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ABSTRACT
Conventional techniques of epidemic modeling are based on com-
partmental models, where population groups are transitioning from
one compartment to another – for example,S, I, or R, (Susceptible,
Infectious, or Recovered). Then, they focus on learning macroscopic
properties of disease spreading, such as the transition rates between
compartments. Although these models are useful in studying epi-
demic dynamics, they lack the granularity needed for analyzing
individual behaviors during an epidemic and understanding the
relationship between individual decisions and the spread of the dis-
ease. In this paper, we develop microscopic models of spatiotemporal
epidemic dynamics informed by mobility patterns of individuals and
their interactions. In contrast to macroscopic models, microscopic
epidemic models focus on individuals and their properties, such
as their activity level, mobility behaviors, and impact of mobility
behavior changes. Our microscopic spatiotemporal epidemic model
allows to: (i) assess the risk of infection of an individual based on
mobility patterns; (ii) assess the risk of infection associated with
specific geographic areas and points-of-interest (POIs); (iii) assess
the risk of infection of a trip in an urban environment; (iv) provide
trip recommendation for mitigating the risk of infection; and (v)
assess targeted intervention strategies that aim to control the epi-
demic spreading. Our work provides an evidence-based data-driven
model to inform individuals about the infection risks associatedwith
their mobility behavior during a pandemic, providing at the same
time safer alternatives. It can also inform public policy about the
effectiveness of targeted intervention strategies that aim to contain
or mitigate the epidemic spread compared to horizontal measures.

CCS CONCEPTS
• Human-centered computing→ Ubiquitous computing; •
Computing methodologies→ Agent / discrete models.
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Figure 1: An example overlay risk map of an urban area informed
by our microscopic spatiotemporal epidemic model.
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1 INTRODUCTION
Motivation. From the Plague of Athens (430 to 426 BC) [45] to the
Spanish Flu (1918) [42], pandemics have shaped the human history
[30]. In the last 20 years alone, the world had seen many infectious
disease outbreaks, such as pandemics caused by the SARS-CoV [48],
swine flu [11], MERS-CoV [63], Ebola [7], Zika [12], and recently,
SARS-CoV-2 [43]. These pandemics have tested the world’s most
advanced health systems and have caused an enormous societal and
economic damage. We currently witness two emerging trends re-
lated to the study of epidemics and epidemic response that motivate
our research:

(A) advances of digital tracing technologies;
(B) microscopic epidemic modeling that focuses on individuals.

These trends are linked and cannot be considered separately from
each other. Digital tracing — despite the privacy concerns — could
(potentially) be tolerated by communities as far as it can inform
substantially more sophisticated epidemic models and responses,
and effective microscopic epidemic modeling is only feasible if
continuous digital tracing is in place. We discuss below the premise
and risks of these trends as opposed to conventional approaches.
A. Offline versus digital tracing. Conventional non-pharmaceu-
tical intervention (NPI) methods to address the rapid spread of an
infectious disease include physical distancing, confinement measures
and human-based contact tracing of infected individuals. While
one can argue that these measures are effective in controlling the
spread of the disease and saving lives [22, 44], they have well-
known drawbacks: (i) they are imposing extreme restrictions
and limitations on an individual’s activities or freedom, leading to
a slowdown of a community’s socio-economic activities and side-
effects for the individuals themselves; and (ii) they depend on offline
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human-based contact tracing of infected individuals, which can be
cumbersome, expensive, slow and inaccurate. On the other hand,
advanced technological responses to the problem have claimed
some success in controlling the epidemic based on digital contact
tracing [26], enabled by GPS technologies andmobile apps [60] and
beyond [41]. This approach enables an easy and rapid implementa-
tion of infectious disease tracing as it requires to gather and process
simple information. Gathering sensitive information might infringe
the privacy of individuals [17]. Controlling an infectious disease
should not weaken an individual’s privacy. We therefore advocate
for privacy-preserving digital tracing protocols and technologies to
protect the privacy of individuals [3, 15, 35, 51, 56].
B. Macroscopic vs microscopic epidemic models. Most exist-
ing epidemic models assign population groups to compartments –
for example, S, I, or R, (Susceptible, Infectious, or Recovered) –
and people may progress between compartments [5]. Then, they
focus on learning macroscopic properties of disease spreading,
such as the transition rates between compartments. While these
models are useful in studying the spread of epidemics, they lack the
granularity needed for analyzing individual behaviors during an
epidemic and understanding the relationship between individual
decisions and the spread of the disease. Moreover, they assume
homogeneous population and full mixing, which is unrealistic (see
details in Appendix A). In contrast to macroscopic models, micro-
scopic epidemic models focus on individuals and their properties,
such as their activity level, mobility behaviors, and impact of mobil-
ity behavior changes. Thus, such models can study more realistic
heterogeneous populations. See also the discussion in Appendix B
about homogeneous and heterogeneous population in the SEIR
epidemic model.
Our approach. The focus of the current research is on utiliza-
tion of digital traces of individuals (mobility data) to inform a more
comprehensive analysis of disease spreading through methods of
trajectory data mining [62]. We present mathematical models for
the spread of the disease in a community that take into account
the mobility patterns of individuals. We study the effect that
individual variability (heterogeneity) of mobility behavior has
to individual and spatial risk of infection. As people move in cities
following different mobility patterns, they engage in various types
of interactions with other people and visit different places. As such,
the relative risk of individuals getting infected or infecting others
can substantially vary depending on the relative risk of the places
they frequent. This observation can have significant consequences
on our understanding of how the disease can propagate in a com-
munity — from both a social and a spatial perspective — as well as
to the intervention strategies designed to control an epidemic.
Contributions. Motivated by these emerging trends and the inher-
ent limitations of conventional epidemiological models (see details
in Appendix A and B), we make the following major contributions:
• we present a data-driven microscopic spatiotemporal
epidemic model that incorporates individual variability
due to mobility patterns and allows to: (i) assess the relative
risk of infection of an individual, (ii) assess the relative risk
of infection associated with specific geographic areas and
points-of-interest (POIs), (iii) assess the risk of infection of
a (pedestrian) trip in an urban environment;

• we present a statistical microscopic model that allows
to evaluate the risk of infection associated with a POI as a
function of the dispersion observed in indoor mobility;
• we present a POI recommendation model that suggests
safer trips to POIs; compared to a null model that considers
sensible alternatives for selecting a POI to visit, our model’s
recommendations substantially decrease the risk of infection;
• we present large-scale simulations using model parameter
values that resemble the recent COVID-19 outbreak and
realistic synthetic mobility data in a real urban environment
(large University campus and surroundings) that allow for
many human-human interactions; the model and algorithms
presented generalize to other similar infectious diseases

Organization. The remainder of the paper is organized as follows:
Sec. 2 provides preliminaries and formally defines the technical
problems of interest. Our microscopic spatiotemporal epidemic
model and scientific approach are presented in Sec. 3. Sec. 4 presents
an experimental evaluation of the different methods. We review
the related work in Sec. 5 and conclude in Sec. 6.

2 PRELIMINARIES AND THE PROBLEM
In this section, we first introduce notation and preliminaries related
to our model, then we formally define the problems of interest.

