagons.

We make the simplifying assumption that people are uniformly
distributed in these blocks. As such, the number of people per block

at time 𝑡 can be represented as 𝑛 = ⌊
𝑜𝑡
𝑗
𝑋

𝑎 𝑗
⌋. Finally, we formally

present the number of contacts in a block at 𝑝 𝑗 :

Γ𝑡𝑗 =

𝑜𝑡
𝑗
𝑋

𝑎 𝑗
(
𝑜𝑡
𝑗
𝑋

𝑎 𝑗
− 1)

2
, ∀𝑗 ∈ 1 . . . |P | (1)

Definition 5 (Invocation frequency). Let invocation frequency, 𝜂,
be the rate at which a model is invoked. As queries arrive, they wait
to be processed as a batch in the next invocation of the model. A
lower 𝜂 provides more information to the model, i.e., more concur-
rent queries, which justifies the benefit of optimization. However,
as the size of the problem increases, the model’s run-time cost
increases as well. We further investigate this trade-off in section 4.

2.2 Problem Definition

Problem 1 (Optimal risk-aware POI recommendation). Let a
mapM, a tessellation of it by blocks in B, and a set of POIs P. Also,
let a set of user queries N = {< 𝑠1, 𝑟1 >, . . . , < 𝑠𝑛, 𝑟𝑛 >} over a
period 𝑡 ∈ [𝑡𝑠 , 𝑡𝑒 ], where 𝑠𝑖 is the source location of user 𝑖 , 𝑟𝑖 is the
search radius applied by user 𝑖 , and 𝑡𝑠 , 𝑡𝑒 are the start and end time
of the sample period, respectively. GivenM, B, P, andN , find the
top-𝐾 POIs to recommend to each user, such that the overall risk
at all POIs is minimized. POI risk is defined in section 3.1.
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Table 1: Summary of Notations

Symbol Description

M enclosed geographical map
𝑡𝑠 , 𝑡𝑒 start and end time of the sample period (in seconds)
NΔ𝑡 a set of queries during duration Δ𝑡
P a set of POIs {𝑝1, 𝑝2, . . . , 𝑝 | P | } atM
𝑖 , 𝑗 , 𝑘 𝑖 ∈ [0, |N |], 𝑗 ∈ [0, |P |], 𝑘 ∈ [0, 𝐾]
𝑜
𝑡𝑒
𝑗

occupancy at 𝑝 𝑗 at time 𝑡𝑒
𝑜𝑡𝑠𝑗 average occupancy of 𝑝 𝑗 over 𝑡 ∈ [𝑡𝑠, 𝑡𝑠 + 𝑎𝑑𝑡 𝑗 ]
B a set of hexagonal blocks
𝑋 recommended social distancing area in m2

𝑎 𝑗 area of 𝑝 𝑗 in m2

𝑑𝑖 𝑗 eligibility of user i to go to 𝑝 𝑗
𝑦 𝑗 number of users assigned to 𝑝 𝑗
𝑆𝑖 𝑗 Selection likelihood matrix
𝐼𝑖 number of recommendation user 𝑖 gets
𝑄𝑖 𝑗ℎ assign user 𝑖 to 𝑝 𝑗 at rank ℎ
𝑟𝑖𝑠𝑘𝑡

𝑗
risk of infection of 𝑝 𝑗 at time 𝑡

𝑠𝑖 source coordinate for user 𝑖
𝑟𝑖 search radius in Km for user 𝑖
𝐾 number of POI recommendation
𝑎𝑑𝑡𝑡

𝑗
average dwell time of 𝑝 𝑗 at time 𝑡

𝑎𝑟𝑖𝑠𝑘𝑡
𝑗

added risk at 𝑝 𝑗 in time 𝑡
𝜂 invocation frequency
Γ𝑡
𝑗

number of contacts at POI 𝑝 𝑗 at time 𝑡

2.3 Complexity Analysis

In this section, we evaluate the complexity of concurrent POI rec-
ommendations and show that the problem is NP-hard. Let N be a
set of queries, P be a set of POIs, and𝐾 be the number of recommen-
dations each user receives. We want to minimize a specific utility
function that is affected by the size of these three components: N ,
P and 𝐾 . The number of possibilities are a 𝐾-permutation of |P |
POIs per user (i.e., O(𝑃 | P |,𝐾 )), to the power of N users, bringing
the overall time and space complexity to O((𝑃 | P |,𝐾 ) |𝑁 | ).

2.3.1 Problem Hardness. We establish the hardness of our problem
by showing it is at least as hard as the Generalized Assignment
Problem problem, which is a known NP-complete problem [29].

Theorem 2.1. Problem 1 (optimal risk-aware POI recommenda-
tion) is NP-hard.

Proof. We prove the claim by reducing the GAP problem to our
problem. The GAP is defined as follows. Let 𝑖 ∈ 1 . . . 𝑛 be a set of
workers, 𝑗 ∈ 1 . . .𝑚 be a set of tasks, 𝑏𝑖 ∈ 𝐵𝑛 be the total work
capacity of worker 𝑖 , 𝑟𝑖 𝑗 ∈ 𝑅𝑛×𝑚 be the weight of task 𝑗 if assigned
to worker 𝑖 , ℎ 𝑗 ∈ 𝐻𝑚 be the total number of workers needed for
task 𝑗 . It can be set to ℎ 𝑗 ≤ 𝑛 to indicate that anywhere from 0
to 𝑛 workers can be assigned to task 𝑗 . Finally, let 𝑐𝑖 𝑗 ∈ 𝐶𝑛×𝑚
be the cost associated to assign worker 𝑖 to task 𝑗 . The GAP is to
determine an optimal assignment of workers to tasks, where each
worker has a fixed capacity. Given an instance of GAP, we build
an instance of our problem as follows. Let 𝑖 ∈ N be a set of users
that correspond to the 𝑛 set of workers, and let 𝑗 ∈ P be a set of
POIs that correspond to the𝑚 set of tasks. Then, let 𝑑𝑖 𝑗 ∈ 𝐷 |N |× |P |