Definition 2.1. (Map) Consider a mapM of a finite geographic
area of Earth representing the administrative boundaries of a city or
a city neighborhood. SinceM is a relatively small region, the Earth
surface it represents has a low curvature and is close to flat. We can
therefore, for simplicity, assume it represents a finite 2-𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛𝑎𝑙

Euclidean space R2. This assumption allows to approximate geo-
desic distances on Earth with Euclidean distances in R2.

Definition 2.2. (Block) Let the mapM consist of a set of non-
empty finite disjoint blocks B = {b1, b2, ..., b𝑛} covering all its area,
where b𝑘 ∈ B is a unit of a geographic area in the map. Assume the
block b𝑘 is a polygon with an arbitrary area 𝑎𝑘 . Our work assumes
that blocks are hexagons that can fill a plane with no gaps, forming a
regular tessellation (see example in Fig. 1). We explain in Appendix
C the rationale behind this assumption.

Definition 2.3. (POI) Let a set of points of interests POI =

{𝑃𝑂𝐼1, . . . , 𝑃𝑂𝐼𝑝 } located on the mapM, representing buildings
that individuals visit frequently, such as groceries, restaurants, and
so on. We assume that each 𝑃𝑂𝐼𝑖 consists of a multi-block 𝐻𝑖 ⊂ B
that contains all blocks covered by the area occupied by 𝑃𝑂𝐼𝑖 .

Definition 2.4. (Contact) Let a set of individualsN = {𝑢1, . . . , 𝑢𝑁 }
moving inM for a finite observation time interval [0,𝑇 ] forming
a set of trajectories P. For an individual 𝑢 ∈ N , a trajectory is
a sequence P𝑢 = {(𝑥1, 𝑦1, 𝑡1), (𝑥2, 𝑦2, 𝑡2), . . . , (𝑥𝑇 , 𝑦𝑇 , 𝑡𝑇 )}, where
𝑡𝑖 ∈ [0,𝑇 ] and (𝑥𝑖 , 𝑦𝑖 ) ∈ R2. As individuals are moving around,
they can at times encounter each other, forming contacts. A contact
between two individuals 𝑢, 𝑣 ∈ N occurs when they are both found
in the same block b𝑘 at the same time. Multiple individuals found in
the same block at the same time all form contacts with each other.

Problem Definition. Our data-driven microscopic model of spa-
tiotemporal epidemic dynamics addresses the following problems:
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(P1) Given a mapM, a set of individualsN and their trajectories
P, determine the risk of infection 𝑟𝑖𝑠𝑘𝑢 of each 𝑢 ∈ N .

(P2) Given a map M consisting of a set of blocks B, a set of
individuals N and their trajectories P, determine the 𝑟𝑖𝑠𝑘b𝑖
of each b𝑖 ∈ B. The output can be used to construct a risk
map of the infectious disease, such as in Fig. 1. The risk map
can be visualized as a heat map, where the deeper the color
of a block is, the higher the infection risk associated with it.

(P3) Given a mapM consisting of a set of blocksB, a set of points
of interest POI, a set of individualsN and their trajectories
P, determine the risk 𝑟𝑖𝑠𝑘𝑃𝑂𝐼𝑖 of each 𝑃𝑂𝐼𝑖 ∈ POI. For this
problem, we are interested in examining cases where a group
of individuals are gathered in a 𝑃𝑂𝐼𝑖 of maximum capacity
𝑚, for varying levels of dispersion (i.e., how individuals are
distributed in blocks), measured by the standard deviation 𝜎 .

(P4) Given a map M consisting of a set of blocks B, a set of
individuals N , their trajectories P, and a spatio-temporal
epidemic spreading model, define block-based intervention
strategies to mitigate the risk of infection of individuals.

(P5) Given a mapM consisting of a set of blocksB, a set of points
of interest POI and a query 𝑞 by user 𝑢 located at (𝑥,𝑦),
recommend a ranked list L ⊆ POI to visit that minimizes
infection risk.

3 METHODOLOGY
In this section we provide details of our methodology for mod-
eling individual variability in epidemics that is due to mobility
patterns. We first present a method for computing the infection risk
within each block, as a result of contacts between individuals inside
it. Moreover, we use this block risk to formally define the infec-
tion risk of each individual, as well as the risk associated with the
point of interest the blocks belong to. Finally, we present different
block risk-based intervention strategies, as well as a POI risk-based
recommendations, with the goal of reducing the infection risk of
individuals and the spread of the epidemic. Fig. 2 illustrates a dia-
gram of the process. Note that we do not intend on associating a
specific POI name to a particular risk value for privacy reasons.

3.1 Block infection risk
We define the risk of infection of a block b at time 𝑡 as the number
of all contacts occurring in the block at that time. Let 𝑛𝑡b represent
the number of individuals in b at time 𝑡 . Then, the contacts are
equal to the number of all pairs of individuals. Formally:

𝑏𝑟𝑖𝑠𝑘𝑡b =
𝑛𝑡b (𝑛

𝑡
b − 1)
2

(1)

Note that when only a single person is present within a block, the
risk of infection is 0, as expected. Next, we define the average risk
of a block over the entire observation time [0,𝑇 ]:

𝑏𝑟𝑖𝑠𝑘b =

∑𝑇
𝑡=0 𝑏𝑟𝑖𝑠𝑘

𝑡
b

𝑇
(2)

Finally, we define the relative risk of each block by normalizing the
risk over all blocks B covering the entire observation area:

𝑟𝑏𝑟𝑖𝑠𝑘b =
𝑏𝑟𝑖𝑠𝑘b∑
j∈B 𝑏𝑟𝑖𝑠𝑘j

(3)

Algorithm 1: Relative Block Risk Computation
Input: P = {𝑝1, 𝑝2, ..., 𝑝𝑖 , ..., 𝑝𝑛 }: pedestrian trajectories,

B = {b1, b2, ..., b𝑖 , ..., b𝑘 }: blocks
Output: RBRISK =

{[
𝑟𝑏𝑟𝑖𝑠𝑘𝑡b

]
b∈B

}𝑇
𝑡=0

: relative risk of blocks

𝑝𝑎𝑟𝑡P ← []; RBRISK ← {}

for 𝑝𝑖 ∈ P do
𝑝𝑎𝑟𝑡P𝑖 ← 𝑝𝑖 .partition(𝑇 ) /* partition traj by time

units */

𝑝𝑎𝑟𝑡P.append(𝑝𝑎𝑟𝑡P𝑖 ) /* 𝑝𝑎𝑟𝑡P𝑖 = [𝑝0
𝑖
, 𝑝1

𝑖
, . . . , 𝑝𝑇

𝑖
] */

𝑝𝑎𝑟𝑡P.transpose() /* arrange traj segments by time */

/* 𝑝𝑎𝑟𝑡P𝑡 = [𝑝𝑡0, 𝑝
𝑡
1, . . . , 𝑝

𝑡
𝑛−1, 𝑝

𝑡
𝑛] */

for 𝑡 ∈ [0,𝑇 ] do
𝑏𝑟𝑖𝑠𝑘𝑡 ← 0𝑘×1
𝑎𝑐𝑡𝑖𝑣𝑒𝐵 ← B.𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑠 (𝑝𝑎𝑟𝑡P𝑡 ) ; /* get blocks

containing each trajectory */

for b𝑖 ∈ 𝑎𝑐𝑡𝑖𝑣𝑒𝐵 do
𝑏𝑟𝑖𝑠𝑘𝑡b𝑖

+ + ;

𝑟𝑏𝑟𝑖𝑠𝑘𝑡 ← 𝑏𝑟𝑖𝑠𝑘𝑡 / 𝑠𝑢𝑚 (𝑏𝑟𝑖𝑠𝑘𝑡 )
RBRISK ← RBRISK ∪

{
𝑟𝑏𝑟𝑖𝑠𝑘𝑡

}
return RBRISK

Algorithm 1 provides the pseudocode of computing the relative
risk 𝑟𝑏𝑟𝑖𝑠𝑘b of each block b𝑖 ∈ B. Using the 𝑟𝑏𝑟𝑖𝑠𝑘b values, we
are able to construct an infection risk map of M similar to the
example of Figure 1. A risk map provides useful insights into the
potential behavior of the epidemic at different locations within the
observation area. In the following paragraphs, we make use of the
relative risk values of blocks in the risk mapM to provide metrics
related to the risk of individuals moving aroundM, as well as the
points of interest (POIs) within it.

3.2 Individual infection risk
In the next step, for a set of trajectories P and the set of blocks B,
we identify the block that each individual is in at every timestamp:

b𝑢,𝑡 , 𝑢 ∈ N , 𝑡 ∈ 𝑇𝑢 , such that: (𝑥𝑢 , 𝑦𝑢 ) ∈ b for (𝑥𝑢 , 𝑦𝑢 , 𝑡)

At this point, using the previously calculated relative block risks
RBRISK = {𝑟𝑏𝑟𝑖𝑠𝑘b1 , 𝑟𝑏𝑟𝑖𝑠𝑘b2 , ...} and the block each person
has visited, we can define the risk of infection for individuals. To
do this, we simply add together the block risk values of all blocks
an individual 𝑢 has visited throughout the entire time they’ve been
present in the system 𝑇𝑢 . Formally:

𝑟𝑖𝑠𝑘u =
∑︁
𝑡 ∈𝑇𝑢

𝑟𝑏𝑟𝑖𝑠𝑘b𝑢,𝑡 (4)

Finally, similar to the relative block risk, we calculate the relative
individual risks by normalizing over the entire population:

𝑟𝑟𝑖𝑠𝑘u =
𝑟𝑖𝑠𝑘u∑

v∈N 𝑟𝑖𝑠𝑘v
(5)

Note that we do not examine the average risk of every individual
over the time they were active in the system, but instead we look
at their total accumulated risk. These metrics may differ in many
cases. For example, a person with high-contact activity for a short
time and another with a few contacts but over a longer time could
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Figure 2: Architecture diagram for calculating the POI Risk. (A)
POI-based aggregation of hexagon blocks to form multi-blocks, (B)
Associating POI to a multi-block, (C) Risk map, (D) POI risk based
on the block risk under varying assumptions.

have the same total risk, but different average risk over time. In
this work, we are interested in the total infection risk that an indi-
vidual experiences throughout the observation time, and as such
the examination of average risk over time is outside our scope.

3.3 Multi-block and POI infection risk
Our microscopic epidemic model allows to examine the unique
infection interactions happening at the scale of POIs; recall that a
POI corresponds to a group of contiguous, adjacent blocks. There-
fore, in order to better represent a point of interest, we introduce
the concept of a multi-block 𝐻𝑖 ⊂ B, which contains all blocks
corresponding to 𝑃𝑂𝐼𝑖 . An illustration containing two multi-blocks
derived from the location of two POIs can be seen in Fig. 3. As
observed in the figure, some hexagons do not intersect any POI,
and thus cannot be meaningfully consolidated to form a multi-
block. Such hexagons are irrelevant to the infection transmission
dynamics within a POI. Although we focus on POI-based block
aggregation in this work, other aggregation semantics are possible.
For example, multiple POIs belonging to the same mall or complex
can be further aggregated together to form a larger multi-block.
One can also consider aggregation at the level of a city. We are now
in position to formally define the infection risk associated with a
POI (i.e. the corresponding multi-block) in terms of the aggregated
risk of the blocks contained within it. Formally:

𝑃𝑂𝐼𝑟𝑖𝑠𝑘𝑖 =
∑︁
b∈𝐻𝑖

𝑟𝑏𝑟𝑖𝑠𝑘b (6)

3.4 Distribution of individuals in POIs
It is important to note that the POI risk can greatly depend on the
distribution of individuals in space. Since the value of 𝑏𝑟𝑖𝑠𝑘b has an
𝑂 (𝑛2) relationship with the number of individuals within the block
b, we can infer that the same number of individuals concentrated
in a single block of a POI would produce a higher POI risk than the
equivalent number of people evenly distributed across every POI
block. Therefore, a metric that describes the “spread” or statistical
dispersion of individuals to POI blocks is particularly insightful.

Note that at this point, the distribution of individuals in such a
microscopic scale often is not known and/or considered in relevant
research and recommended guidelines [16]. The main factor that is
considered is simply the occupancy of a location, presumably along

Figure 3: Hierarchical multi-block aggregation of POIs.

Figure 4: An example illustrating how two different POIs with the
same area (14 hexagon blocks) and total occupancy (42 people) may
have varying dispersions.

with an arbitrary infection probability multiplier. This inevitably
leads to the implicit assumption that all individuals in a given POI
are uniformly distributed throughout the POI’s area, which is a
strong assumption that may not necessarily reflect real conditions.
To better model the distribution and dispersion of individuals within
POIs, we consider the previously mentioned uniform distribution,
along with several instances of the normal distribution with varying
levels of statistical dispersion. More specifically, as in this case of
a discrete population, this represents a binomial distribution, but
we’ll refer to it as normal distribution for simplicity.

The normal distribution is popular in probability and statistics
and is a natural choice for real-world assumptions. With normal
distributions, dispersion is more commonly measured using the
standard deviation, as opposed to other measures such as the range
or interquartile range [39]. Although standard deviation can be com-
puted experimentally, we assume in our work that domain expertise
can provide this number. In particular, we take into account varying
levels of dispersion, with standard deviation 𝜎 = {0.5, 1.0, 2.0, 3.0}
respectively. The baseline for comparison would involve the uni-
form case where the standard deviation is not defined (i.e. 𝜎 = ∞).
Fig. 4 shows two example distributions of the same population that
yield the same mean, but distinctive standard deviation values.