Figure 2: Architecture diagram for POI risk calculation.

correspond to 𝑟𝑖 𝑗 ∈ 𝑅𝑛×𝑚 . We set 𝑑𝑖 𝑗 to be a binary matrix that
shows the feasibility of user 𝑖 to go to 𝑝 𝑗 . Let 𝑙𝑖 ∈𝑚𝑖𝑛(

∑
𝑗∈P 𝑑𝑖 𝑗 , 𝐾)

be a set of the POI recommendations user 𝑖 gets and correspond to
𝑏𝑖 ∈ 𝐵𝑛 . To clarify, this capacity constraint ensures that every user
can go to a maximum of up to K POIs. We know this constraint
prior to running the algorithm, and its value remains constant, as
defined by Eq. 7 in the manuscript. We let 𝑔 𝑗 ≤ |N | correspond
to ℎ 𝑗 ≤ 𝑛 to indicate that POIs have no capacity restrictions/ can
accommodate all users. Let 𝑦 𝑗 be the number of people assigned to
𝑝 𝑗 and assume the number of recommendations 𝐾 a user gets is 1
in order to view the problem in a two dimensional space. Finally,
let 𝑐𝑖 𝑗 ∈ 𝐶𝑛×𝑚 be the cost associated to assign user 𝑖 to 𝑝 𝑗 . This
reduction is polynomial-time and shows that solving our problem
is at least as hard as solving the GAP, which is NP-hard, implying
that our problem is also NP-hard. This concludes our proof. □

3 METHODOLOGY

In this section, we first present information related to POI modeling.
Then, we present two risk-aware recommendation models that
make use of this information.

3.1 Modeling POI Information

Wefirst present an extrapolationmethod tomodel POI occupancy as
a function of a POI’s extrapolated temporal occupancy and average
dwell-time for a given timestamp 𝑡 . Second, we present a method for
computing the risk associated with each block due to the number
of individuals (and contacts) in it. Moreover, we use this block
risk to define a POI’s added risk due to added users. Third, we
model a selection likelihood function that associates each rank of a
recommended POI with a specific weight. This weight represents
the likelihood a user will commit to a POI at that level of risk. Finally,
we present a user-POI eligibility matrix that shows which POIs are
accessible to which users. It is worth mentioning that we treat all
POI categories uniformly, without considering their size, location,
or function. Additionally, any hierarchical structure of POIs, where
one POI might encompass another (e.g., a multi-store shopping
mall), is out of the scope of this study. This limitation stems from
the data collection process, which is beyond our influence.
POI occupancy estimation. In this work, we assume that past
human mobility traces and average dwell-times are available (see
details on data in section 4). When a recommendation model con-
siders potential POIs, it needs to take into account the expected
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duration a user will stay there based on 𝑎𝑑𝑡 𝑗 of POI 𝑝 𝑗 . More specif-
ically, it needs to consider the change in risk over the dwell-time,
and not only the risk at the time of query. Therefore, we model POI
occupancy as a function of POIs’ extrapolated temporal occupan-
cies and average dwell-times. Let 𝑜𝑡𝑠𝑗 be the average occupancy of
𝑝 𝑗 over the duration 𝑡 ∈ [𝑡𝑠, 𝑡𝑠 + 𝑎𝑑𝑡 𝑗 ]. Formally, it is:

𝑜𝑡𝑠𝑗 =

∑𝑡𝑠+𝑎𝑑𝑡 𝑗
𝑡=𝑡𝑠 𝑜𝑡

𝑗

𝑎𝑑𝑡 𝑗
, ∀𝑗 ∈ 1 . . . |P | (2)

Modeling POI infection risk. Let 𝑟𝑖𝑠𝑘𝑡
𝑗
be the risk of infection at

POI 𝑝 𝑗 at time 𝑡 . The risk can be represented as the number of pair-
wise contacts of all individuals in a hexagon 𝑏 𝑗 . Fig. 2 illustrates
the risk calculation process for each POI. This risk definition is the
same as the one presented in Eq. 1: 𝑟𝑖𝑠𝑘𝑡

𝑗
= Γ𝑡

𝑗
.

To normalize the POI risks (i.e., range between zero and one),
we define the relative risk, 𝑟𝑟𝑖𝑠𝑘𝑡

𝑗
, of POI 𝑝 𝑗 at time 𝑡 . Formally, it is:

𝑟𝑟𝑖𝑠𝑘𝑡𝑗 =
𝑟𝑖𝑠𝑘𝑡

𝑗∑ | P |
𝑤=1 𝑟𝑖𝑠𝑘

𝑡
𝑤

, ∀𝑗 ∈ 1 . . . |P | (3)

Modeling POI added risk. To properly model the risk of a POI, in
addition to historical visit patterns, we need to consider any visits
to the POI in the near future that can be attributed to real-time
recommendations. Building on Eq. 1, an addition of 𝑦 𝑗 users to POI
𝑝 𝑗 at time 𝑡𝑠 contributes an additional risk to 𝑝 𝑗 that is equivalent
to the POI’s risk before and after the addition. Formally, it is:

𝑎𝑟𝑖𝑠𝑘𝑡𝑗 =
(𝑜𝑡𝑗 + 𝑦 𝑗 )𝑋

2𝑎 𝑗
(
(𝑜𝑡𝑗 + 𝑦 𝑗 )𝑋

2𝑎 𝑗
− 1
2
) − 𝑟𝑖𝑠𝑘𝑡𝑗 ,

∀𝑗 ∈ 1 . . . |P |
(4)