3.5 Spatiotemporal epidemic modeling
Our model of epidemic spreading is based on an agent-based het-
erogeneous (due to mobility patterns) SEIR model (see Appendix
B for details on the taxonomy of SEIR epidemic models). At any
time step 𝑡 , an individual can be in any one of the S, E, I, or R
states. First, we briefly describe the characteristics of each state in
the spatiotemporal context using semantics of a block:
(S) Susceptible. All individuals are initially in this state; each
one can get exposed to the infection by any one of the infected
individuals that belong to the same block b as that person, with
probability 𝛽 per timestep.
(E) Exposed. Individuals in this state have been infected but have
yet to be infectious. Individuals remain in this state for the duration
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Figure 5: An example illustrating the epidemic spreading dynamics
among five individuals in a three-hexagon POI during four observed
timesteps.

of the incubation period 𝜆 of the disease – which we model as a
constant that lasts for I𝑓 timesteps for simplicity. After this period,
the exposed individual is guaranteed to switch to the infected state.
(I) Infected. Infected individuals can transmit the infection to
anyone that shares the same block b at time 𝑡 , with probability 𝛽 .
(R) Recovered. Removed individuals are either infected individuals
who have recovered or who have passed away due to the disease. To
simplify the model, individuals are removed from the I state after
I𝑟 timesteps with recovery probability 𝛾 . Recovered individuals are
assumed to neither catch the disease nor be susceptible to it.
Algorithmic Details of the Stochastic Model. Given a set of
(pedestrian) trajectories P, a finite set of regular disjoint blocks
B in the mapM, as well as epidemic parameters 𝛽 , 𝛾 , I𝑓 and I𝑟 ,
the model allows to keep track of every individual’s states over
time. Recall that individuals can progress to different compartments
(susceptible to exposed to infectious to removed). With a population
size N , the cumulative number of individuals within each of the
states at time 𝑡 is given by S(𝑡), E(𝑡), I(𝑡), and R(𝑡), respectively.
To represent the size of the epidemic spread, we consider two special
sets of infected individuals: (i) the initial seed set I0 = I(0), and (ii)
the set of all those individuals infected at the end of the time period
I𝑇 = I(𝑇 ). Formally, let individual 𝑢 ∈ b𝑘 be in the susceptible
compartment and N𝑢 be the set of all other individuals residing in
block b𝑘 at time 𝑡 . Each individual in N𝑢 that is infected has some
probability 𝛽 of transmitting the disease to𝑢 (modelledwith a biased
coin flip). 𝑢’s state switches to the exposed state upon infection
(otherwise, 𝑢’s state remains the same). An exposed individual
automatically switches to the infected state after I𝑓 timesteps and
an infected individual transitions to the removed state after I𝑟
steps, with probability 𝛾 . The pseudocode of the stochastic model
of spatiotemporal epidemic spreading is provided in Algorithm 2. It
extends the work of [46] by assuming that all individuals residing in
the same tessellated block form a fully-connected contact network.
This allows to reduce spatiotemporal semantics (block-level) to
well-defined network-based epidemic dynamics. Fig. 5 depicts an
illustrative example of this epidemic spreading model. Algorithm 2
is a stochasticmodel and can be costly in terms of runtime. Appendix
D discusses how this can be alleviated by converting the model to
a deterministic method based on percolation theory.

3.6 Containment intervention strategies
In this section, we explore intervention strategies focused around
social distancing. We present two alternatives, a targeted interven-
tion and a randomized one, representing a null model.

Algorithm 2: Spatiotemporal Epidemic Spreading Model
Input: P, B, S, I, 𝛽 , 𝛾 , I𝑓 , I𝑟
Output: BSEIR[0,𝑇 ] =

{
BSEIR(𝑡 )

}𝑇
𝑡=0, where

BSEIR(𝑡 ) =
{[
bS(𝑡 )
𝑘

, bE(𝑡 )
𝑘

, bI(𝑡 )
𝑘

, bR(𝑡 )
𝑘

]}
∀b𝑘 ∈B

S(0) ← S; E(0) ← 0; I(0) ← I; R(0) ← 0; BSEIR[0,𝑇 ] ← {}

for 𝑡 ∈ [0,𝑇 ] do
for b𝑘 ∈ B do
BSEIR(𝑡 ) ← {}
for 𝑢 ∈ b𝑘 do

if 𝑢.state = S then /* susceptible */
N𝑢 ← {𝑝 | 𝑝 ∈ P in block b𝑘 at time 𝑡 } \ {𝑢}
for 𝑣 ∈ N𝑢 do

if 𝑣 ∈ bI(𝑡 )
𝑘

then
𝑣 infects 𝑢 with probability 𝛽

if 𝑢 is infected then
𝑢.𝑠𝑡𝑎𝑡𝑒 ← E
I𝑢
𝑓
← 0 /* incubation of 𝑢

begins */

bS(𝑡+1)
𝑘

← bS(𝑡 )
𝑘
\ {𝑢}

bE(𝑡+1)
𝑘

← bS(𝑡 )
𝑘
∪ {𝑢}

else if 𝑢.state = E then /* exposed */
I𝑢
𝑓
+ +;

if I𝑢
𝑓

= I𝑓 then
𝑢.𝑠𝑡𝑎𝑡𝑒 ← I
I𝑢𝑟 ← 0 /* recovery of 𝑢 begins */

bE(𝑡+1)
𝑘

← bE(𝑡 )
𝑘
\ {𝑢}

bI(𝑡+1)
𝑘

← bI(𝑡 )
𝑘
∪ {𝑢}

else if 𝑢.state = I then /* infected */
I𝑢𝑟 + +;
if I𝑢𝑟 = I𝑟 then

𝑢.𝑠𝑡𝑎𝑡𝑒 ← R
bI(𝑡+1)
𝑘

← bI(𝑡 )
𝑘
\ {𝑢}

𝑢 recovers with probability 𝛾
if 𝑢 recovers then

bR(𝑡+1)
𝑘

← bR(𝑡 )
𝑘
∪ {𝑢}

else
/* removed compartment; do nothing */

BSEIR(𝑡 ) ← BSEIR(𝑡 ) ∪
{[
bS(𝑡 )
𝑘

, bE(𝑡 )
𝑘

, bI(𝑡 )
𝑘

, bR(𝑡 )
𝑘

]}
BSEIR[0,𝑇 ] ← BSEIR[0,𝑇 ] ∪ BSEIR(𝑡 )

return BSEIR[0,𝑇 ]

Targeted intervention. Each individual, using information pro-
vided by a risk map M, makes specific local decisions to limit
contacts and help contain the infection. This strategy can change
the structure of the social interaction network and therefore affect
the 𝑅0 number of the spread of infection [9]. Using the risk map,
the intervention assumes that an individual is provided by the indi-
vidual risk of every trip they plan to make within the observation
time, and decide to cancel the 𝛼 most risky ones (i.e. fewer trips).
This results in eliminating a fraction 𝛼𝑒 of their overall contacts
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Figure 6: The image depicts the infection risk associated to paths. In the example, the orange path is less risky than the purple one when
travelling from the source (blue marker) to the destination (red marker).