To normalize the added risks across all POIs, we define the relative
added risk 𝑟𝑎𝑟𝑖𝑠𝑘𝑡

𝑗
of POI 𝑝 𝑗 at time 𝑡 . Formally, it is:

𝑟𝑎𝑟𝑖𝑠𝑘𝑡𝑗 =
𝑎𝑟𝑖𝑠𝑘𝑡

𝑗∑ | P |
𝑤=1 𝑎𝑟𝑖𝑠𝑘

𝑡
𝑤

, ∀𝑗 ∈ 1 . . . |P | (5)

Modeling POI selection likelihood. Given a recommendation
list, we do not know which one the end user will choose. Despite
that, we make the assumption that order matters; thus, users have
the highest likelihood to select the least risky recommended POI,
represented by rank 1, and the lowest likelihood to select the most
risky recommended POI, represented by rank 𝐾 . Additionally, we
want the sum of all users’ 𝐾 weights to be equal to 1 in order
to illustrate a complete selection. Therefore, we model the user
selection likelihood as an exponential decay function, where 𝐾
represents the maximum number of recommendations a user gets,
and 𝑘 represents the rank of the recommended POI. Formally:

𝑓 (𝑘) =


(1− 1

𝐾
)𝐾𝑘∑𝐾

𝑤=1 (1− 1
𝐾
)𝐾𝑤 ∀𝑘 ∈ [1, 𝐾], 𝐾 > 1

𝐾 𝐾 ∈ {0, 1}
(6)

To reduce computation space and accommodate users whose num-
ber of POI options is less than K, we compute a matrix S (𝐾+1)×𝐾 ,
where each row corresponds to the number of POI recommenda-
tions (i.e., row ℎ ∈ [0, 𝐾] produces ℎ recommendations). Moreover,
S holds unique weight distributions per each row following Eq. 6,

Algorithm 1: Computing POI selection likelihood by rank
Input: 𝐾 : Maximum number of POI recommendations
Output: 𝑆 : a matrix of length 𝐾 + 1 over 𝐾
𝑆 ← []
for 𝑘 ∈ [0, 𝐾] do

if 𝑘 = 0 then
𝑆.𝑎𝑝𝑝𝑒𝑛𝑑 ( [0] ∗ 𝐾)

if 𝑘 = 1 then
𝑡 ← [0] ∗ 𝐾
𝑡 [0] ← 1
𝑆.𝑎𝑝𝑝𝑒𝑛𝑑 (𝑡)

else

𝑡 ← [0] ∗ 𝐾
sum-val← ∑𝑘

𝑞=1 (1 − 1/𝑘)𝑘∗𝑞

for q ∈ [1, 𝑘] do
𝑤 ← (1 − 1/𝑘)𝑘∗𝑞
𝑡 [𝑞 − 1] ← 𝑤

sum-val
𝑆.𝑎𝑝𝑝𝑒𝑛𝑑 (𝑡)

Return 𝑆

where column 𝑐 corresponds to the rank and holds the weighted
choice 𝑓 (𝑐). This process is shown in algorithm 1.

Let IN be a vector of size N , where each index 𝑖 ∈ N corre-
sponds to a unique user id. The value of the cell contains either the
number of candidate POIs of user 𝑖 or the number 𝐾 , whichever is
smaller. This is depicted in Eq. 7. As such, 𝐼 [𝑖] holds an integer value
representing the number of POI recommendations user 𝑖 gets, and
S[I[𝑖]] is a vector containing the ordered POI weight distributions
of user 𝑖 based on the number of recommendation they receive.

𝐼𝑖 =𝑚𝑖𝑛(𝑑𝑖 , 𝐾) (7)

Eligibility matrix. Let 𝑑 |N |× |P | be a binary eligibility matrix,
where each row corresponds to user 𝑖 and each column corresponds
to POI 𝑝 𝑗 . When 𝑑𝑖 𝑗 equals one, it means that 𝑝 𝑗 is a candidate to
user 𝑖 . In this case, the candidate POI satisfies the constraints of the
users (i.e., search radius and POI type). We pre-compute and use
this matrix in the global method described in section 3.2.

3.2 Risk-aware POI Recommendation Methods

We present two risk-aware POI recommendation methods. The first
one, local, performs a local optimization by recommending the
safest POI to every individual. This method is agnostic to concur-
rent queries in the vicinity, and therefore can lead to a suboptimal
solution. The second one, global, performs a global optimization
by recommending POIs that minimize the overall risk of infection
to the overall community, taking into account concurrent queries.
local. The current state of practice way to solve this problem is
by assigning to each user the safest POIs ordered by risk, without
taking into account concurrent queries that cover the same POIs.
Formally, given N queries over duration 𝑡 ∈ [𝑡𝑠 , 𝑡𝑒 ] and P POIs,
each person 𝑖 ∈ N gets I[i] safest POIs within their search radius
𝑟𝑖 . Algorithm 2 shows the recommendation process for user 𝑖 .
global. We want to expand on the local model by considering
concurrent user queries in order to minimize the rrisk. We treat this
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Algorithm 2: local risk-aware recommendation method
Input: 𝑜 : POI average occupancy vector of size |P |,

𝑎: a vector of size |P | that represents POI area,
𝑋 : a constant that represents block size,
𝐼 : a vector of length |N |,
𝑆 : a matrix of length 𝐾 + 1 over 𝐾 ,
𝑖: user’s unique index

Output: up-to K recommendations for user 𝑖

𝑟𝑖𝑠𝑘 ←
𝑜𝑋
𝑎
( 𝑜𝑋
𝑎
−1)

2 // compute risk for each POI

𝑖𝑑 ← 1..|𝑃 | // numerate POI id

𝑝 ← [𝑖𝑑, 𝑟𝑖𝑠𝑘] .𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑠𝑒 () // create lookup by id

𝑝 ← 𝑝.𝑠𝑜𝑟𝑡𝑏𝑦 (𝑐𝑜𝑙 = 1, 𝑎𝑠𝑐𝑒𝑛𝑑𝑖𝑛𝑔 = 𝑇𝑟𝑢𝑒) // sortby risk
Return 𝑝.𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑠𝑒 () [:, 1] [𝐼 [𝑖]]

problem as a variation to the GAP, a quadratic mixed integer ordered
many-to-many assignment problem. Additionally, we care about the
order of recommendations and want to apply the selection likeli-
hood in Eq. 6 to each rank accordingly. Formally, given |N | queries
over duration 𝑡 ∈ [𝑡𝑠 , 𝑡𝑒 ] and |P | POIs, each person 𝑖 gets up to 𝐼 [𝑖]
ranked POI recommendations that minimize the objective function
(rarisk) in Eq. 8, such that the following constraints are satisfied:
(i) the number of recommendations is restricted by either 𝐾 or the
total number of feasible options for user 𝑖 , whichever is smaller (Eq.
9); (ii) the number of users assigned to each POI along with their
weights is constrained (Eq. 10); (iii) the POI recommendations to
each user 𝑖 are unique (Eq. 11); and (iv) for each user 𝑖 , different
POIs cannot be assigned the same rank (Eq. 12). The details of each
variable is summarized in Table 1.

𝑚𝑖𝑛

| P |∑︁
𝑗=1

𝑋 2

2𝑎2
𝑗

[(𝑜𝑡𝑗 + 𝑦 𝑗 ) (𝑜
𝑡
𝑗 + 𝑦 𝑗 −

𝑎 𝑗

𝑋 2 ) − 𝑜
𝑡
𝑗 (𝑜

𝑡
𝑗 −

𝑎 𝑗

𝑋 2 )] (8)

𝑠 .𝑡 .

| P |∑︁
𝑗=1

𝐾∑︁
ℎ=1

𝑄𝑖 𝑗ℎ𝑑𝑖 𝑗 =𝑚𝑖𝑛(
∑︁
𝑗

𝑑𝑖 𝑗 ,K),∀𝑖 ∈ [1, |N |] (9)

𝑦 𝑗 =

|N |∑︁
𝑖=1

𝐾∑︁
ℎ=1

𝑄𝑖 𝑗ℎ𝑑𝑖 𝑗𝑆𝐼𝑖 ,ℎ,∀𝑗 ∈ [1, |P |] (10)

𝐾∑︁
ℎ=1

𝑄𝑖 𝑗ℎ ≤ 1,∀𝑖 ∈ [1, |N |],∀𝑗 ∈ [1, |P |] (11)

| P |∑︁
𝑗=1

𝐾∑︁
ℎ=1

𝑄𝑖 𝑗ℎ𝑑𝑖 𝑗𝑆𝐼𝑖 ,ℎ = 1,∀𝑖 ∈ [1, |N |] (12)

𝑄𝑖 𝑗ℎ ∈ {0, 1},∀𝑖 ∈ [1, |N |],
∀𝑗 ∈ [1, |P |],
∀ℎ ∈ [1, 𝐾 |]

(13)

𝑦 𝑗 ∈ N≥0,∀𝑗 ∈ [1, |P |] (14)

4 EXPERIMENTAL EVALUATION

In this section, we present a comprehensive experimental evaluation
of our model. We begin by listing the research questions we aim
to explore. Then, we present details of the data employed and the
methods to be evaluated. Finally, we present the results and discuss
broader insights. Table 1 lists the notation used in the experiments.

Table 2: Summary of datasets

city # POIs # queries # blocks # visits

Toronto 905 119,799 187,996 583,758
Montreal 536 78,771 79,675 388,525
Calgary 743 100,047 139,050 636,355

4.1 Experimental Scenarios

Our experiments aim to answer the following questions:

(Q1) Effect of recommendation model on risk. How different
recommendation models, with different compliance levels,
affect the relative added risk of infection at POIs?

(Q2) Effect of different invocation frequencies on the relative

added risk of infection at POIs. How different invocation
frequencies affect the relative added risk of infection at POIs?

(Q3) Effect of 𝐾 on relative added risk. How does 𝐾 affect the
relative risk of infection at POIs?

(Q4) Effect of different invocation frequencies onmodel run-

time. How different invocation frequencies affect the run-
time of our proposed model?

(Q5) Effect of 𝐾 on the run-time of our model. How does 𝐾
affect the run-time of our proposed model?

(Q6) Effect of N , P and 𝐾 on computation time. How does N ,
P and 𝐾 individually affect the run-time of global model?

4.2 Datasets & Computation Environment

Visit pattern extraction. Our methods assume availability of
human mobility data, POI geometry, and average dwell-time per
POI. Collecting such data is out of the scope of the current paper,
but several datasets are available for research purposes. In our
evaluation, we use SafeGraph’s geometry and patterns datasets to
get POI real-world temporal visit patterns, POI average dwell-times
and POI areas for three major cities in Canada: Toronto, Montreal
and Calgary. We want to recommend POIs in real-time, however
having access to real-time POI visits is unfeasible. Therefore, we use
four weeks of real-world mobility patterns, covering the time period
between March 29 to April 25, 2021, inclusive. Then, we apply a
moving average to estimate the fifth week, beginning at April 26,
2021. Finally, we look for the busiest time period in the fifth week
for POIs of type Restaurants in order to mimic the environment, and
set it as the start-time for our experiments. As such, there are 905,
536, and 743 open POIs that we consider over the Toronto, Montreal,
and Calgary region, respectively. We set the start-time of all our
experiments to be at 1pm on April 28 in Toronto, 1pm on May 1
in Montreal, and 12pm on May 1 in Calgary. This is represented
by the variable 𝑡 on the 𝑥-axis of relevant plots. Additionally, we
mark the start of the experiment with a vertical line on the relevant
figures below. A summary of the datasets can be seen in Table 2.
We provide ethical considerations in section D in the appendix.