Figure 7: The image depicts the most recommended POIs (red markers) in close proximity to the user (blue location) with the least amount of
infection risk. As a disclaimer, we do not intend on displaying the risk associated to a particularly-named POI.

that would have occurred, but eventually did not. This informed
decision defines a targeted intervention that results in mitigating
the spread of infection (see an example of this process in Fig. 6).
Null model. In order to evaluate the comparative performance of
the targeted intervention strategy, we compare it with a null model.
The null model assumes that an equal fraction 𝛼𝑒 of contacts is
uniformly at random removed from the overall set of contacts.
The objective is to evaluate how a targeted intervention can be
beneficial to mitigating the spread of infection, compared to ran-
domized social distancing strategies (informed by horizontal health
policy measures). The evaluation is based on simulating the spread
of infection using a stochastic agent-based SEIR model.

3.7 Safest POI recommendation model
In certain scenarios, evaluating the risk of a trip based on the relative
risk of blocks traversed might be insignificant or irrelevant (e.g.,
driving to a grocery store). In these scenarios, it makesmore sense to
evaluate the infection risk associatedwith specific POIs that serve as
the intended destination(s) of the trip and provide recommendations
for potential better alternatives (see Fig. 7). Formally, given an
origin 𝑜 , a set of POI𝑠 = {𝑃𝑂𝐼1, 𝑃𝑂𝐼2, 𝑃𝑂𝐼3, ...}, a minimum social
distancing area 𝑎, a radius 𝑅 and a list of maximum occupancy
ratios Γ = {𝛾1, 𝛾2, 𝛾3, . . . }, our objective is to recommend the top-𝑘
safest POI(s) within a radius 𝑅 for different occupancy levels. We
consider three recommendation models:
Safest POI: This is our POI recommendation model, where desti-
nations are ranked by 𝑃𝑂𝐼𝑟𝑖𝑠𝑘 and the safest one is chosen. The
pseudocode of the model can be seen in Algorithm 3.
Closest POI: This is a sensible baseline model that effectively rep-
resents the expected behavior in the absence of a recommendation
service, where a POI is picked based on physical proximity.
Random POI: This model serves as the null model, where a POI is
uniformly at random selected as the destination.
For each of the Safest POI and Random POI models, we consider
the possibility that only a percentage 𝜉 of the total population N
actively follows the recommendation, while the rest revert to the

Algorithm 3: Safest POI Recommendation
Input: POI𝑠 : set of POIs, 𝑜 : origin, Γ = [𝛾1, 𝛾2, ..., 𝛾𝑘 ]: list of

occ. ratios, 𝑅: search radius, 𝑎: social distance area, 𝜎 : std.
Output: 𝑃𝑂𝐼𝑟𝑖𝑠𝑘 : list of minimum risk POIs within 𝑅 km

𝑃𝑂𝐼𝑟𝑖𝑠𝑘 ← []

for 𝑃𝑂𝐼𝑝 ∈ {𝑥 | 𝑥 ∈ POI𝑠 and Δ(𝑜, 𝑥 ) < 𝑅} do
𝑚𝑎𝑥_𝑜𝑐𝑐𝑢 ← 𝑃𝑂𝐼𝑝 .𝐴𝑟𝑒𝑎𝑆𝑖𝑧𝑒

𝑎

for 𝛾 ∈ Γ do
𝑛𝑠 ← 𝑁𝑜𝑟𝑚𝑎𝑙 {𝜎, 𝑃𝑂𝐼𝑝 .𝑛𝑢𝑚𝐻𝑒𝑥 } ×𝑚𝑎𝑥_𝑜𝑐𝑐𝑢 × 𝛾
𝑟𝑖𝑠𝑘 ← 0
for 𝑛 ∈ 𝑛𝑠 do

𝑟𝑖𝑠𝑘 ← 𝑟𝑖𝑠𝑘 + 𝑛 · (𝑛−1)
2 /* compute POI risk */

𝑃𝑂𝐼𝑝 .𝑛𝑟𝑖𝑠𝑘.𝑎𝑝𝑝𝑒𝑛𝑑 ( 𝑟𝑖𝑠𝑘
𝑃𝑂𝐼𝑝 .𝑛𝑢𝑚𝐻𝑒𝑥

)
𝑃𝑂𝐼𝑟𝑖𝑠𝑘.𝑎𝑝𝑝𝑒𝑛𝑑 (𝑃𝑂𝐼𝑝 )

𝑃𝑂𝐼𝑟𝑖𝑠𝑘 ← (𝑃𝑂𝐼𝑟𝑖𝑠𝑘.𝑚𝑖𝑛 (𝑎𝑥𝑖𝑠 = 𝑐𝑜𝑙 ) )
return 𝑃𝑂𝐼𝑟𝑖𝑠𝑘

default behavior Closest POI. We take the relative risks of each of
these POIs from each search query and identify the impact of fol-
lowing the recommendation. In particular, we evaluate the relative
risk difference had the user opted to elect the POI closest to them or
some other randomly-selected POI.

4 RESULTS AND DISCUSSION
In this section, we present a comprehensive experimental evalua-
tion of the methods and models introduced and discuss the conse-
quences of the results obtained. We begin by listing the research
questions/scenarios we aim to explore. Then, we present details of
the data employed. Finally, we elaborate on process we followed
to experimentally evaluate each research question, along with the
results and discussion of broader insights. Table 1 provides a sum-
mary of the parameters used in the experiments. Our experiments
aim at answering the following questions:

(Q1) Effect of POI visitor distribution on risk. How visitors’
dispersion within a POI affect POI’s infection risk?
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Table 1: Summary of Parameters

Parameter Symbol Values

Tr
aj
. #individuals 3,000

#data points 259,200,000

C
on
st
an

t

Total timesteps 𝑇 96 timesteps∗
Simulation runs I 100 iterations
POI visitor count N 500 people
Ave. block count w/n POI |H| 57 hexagons
Hexagonal area 𝐴 4 m2

Max duration of POI visit 𝜏 15 timesteps

Va
ry
in
g Initial infection seeds |I0 | {1, 3, 5, 7, 10}% of N

Max occ. in the POI 𝑚 {10, 20, ..., 100}%
Occ. std. for POI 𝜎 {0.5, 1.0, 2.0, 3.0,∞}

Ep
id
em

ic
-r
el
at
ed

Transmission rate 𝛽 0.01
Incubation rate 𝜆 1.0
Recovery rate 𝛾 1.0
Exposure period 𝑇exp 2 days
Infection period 𝑇inf 4 days
Recovery period 𝑇rec 7 days

∗ One timestep represents five minutes.

(Q2) Effect of POI visitor distribution, occupancy and initial
infected seed size on direct infections. Howmany people
come in direct contact with infected individuals for distri-
butions of visitors with varying levels of dispersion? What
happens when the number of visitors approaches the max
capacity of the POI? How do varying proportions of initially
infected individuals impact long term infection counts?

(Q3) Impact of targeted & non-targeted interventions. How
does each strategy affect the progress of the epidemic?

(Q4) Impact of recommendation policy. How POI recommen-
dations can decrease the risk of infection?

Data generation. In our experiments, we developed a parametric,
stochastic agent-based synthetic data generator. We discuss our
data generation techniques in each of the following experiments,
and further provide more details on this in Appendix E.