Query generation. We generated 2000 queries per second, uni-
formly distributed to each of Toronto, Montreal and Calgary, over
the span of one minute. We removed queries that yield no POI
candidates. At the end, the total number of queries is 119,799 in
Toronto, 78,771 in Montreal, and 100,047 in Calgary.
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(a) Toronto

(b) Montreal

(c) Calgary

Figure 3: Rarisk tracking at 30 and 60 seconds on the left and

right respectively; 𝐾 = 1, 𝜂 = 1/2

Figure 4: Aggregate rarisk of eachmodel at threemajor cities.

Parameter tuning. For our experiments, we use parameter values
related to the COVID-19 infectious disease. Health care profession-
als in Ontario define close contact when individuals are standing
within 2𝑚 from each other for 15 minutes or more, or multiple

shorter lengths of time without proper personal protective equip-
ment2. We set the block area 𝑋 to be 4m2 in order to represent
these social distancing guidelines. We set the search radius to 5 Km,
and set POI type to Restaurants.
Computing environment. All experiments were conducted on a
2.2GHz 6-core Intel Core i7, 16 GB 2400 MHz DDR4 machine. We
use IBM CPLEX solver to solve our optimization problem.

4.3 Methods

We consider four different recommendation methods. The first two
are intuitive baselines that people tend to follow in their everyday
mobility. The third and fourth are representing a local and a global
optimization approach, respectively, to address the risk-aware POI
recommendation problem, as described in section 3.2.
random. This model recommends K POIs selected uniformly at
random from the set of the eligible ones.
closest. This model recommends K POIs selected based on prox-
imity, where a POI located closer (to the location of the individual)
is preferred to a POI located further away.
local. This model recommends K POIs following the locally opti-
mal risk-aware recommendation method described. It represents
the current state of practice approach.
global. This model recommends K POIs following our proposed
globally optimal risk-aware recommendation method.

4.4 Results and Discussion

(Q1) Effect of recommendation model on risk. In this experi-
ment, we want to learn how effective our proposed model is com-
pared to other models. We set 𝜂 = 1/2, 𝐾 = 1, and evaluate the
performance at 30 and 60 seconds. Overall, 119,799, 78,771, and
100,047 queries were served in Toronto, Montreal and Calgary, re-
spectively. To consider users’ preferences, we let 50% of people
follow the global model, and 50% of people follow the random
model, denoted by 𝜁 = 50%. The results can be seen in Fig. 3. The
figures on the left and right represent the 30 and 60 second marks,
respectively. In both cases, global yields the best results, success-
fully minimizing the overall risk at all POIs. Moreover, it is clear
that the benefit of global against the remaining models increases
with the number of queries served each time. In the left figures, the
benefit is relatively small; however the benefit between global and
the other models significantly increases at the 60 seconds mark, as
can be seen on the right. This trend can be also observed for 𝐾 = 2
in section B in the appendix. Moreover, it is clear that a partial
compliance at 𝜁 = 50% outperforms both random and closest. A
more comprehensive sensitivity analysis of how users’ preferences
affect risk is covered in section C in the appendix. Next, we let 𝜌
be the sum of all the aggregated POIs rarisk per recommendation
model for the duration of 60 seconds, incurred from the time 𝑡 to
𝑡 +5. The results can be seen in Fig. 4. The figure shows that global
has the smallest incurred added risk among all models, reducing the
risk level by 99.87% in Toronto, 71.56% in Montreal, and 61.54% in
Calgary with respect to the next best performing model. Section A
in the appendix covers a more comprehensive evaluation of global
at different settings for 𝐾 , 𝜂, and length of the experiment.
2https://www.ontario.ca/page/public-health-measures-and-advice

https://www.ontario.ca/page/public-health-measures-and-advice
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(Q2) Effect of different invocation frequencies on the relative

added risk of infection at POIs. In this experiment, we study how
different invocation frequencies affect global rarisk. We set 𝐾 to 1
and run the experiment over 60 seconds, covering 119,799 queries
in Toronto, 78,771 in Montreal, and 100,047 in Calgary. We test
for invocation frequencies 𝜂 = {1, 1/2, 1/4, 1/8, 1/10} Hz. Then, we
compare these frequencies with each other on a more granular scale
by subtracting rarisk resulted from an invocation frequency of 1Hz
with each one of the remaining invocation frequencies, separately.
The results can be seen in Fig. 5. In the figures, a data point above
zero means that the rarisk of that invocation frequency is lower
than the one for invocation frequency of 1Hz. From the figures,
it is clear that 𝜂1/2, 𝜂1/4, 𝜂1/8 and 𝜂1/10 are positive, hence are less
risky than 𝜂1. In fact, we can see that a lower invocation frequency
tends to yield in general a better result, where 𝜂1/10, 𝜂1/8, 𝜂1/4, 𝜂1/2
and 𝜂1 can be arranged from most to least effective parameters
in reducing risk. However, for 𝜂 = 1/10 Hz in Fig. 5a, this trend
does not hold and the rarisk sharply increases. This might be due
to Toronto having more POIs and more queries compared with
Calgary and Montreal. This affects the computation space required
to process the model, and results in a decreased performance.

(Q3) Effect of 𝐾 on relative added risk. Next, we evaluate how
different 𝐾 values affect the rarisk. We set 𝜂 = 1/2 Hz and test
for 𝐾 = {1, 2, 3, 4}. Then, we run the experiment over 10 seconds,
addressing 19,963 queries in Toronto, 13,166 in Montreal, and 16,692
in Calgary. Fig. 6a, 6b, and 6c show the results of the experiment for
Toronto, Montreal, and Calgary, respectively. It is interesting to note
that there is a direct relation between risk and 𝐾 and it is clear that
the model yields the best result for𝐾 = 1. This is intuitive due to our
incorporated POI selection-likelihood. For 𝐾 = 1, the most optimal
result at rank 1 is chosen 100% of the time. However, at 𝐾 = 2,
that value drops to 80%, while the remaining 20% assigned to the
second most optimal POI at rank 2. As 𝐾 increases, the likelihood
to select the safest option at rank 1 decreases. Therefore, the rarisk
of infection increases. Moreover, since 𝐾 proportionally affects the
rarisk of our model, we want to verify that global remains the
most optimal model for a large 𝐾 value. We test for 𝐾 = 4 and
show the results in Fig. 6d, 6e, and 6f, which confirm that global
continues to provide the most optimal recommendations.

(Q4) Effect of different invocation frequencies on model run-

time. In this experiment, we examine the relative run-time of
global for different invocation frequencies. We set 𝐾 = 1 and
run the experiment over the span of 30 seconds, covering 59,892
queries in Toronto, 39,327 in Montreal, and 50,062 in Calgary. We
text for 𝜂 = {1, 1/2, 1/4, 1/8, 1/10} Hz. As noted, there are roughly
2,000 queries per second. This means that the rough number of
queries a model gets from each invocation frequency setting of 1/𝛼
Hz is ∼2,000×𝛼 . As such, the input of the model in this experimental
setting increases linearly. Fig. 7 shows the relative computation
time per invocation frequency per city. We can see that the output
is a linear relationship between the invocation frequency and the
computation time. Therefore, we can conclude that the processing
time of the model depends on the number of queries it serves. For
a uniform flow of queries, the computation time increases linearly.
Note that according to our complexity analysis, constants 𝐾 and P,

and a varying N should increase the computation time exponen-
tially rather than linearly with respect to N . This difference can be
attributed to implementation optimizations of the solver we use.
(Q5) Effect of 𝐾 on model run-time. In this experiment, we
evaluate how 𝐾 values affect global run-time. We set 𝜂 = 1/2 Hz
and test for 𝐾 = {1, 2, 3, 4}. We run the experiment over 10 seconds,
addressing 19,963 queries in Toronto, 13,166 in Montreal, and 16,692
in Calgary. Fig. 8 shows the results of the experiment. We observe
that the computation of the model increases exponentially with 𝐾 .
(Q6) Effect of N , P and 𝐾 on computation time. Finally, we
want to study how the number of users, POIs, and recommendations
affect global’s computation time. This test can provide insights
regarding possible limitations and mitigation approaches for our
model. We simulate a sparse eligibility matrix, following a normal
distribution, where the mean is 25 and the standard deviation is 15.
This is done to represent a percentage of randomly selecting eligible
POIs, where, on average, a user has 25% candidate POIs. Then, we
evaluate how a change in any of N , P or 𝐾 affect the computation
time. In Fig. 9a, we fix the number of POIs to 900 and 𝐾 = 2. We
observe a polynomial increase in computation time as the number
of users increases. In Fig. 9b, we fix the number of users to 1000 and
𝐾 = 2. We observe that there is a linear relationship between the
number of POIs and the computation time of global. Finally, in
Fig. 9c, we fix the number of users to 500 and the number of POIs
to 400. We observe an exponential increase in time complexity.

5 RELATEDWORK

Our research is related to (i) trajectory data mining and (ii) mobil-
ity and epidemics. We cover below some of the most significant
efforts relevant to our work. Note that some related works have al-
ready been cited throughout the manuscript to keep the discussion
focused, so they are mostly omitted here.

5.1 Trajectory Data Mining

Trajectory data mining is the process of analyzing the mobility
patterns of individuals or objects over time to gain insights and
make decisions. It has been an active research direction for a long
time and many comprehensive surveys on the topic exist [6, 16, 40].
This high interest can largely be attributed to the rapid develop-
ment and prominence of geospatial technologies, the abundance
of location-based services [23], and deep-learning based methods
to represent trajectory data (see surveys [20, 36, 37]). The focus
is on popular technical problems, including trajectory similarity
[12], simplification [2], classification [4], and clustering [21]. Other
popular topics include pedestrian group mining [35] and semantic
analysis of city neighborhoods [26]. Our research relies on trajec-
tory data mining methods to process and analyze geolocation data
related to POIs and to provide trip recommendations.
Location-based recommendations. Location-based recommen-
dations are personalized suggestions for places to visit, based on
an individual’s current location or intended location [7]. These
recommendations use information about the person’s location and
their preferences to suggest points of interest (POIs) such as restau-
rants, shops, tourist attractions, and more. This information can
be obtained through GPS data, or by manually entering a location,
and can be used to suggest POIs that are nearby or within a certain



SpatialEpi ’23, November 13, 2023, Hamburg, Germany Yanin and Papagelis

(a) Toronto (b) Montreal (c) Calgary

Figure 5: global performance related to invocation frequency of 1 over 60 seconds; 𝜂 = 1/2

(a) Toronto (b) Montreal (c) Calgary

(d) Toronto (e) Montreal (f) Calgary

Figure 6: Effects of 𝐾 on POI rarisk. (a)-(c) Global model at different K values. (d)-(e) Relative POI aggregated rarisk for K=4.

distance. The goal of location-based recommendations is to provide
a convenient and relevant experience for the user by suggesting
POIs that are most relevant to their interests and current location.
Deep learning methods have also been proposed for providing
location-based recommendations [24, 39]. These works cannot be
easily adapted to the domain of epidemics. They do not model the
POI risk of infection, and they focus on analysis of historical trans-
actions to provide recommendations that optimize different type of
preferences (i.e., restaurants, touristic attractions, and more).