4.1 Q1 Effect of POI visitor distribution on risk
For this experiment, we simulate the movement of individuals
within POIs using a stochastic process. For each timestamp 𝑡 ∈
[0,𝑇 ], individuals freely move around within the POI – moving
from one block to another or perhaps remain in the same block. The
destination block is selected based on a predefined spatial distribu-
tion (conceptually, this corresponds to less or more "interesting"
places within the POI). This spatial distribution corresponds to
either the uniform distribution or the normal distribution with pre-
specified 𝜎 values. Individuals remain within the POI up until a
maximum duration 𝜏 , while new individuals may enter the POI as
long as the maximum allowed capacity 𝑚 has not been reached.
Entry times of new individuals are also randomized and follow a
normal distribution, which can be parametrically configured.

In order to examine the block risks inside POIs for different visi-
tor dispersion values, we generate a population of POI visitors with
a fixed number of individuals N , corresponding to a percentage𝑚

of the POI’s max occupancy, as well as various spatial distributions
with corresponding standard deviation values 𝜎 . In Fig. 8a, we can
observe that the uniformly-distributed occupancies will tend to a
flat horizontal line in our plot as occupancy counts in the POI’s
hexagons are approximately the same at each timestep – which
implies that the number of contacts, and consequently the relative
risks of each of these hexagons, would roughly be the same. We can
observe the risk of infection increases as the dispersion decreases
(i.e. lower 𝜎 , people are more concentrated at the same spots). This
is in agreement with intuition: as social distancing implies that
people are more distributed in space, the risk of infection is lower.

4.2 Q2 Effect of POI visitor distribution, OCC.
and infection seed on direct infections

For this experiment, we use the same model as Q1 – however now
we select a portion |I0 | of the population to be initially infected and
act as seed for the epidemic. These individuals, when coming to
direct contact with others (i.e., occupy the same block), transmit the
infection to others who became exposed. Note that newly exposed
individuals are unable to become infected and cannot infect others
as this is a short-term observation time over the course of one day.

We utilize this method to execute three variants of this experi-
ment: (1) varying distributions of individuals, including the uniform
(𝜎 →∞) and normal distributions (𝜎 ∈ [0.5, 1.0, 2.0, 3.0]); (2) vary-
ing maximum occupancy (𝑚 ∈ [0%, 10%, 20%, . . . , 100%]) and (3)
varying sizes of initial seed (|I0 | ∈ [1%, 3%, 5%, 7%, 10%]). In all
cases, the non-varying values are fixed to 𝜎 = 1.0,𝑚 = 100% and
|I0 | = 10%, with constant population sizeN = 500, observation time
𝑇 = 8 hrs = 96 timestamps, and visit duration 𝜏 = 15 timestamps.
The results for these can be seen in Figs. 8b, 8c and 8d, respectively.

As anticipated, situations that lead to increasingly dense con-
centrations of people (high occupancy, low dispersion) or larger
numbers of infected individuals (high occupancy, large seed size),
lead to higher direct infection counts. Although increasing the occu-
pancy contributes to both of these scenarios, the highest infection
counts are achieved by decreasing the dispersion in the population.
This may likely be due to the quadratic relationship between the
block occupancy and number of contacts, as discussed in Sec. 3.4.

4.3 Q3 Impact of targeted and non-targeted
intervention strategies

Now we address the proposed research question without making
the strong assumption of homogeneous mixing. Instead, we use
synthetically generated dataset of simulated pedestrian trajectories
in the York University, Keele campus in Toronto, with N = 3000
individuals, 1.5 million contacts and 260 million individual position
measurements (Table 1). We then model the spread of an epidemic
using an agent-based SEIR model, with description as presented
in Appendix B. It is worth noting that this experiment demon-
strates interventions in a microscopic simulation process; more
sophisticated intervention strategies can be developed similarly.

After using the SEIR model to simulate the course of an infec-
tion on the given population over the period of a month (𝑇 = 30),
we obtained an average of the final infected individual count at
any time in [0,𝑇 ] (i.e. everyone in the E, I, R groups) over 20
executions. The final value was approximately 2449 individuals
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(a) block risks for different 𝜎 ,
𝑚 = 100%

(b) #infected for different 𝜎 ,
𝑚 = 100%, | I0 | = 10%

(c) #infected for different𝑚,
𝜎 = 1.0, | I0 | = 10%

(d) #infected for different | I0 |,𝑚 =

100%, 𝜎 = 1.0
Figure 8: (a) The POI visitor distribution versus the risk of blocks (Q1);
the effect of (b) POI visitor distribution, (c) the maximum occupancy,
and (d) the initial infections on the long-term direct infection counts
(Q2)

Figure 9: Comparison of interventions. This plot illustrates how
targeted interventions are more effective in practice, compared to
no or non-targeted intervention strategies (Q3).

– around 75% of the total population. Next, we repeated the sim-
ulation, after first applying targeted intervention strategy with
𝛼 ∈ [0.1, 0.2, ..., 0.5] values as well as applying the null-model inter-
vention strategy at the corresponding 𝛼𝑒 values. The final results
can be seen in Fig. 9. It is evident that the null model achieves an
approximately linear reduction in final number of infections, with
the targeted intervention performing better. The proposed method
achieved twice as high as the amount of prevented infections as
the null model, although there appears to be diminishing returns
after removing > 40% of contacts in the dataset.

4.4 Q4 Impact of recommendation policy
In this experiment, we made use of a dataset provided by Safe-
Graph1, which contains information about the location and floor
area of POIs, and generated queries originating at one of 380 loca-
tions O in Toronto, Canada. For each query, all relevant POIs within

1https://www.safegraph.com

𝑅 = 5 km belonging to a specific category (such as "restaurants")
were retrieved, along with their 𝑃𝑂𝐼𝑟𝑖𝑠𝑘𝑖 from a generated risk
mapM. These are then ranked based on the criteria from Sec. 3.7.

In Fig. 10a, we examine the relative risk difference between the
safest option and the null model for both uniform and normal
(𝜎 = 1.0) distributions. Risks were calculated based on a max occu-
pancy definition of 4 m2 per person as per post-COVID-19 social
distancing regulations in Ontario2. In the uniform case, people are
sufficiently dispersed; hence, close contacts do not occur. Thus, all
destinations pose the same individual risk value of 0. However,
in the more realistic case of individuals distributed normally, the
relative risk difference is negative for both recommended and null-
model options. As expected, the POIs recommended by our model
are safer than both the closest and the randomly sampled POIs.

We also examine scenarios where different percentages 𝜉 of
people follow the recommendation model, while the remaining
people (100% − 𝜉) select the closest POIs, with a max occupancy of
4 m2 per person. In Fig. 10b, it is evident that as more people follow
our recommendations, the relative risk value goes down. The effect
is more evident for higher values of maximum occupancy.

Finally, we use the recommendation framework to evaluate how
the new post-COVID19 maximum occupancy regulations affect the
relative risk value, compared with the pre-COVID-19 value of 2 m2

per person. In Figure 10c, we report the difference between the two
for different occupancy values. It is evident that in realistic, normal
distribution scenarios, the post-COVID-19 maximum occupancy
guidelines have prevented a significant amount of infection risk.