5.2 Mobility and Epidemics

Mobility is related to epidemics because the movement of individ-
uals and their social interactions can impact the topology of the
underlying contact network on which an infectious disease spreads

[33]. For example, increased mobility can facilitate the rapid spread
of a disease from one location to another. On the other hand, re-
ducing mobility, such as through travel restrictions or quarantine
measures, can slow the spread of a disease and contain outbreaks.

Digital contact tracing. Digital contact tracing has been proposed
as a technology-based approach for tracking the spread of infec-
tious diseases, especially during outbreaks or epidemics. It involves
the use of digital devices, such as smartphones, to identify and
track close contacts between individuals who have been infected
with a disease [9, 11, 15]. Digital contact tracing can complement
traditional public health measures, such as manual contact tracing,
and can provide a more efficient and scalable way of identifying and
alerting individuals who have been in close contact with an infected
person. For instance, Aleta et al. [1] synthesized contact networks
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Figure 7: Different invocation frequencies 𝜂; 𝐾 = 1 over 60
seconds.

Figure 8: Different 𝐾 values; 𝜂 = 1/2 over 10 seconds.

and modeled SARS-CoV-2 transmission in the Boston metropolitan
area using census and contact tracing data. They showed how vital
contact tracing is in preventing a second wave of spreading when
complete isolation is relaxed.
Mobility-based interventions for epidemics. Pechlivanoglou
et. al [31] emphasized the need for more accurate microscopic
spatiotemporal epidemic modeling that allows to design targeted
non-pharamaceutical intervention strategies that aim to control
the epidemic spreading. For example, Block et al. [8] and Pechli-
vanoglou et al. [32] proposed more moderate distancing strategies
including limiting contacts to similar, community-based or repetitive
contacts. Similarly, Miralles-Pechuán et al. [27] used reinforcement
learning to suggest high-level intervention strategies rewarding
fewer infections and less severe lockdowns. Fan et al. [14] showed
that mobility inspired interventions, such as limited long distance
trips, can notably reduce epidemic spread. Hébert-Dufresne et al.
[22] argued the importance of modeling mobility-based population
heterogeneity for predicting an infectious disease’s outbreak size
through digital contact tracing technologies. Changruenngam et
al. [10] studied the effects of individual human mobility on disease
transmission dynamics. Lloyd-Smith et al. [25] showed how the
basic 𝑅0 in traditional epidemic analyses is only a population-level
estimate; thus, more targeted control interventions would be more

effective. These works are complementary (orthogonal) to our study
and can be used together to enhance the intervention strategies.

Trip recommendations and epidemics. Our study is mostly re-
lated to research that focuses on providing POI recommendations
that satisfy domain-specific constraints. These methods work by
factoring in infection risk in the recommendation models. For exam-
ple, Fotsing et al. [18] designed an epidemic-aware socio-spatial POI
recommender model. Graph-based path search algorithm have also
been proposed for reducing an individual’s COVID-19 exposure
risk taking into account accessibility constraints, outdoor exposure
thresholds, and congestion tolerance [5, 34]. Similarly, Alix et al.
[3] presented a system for recommending safer trips to POIs on a
geographic map based on alternative trip risk evaluation methods.

6 CONCLUSIONS

Understanding the relationship between human mobility and dis-
ease spreading is crucial for developing effective public health
strategies to prevent and control the spread of diseases [32]. There
are many mobility-related approaches to contain and mitigate epi-
demics. One such approach is by informing individuals about the
risks associated with their trips via recommendation systems. This
approach can alleviate economic downturns and reduce or elimi-
nate intrusive approaches, such as quarantines. In this work, we
presented a novel optimal risk-aware POI recommendation model
to use during epidemics. To the best of our knowledge, no previous
research has explored the application of the GAP to address a POI
recommendation problem. Throughout this paper, we studied the
relative risk of infection as a result of following specific POI recom-
mendation strategies. Through a series of extensive experiments,
we showed that (global) is superior to current state of practice
approach (local) and sensible baseline models, i.e. closest and
random. This is because our model makes POI recommendations
that minimize the overall risk at all POIs. We also performed pa-
rameter sensitivity analysis that showed that global consistently
outperformed the other models in various settings, such as differ-
ent number of recommendations provided and different invocation
frequencies. Moreover, we showed that the global’s impact in-
creases over time as the difference in added risk increases with
time. We further evaluated the computational trade-offs associated
with different dimensions of the problem, including the number of
users, POIs and recommendations, in order to better understand its
limitations. We further showed that global reduced the relative
added risk of infection by 99.87%, 71.56% and 61.54% compared with
the second best model in three major cities in Canada. Our results
provide clear evidence that our recommendation model can be a
vital tool that informs individuals of the risks associated with their
mobility patterns, and can help them make informed decisions.
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(a) Toronto

(b) Montreal

(c) Calgary

Figure 10: Relative added risk tracking at 10 seconds on the

left and 30 seconds on the right; 𝐾 = 2, 𝜂 = 1/2

APPENDIX

A EXPERIMENTAL RESULTS

In this section, we want to understand how global performs for
different invocation frequencies 𝜂, number of recommendations 𝐾 ,
and the total number of queries served at each instance. For each of
these settings, we check the relative aggregated added risk incurred
at all POIs per city. Finally, we want to quantify the amount of
benefit global brings. Table 3 shows the results of this experiment.
The bolded results represent the optimal recommendation model
that added the minimum amount of risk. It is clear that the global
model consistently yields the best outcome. The underlined values
represent the second best results. We quantified the percentage
of improvement by comparing our proposed method global with
the second best method. Overall, our model yielded an average of
99.88%, 77.33% and 65.71% improvement in Toronto, Montreal, and
Calgary, respectively, compared with the second best performer.
This shows that the global model is not affected by the number of
recommendations, invocation frequencies, number of queries, nor
duration of the experiment.

B MODEL PERFORMANCE ANALYSIS OVER

TIME

In this section, we want to learn how the relative added risk is
affected over time per each model for a different set of parameters
than the ones that were covered in Q1 in section 4.4. We set 𝐾 to 2
and invocation frequency 𝜂 to 1/2. We run the experiment for 30
seconds, but also check the results at the 10 seconds mark. Overall,
this experiment serves 59,892 queries in Toronto, 39,327 queries in
Montreal, and 50,062 queries in Calgary. Fig. 10a, Fig. 10b, and Fig.
10c show the results of this experiment. The figures on the left hand
side show the 10 second mark, while the ones on the right hand
side show the 30 second mark. The figures clearly show that as time
increases, the relative added risk increases as well, regardless of the
model. Moreover, the figures show that global is the best performer,
consistently yielding the least relative added risk. Additionally, it
shows that as time progresses, the rate of increased added risk from
the 10 second mark to the 30 second mark is much more subtle
for global compared with the other models. This implies that our
model provides a compounding reduction in risk over time.

C EFFECT OF POPULATION COMPLIANCE

LEVEL ON RISK

In this section, we want to consider users’ preferences and evaluate
how they affect risk. We let a certain percentage of people follow
the global recommendation and the remaining people follow the
random recommendation. Furthermore, we want to see how it is
compared with the other models: closest and local. Let 𝜁 and
100−𝜁 represent the percentage of people following the global and
random models, respectively. We set the number of recommenda-
tion 𝐾 to 2, invocation frequency 𝜂 to 1/2, and run the experiment
for 30 seconds. Altogether, this experiment serves 29,939 queries in
Toronto, 19,704 queries in Montreal, and 25,056 queries in Calgary.
The results can be seen in Fig. 11. It is clear that global performs
the best by adding the least amount of risk. Additionally, we can
observe that as 𝜁 increases, more people follow the global model,
and the relative added risk decreases. Therefore, we can conclude
that the ideal scenario is one where all people follow the recom-
mendation provided by the global model. However, even a partial
compliance from the community can provide significant benefit in
mitigating the risk of infection.

D PRIVACY AND ETHICS STATEMENT

In order to uphold privacy and ethical conduct, all datasets were
preprocessed to remove identifying POI information. The original
datasets, which include POIs’ Places, Geometry, and Patterns,
became available through SafeGraph3. We used an archived ver-
sion from SafeGraph, however it is important to note that recently
Advan4 began providing the Patterns datasets. The Patterns
datasets are anonymized and collected with proper informed con-
sent from a list of opted-in mobile devices. Throughout our work,
we adhered to all the terms and conditions stated by the dataset
provider, including properly citing their work.

3https://www.safegraph.com/
4https://advanresearch.com/

https://www.safegraph.com/
https://advanresearch.com/
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Table 3: rarisk per city at different settings

𝐾 = 1, 𝜂 = 1/2 𝐾 = 2, 𝜂 = 1/2 𝐾 = 4, 𝜂 = 1/2
10 sec 20 sec 30 sec 40 sec 50 sec 60 sec 10 sec 20 sec 30 sec 10 sec

Toronto

# queries 19,963 39,924 59,892 79,865 99,836 119,799 19,963 39,924 59,892 19,963

random 0.14826 0.27747 0.42552 0.62514 0.79820 0.98176 0.16287 0.28986 0.43429 0.15429
closest 0.04428 0.13449 0.28047 0.47114 0.70841 1.00000 0.04138 0.12025 0.24225 0.04089
local 0.02468 0.06120 0.13079 0.16297 0.20826 0.25273 0.01961 0.07490 0.09969 0.01743
global 0.00002 0.00005 0.00010 0.00018 0.00028 0.00040 0.00003 0.00006 0.00012 0.00003

Improvement 99.92% 99.92% 99.92% 99.89% 99.87% 99.84% 99.85% 99.92% 99.88% 99.83%

Montreal

# queries 13,166 26,232 39,327 52,532 65,682 78,771 13,166 26,232 39,327 13,166

random 0.07007 0.15116 0.25635 0.38151 0.53314 0.70591 0.06414 0.14172 0.25677 0.06676
closest 0.05925 0.15867 0.29772 0.48807 0.71829 1.00000 0.05678 0.14924 0.27697 0.05733
local 0.07279 0.13525 0.21666 0.31097 0.42321 0.55941 0.03998 0.13455 0.21530 0.05270
global 0.00943 0.02493 0.04748 0.07828 0.11609 0.15918 0.01010 0.02668 0.05069 0.01092

Improvement 84.08% 81.57% 78.09% 74.83% 72.57% 71.55% 74.74% 80.17% 76.46% 79.28%

Calgary

# queries 16,692 33,420 50,062 66,696 83,348 100,047 16,692 33,420 50,062 16,692

random 0.03150 0.07516 0.13293 0.20197 0.28023 0.37223 0.03163 0.07574 0.13387 0.03238
closest 0.05127 0.14652 0.28697 0.47070 0.72423 1.00000 0.04464 0.12434 0.23983 0.04179
local 0.02847 0.06976 0.11728 0.18722 0.24236 0.33476 0.03032 0.07643 0.12204 0.03313
global 0.00896 0.02340 0.04381 0.06713 0.09388 0.12876 0.00919 0.02392 0.04480 0.00934

Improvement 68.53% 66.46% 62.64% 64.14% 61.26% 61.54% 69.69% 68.42% 63.29% 71.16%

(a) Toronto (b) Montreal (c) Calgary

Figure 11: relative added risk for different models and compliance levels over 30 seconds; 𝐾 = 2, 𝜂 = 1/2
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