5 RELATEDWORK
Our research is mostly related to spatiotemporal epidemic modeling
and mobility-based epidemics spreading. Several key ideas on these
topics have already been cited throughout the paper. Here we briefly
elaborate on other aspects relevant to our research.
Trajectory data mining. Computational methods for mining spa-
tiotemporal, trajectory, and mobility data, have been extensively
studied by data mining and database communities [6, 62]. Of par-
ticular interest are problems related to trajectory similarity [55],
trajectory clustering [36], anomaly detection in moving objects [21],
computing node centrality in trajectory networks [47], and mining
interactions among moving objects overtime (eg. pedestrian group
trajectory detection [52–54]). Recently, deep learning approaches
for spatiotemporal learning have gained increasing attention [58].
Digital contact tracing. In our research, we assume that human
mobile traces are available. This can be enabled by existing digital
contact tracing technologies [14, 18, 25]. For instance, Aleta et
al. [1] synthesized contact networks and modeled SARS-CoV-2
transmission in the Boston metropolitan area using census and
contact tracing data. They showed how vital contact tracing is in
preventing 2nd wave spreading when complete isolation is relaxed.
Microscopic vs macroscopic epidemic models. Several works
have shown the limitations of macroscopic models over micro-
scopic models. For instance, Cui et al. [19] showed how high-risk
exposed individual counts in 50 U.S. states can be estimated at the
micro-level, but not in the macro-level. Liu [37] used multi-agent

2www.ontario.ca/laws/regulation/r21520
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(a) Risk difference between recommended and
closest restaurant destinations

(b) Effect of a percentage of population 𝜉 follow-
ing recommendations on risk

(c) Post-Covid - pre-Covid maximum occupancy
relative risk evaluation

Figure 10: Experimental results for Q4

reinforcement learning to conclude the same. Cantin et al. [13] pre-
sented a hybrid model that integrates micro- with macro- attributes
of epidemic models, and showed that microscopic behaviors can
strongly influence the dynamics of macroscopic epidemic models.
Epidemic spreading in complex networks. Mathematical mod-
eling of epidemic spreading in networks is a popular topic that can
help to study and control the emergence of infectious diseases in a
population. For instance, Weitz et al. [59] designed epidemiological
interventions that exploit the idea of ‘shield immunity’. However,
methods cannot easily translate to health policy or individual-level
recommendations. In our study, we used an agent-based SEIR
model, which has previously been employed to study epidemic
spread in dynamic networks. For instance, Perez andDragicevic [49]
proposed a spatially explicit epidemiological model of infectious
disease for understanding the diffusion of a disease in a network of
human contacts. In their model, interactions are not fully dynamic,
but are determined by the location of individuals at certain times.
Non-pharmaceutical interventions. Instead of lockdown restric-
tions, Block et al. [9] proposed more moderate distancing strategies
including limiting contacts to similar, community-based or repetitive
contacts. More accurate microscopic epidemic modeling is useful in
designing intervention strategies. Miralles-Pechuán et al. [40] used
reinforcement learning to suggest high-level intervention strategies
rewarding fewer infections and less severe lockdowns. Fan et al.
[24] showed that mobility inspired interventions, such as limited
long distance trips, can notably reduce epidemic spread.
Populationheterogeneity in epidemics due tomobility. Hébert-
Dufresne et al. [31] argued the importance of heterogeneity in mo-
bility for predicting an infectious disease’s outbreak size through
digital contact tracing technologies. Changruenngam et al. [16]
studied the effects of individual human mobility on disease trans-
mission dynamics. Lloyd-Smith et al. [38] showed how the basic 𝑅0
in traditional epidemic analyses is only a population-level estimate;
thus, more targeted control interventions would be more effective.
Trip recommendations and epidemics. Part of our work focuses
on providing trip recommendations that satisfy domain-specific
constraints, such as in the works of [20, 50]. With recent pandemic,
factoring in infection risk in recommendation models has attracted
interest. For example, Fotsing et al. [27] designed an epidemic-aware
socio-spatial POI recommender model. Anastasiou et al.’s [4] graph-
based path search algorithm reduces an individual’s COVID-19
exposure risk taking into account accessibility constraints, outdoor

exposure thresholds, and congestion tolerance. Similarly, Alix et al.
[2] presented a system for recommending safe trips to POIs on a
geographic map based on risk evaluation of alternative trips.

6 CONCLUSIONS
We presented a data-driven microscopic spatiotemporal epidemic
model that takes into account the variability of individual mobility
patterns. Through this, we made analytic and insightful observa-
tions to the individuals’ infection risk, the relative risk of infection
of associated POIs and geographic areas, and the relative risk of
pedestrian trips. Our statistical microscopic model demonstrated
that the risk of infection increases with lower values of dispersion.
We further presented a model that suggests the safest POIs based
on low infection risks. We showed in our experiments the impact
of our model by exhibiting how much infection risk is reduced
by selecting our recommendation over sensible baselines. We also
established this by demonstrating that a high percentage of individ-
uals observing this policy can significantly reduce infection risks.
Finally, our experiment on reducing pedestrian trips demonstrated
that the overall infection count drops remarkably due to the decline
in number of contacts, and consequently the amount of interac-
tions. As a result, we established that our targeted interventions can
outperform generic intervention strategies. Our research on micro-
scopic modeling of spatiotemporal epidemic dynamics offers new
insights and has potential for significant socioeconomic impact.

REFERENCES
[1] A. Aleta, D. Martin-Corral, A. P. y Piontti, M. Ajelli, M. Litvinova, M. Chinazzi,

N. E. Dean, M. E. Halloran, I. M. Longini Jr, S. Merler, et al. Modeling the impact
of social distancing, testing, contact tracing and household quarantine on second-
wave scenarios of the COVID-19 epidemic. medRxiv (2020).

[2] G. Alix, N. Yanin, T. Pechlivanoglou, J. Li, F. Heidari, and M. Papagelis. 2022. A
Mobility-based Recommendation System for Mitigating the Risk of Infection
during Epidemics. In 23rd IEEE Intl. Conf. on Mobile Data Management (MDM).

[3] H. Alsdurf, Y. Bengio, T. Deleu, P. Gupta, D. Ippolito, R. Janda, M. Jarvie, T. Kolody,
S. Krastev, T. Maharaj, et al. COVI White Paper. arXiv:2005.08502 (2020).

[4] C. Anastasiou, C. Costa, P. K. Chrysanthis, C. Shahabi, and D. Zeinalipour-Yazti.
ASTRO: Reducing COVID-19 Exposure through Contact Prediction and Avoid-
ance. 8, 2, Article 11 (Dec 2022).

[5] R. M. Anderson, B. Anderson, and R. M. May. 1992. Infectious diseases of humans:
dynamics and control. Oxford University Press.

[6] G. Atluri, A. Karpatne, and V. Kumar. Spatio-temporal data mining: A survey of
problems and methods. ACM Computing Surveys (CSUR) 51, 4 (2018), 1–41.

[7] S. Baize, D. Pannetier, L. Oestereich, T. Rieger, L. Koivogui, N. Magassouba, B.
Soropogui, M. S. Sow, S. Keïta, H. De Clerck, et al. Emergence of Zaire Ebola virus
disease in Guinea. New England Journal of Medicine 371, 15 (2014), 1418–1425.

[8] C. P. Birch, S. P. Oom, and J. A. Beecham. Rectangular and hexagonal grids used
for observation, experiment and simulation in ecology. Ecological modelling 206,
3-4 (2007), 347–359.



SpatialEpi ’22, November 1, 2022, Seattle, WA, USA Pechlivanoglou et al.

[9] P. Block, M. Hoffman, I. J. Raabe, J. B. Dowd, C. Rahal, R. Kashyap, and M. C.
Mills. Social network-based distancing strategies to flatten the COVID-19 curve
in a post-lockdown world. Nature Human Behaviour (2020), 1–9.

[10] F. Brauer, C. Castillo-Chavez, and C. Castillo-Chavez. 2012. Mathematical models
in population biology and epidemiology. Vol. 2. Springer.

[11] D. Butler. Swine flu goes global: New influenza virus tests pandemic emergency
preparedness. Nature 458, 7242 (2009), 1082–1084.

[12] G. S. Campos, A. C. Bandeira, and S. I. Sardi. Zika virus outbreak, bahia, brazil.
Emerging infectious diseases 21, 10 (2015), 1885.

[13] G. Cantin, C. Silva, and A. Banos. Mathematical analysis of a hybrid model:
Impacts of individual behaviors on the spreading of an epidemic. Networks &
Heterogeneous Media (2022).

[14] G. Cencetti, G. Santin, A. Longa, E. Pigani, A. Barrat, C. Cattuto, S. Lehmann, M.
Salathe, and B. Lepri. Digital Proximity Tracing in the COVID-19 Pandemic on
Empirical Contact Networks. medRxiv (2020).

[15] J. Chan, S. Gollakota, E. Horvitz, J. Jaeger, S. Kakade, T. Kohno, J. Langford, J.
Larson, S. Singanamalla, J. Sunshine, et al. Pact: Privacy sensitive protocols and
mechanisms for mobile contact tracing. arXiv:2004.03544 (2020).

[16] S. Changruenngam, D. J. Bicout, and C. Modchang. How the individual human
mobility spatio-temporally shapes the disease transmission dynamics. Scientific
Reports 10, 1 (2020), 1–13.

[17] H. Cho, D. Ippolito, and Y. W. Yu. Contact tracing mobile apps for COVID-19:
Privacy considerations and related trade-offs. arXiv:2003.11511 (2020).

[18] F. W. Crawford, S. A. Jones, M. Cartter, S. G. Dean, J. L. Warren, Z. R. Li, J. Barbieri,
J. Campbell, P. Kenney, T. Valleau, and O. Morozova. Impact of close interpersonal
contact on COVID-19 incidence: Evidence from 1 year of mobile device data.
Science Advances 8, 1 (2022).

[19] Z. Cui, M. Cai, Y. Xiao, Z. Zhu, M. Yang, and G. Chen. Forecasting the transmission
trends of respiratory infectious diseases with an exposure-risk-based model at
the microscopic level. Environmental Research (2022).

[20] M. Debnath, P. K. Tripathi, A. K. Biswas, and R. Elmasri. 2018. Preference aware
travel route recommendation with temporal influence. In Proc. of the 2nd ACM
SIGSPATIAL/LBSN Workshop. 1–9.

[21] S. Dodge, R. Weibel, and E. Forootan. Revealing the physics of movement: Com-
paring the similarity of movement characteristics of different types of moving
objects. Computers, Environment and Urban Systems 33, 6 (2009), 419–34.

[22] K. T. Eames and M. J. Keeling. Contact tracing and disease control. Proc. of the
Royal Society of London. Series B: Biological Sciences 270, 1533 (2003), 2565–71.

[23] D. J. Earn, P. Rohani, B. M. Bolker, and B. T. Grenfell. A simple model for complex
dynamical transitions in epidemics. Science 287, 5453 (2000), 667–670.

[24] C. Fan, R. Lee, Y. Yang, and A. Mostafavi. Fine-grained data reveal segregated mo-
bility networks and opportunities for local containment of COVID-19. Scientific
Reports 11, 1 (2021), 1–6.

[25] K. Farrahi, R. Emonet, and M. Cebrian. Epidemic contact tracing via communica-
tion traces. PloS one 9, 5 (2014), e95133.

[26] L. Ferretti, C. Wymant, M. Kendall, L. Zhao, A. Nurtay, L. Abeler-Dörner, M.
Parker, D. Bonsall, and C. Fraser. Quantifying SARS-CoV-2 transmission suggests
epidemic control with digital contact tracing. Science 368, 6491 (2020).

[27] C. P. K. Fotsing, Y.-W. Teng, G.-S. Lee, C.-Y. Shen, Y.-S. Chen, and D.-N. Yang.
2022. On Epidemic-aware Socio Spatial POI Recommendation. In 23rd IEEE Intl.
Conf. on Mobile Data Management (MDM).

[28] H. Frisch and J. Hammersley. Percolation processes and related topics. Journal
of the society for industrial and applied mathematics 11, 4 (1963), 894–918.

[29] V. Grimm, U. Berger, F. Bastiansen, S. Eliassen, V. Ginot, J. Giske, J. Goss-Custard,
T. Grand, S. K. Heinz, G. Huse, et al. A standard protocol for describing individual-
based and agent-based models. Ecological modelling 198, 1-2 (2006), 115–126.

[30] J. N. Hays. 2005. Epidemics and pandemics: their impacts on human history.
Abc-clio.

[31] L. Hébert-Dufresne, B. M. Althouse, S. V. Scarpino, and A. Allard. Beyond R0:
Heterogeneity in secondary infections and probabilistic epidemic forecasting.
medRxiv (2020).

[32] H. W. Hethcote. The mathematics of infectious diseases. SIAM review 42, 4 (2000),
599–653.

[33] N. Hoertel, M. Blachier, C. Blanco, M. Olfson, M. Massetti, F. Limosin, and H.
Leleu. Facing the COVID-19 epidemic in NYC: a stochastic agent-based model of
various intervention strategies. medRxiv (2020).

[34] M. J. Keeling and B. T. Grenfell. Individual-based perspectives on R0. Journal of
theoretical biology 203, 1 (2000), 51–61.

[35] W. Kim, H. Lee, and Y. D. Chung. Safe contact tracing for COVID-19: A method
without privacy breach using functional encryption techniques based-on spatio-
temporal trajectory data. PLOS ONE 15 (Dec 2020), 1–12.

[36] J.-G. Lee, J. Han, and K.-Y. Whang. 2007. Trajectory clustering. In Proc. of the
2007 ACM SIGMOD Intl. Conf. on Management of Data – SIGMOD07.

[37] C. Liu. 2020. A Microscopic Epidemic Model and Pandemic Prediction Using
Multi-Agent Reinforcement Learning.

[38] J. O. Lloyd-Smith, S. J. Schreiber, P. E. Kopp, and W. M. Getz. Superspreading and
the effect of individual variation on disease emergence. Nature 438, 7066 (2005),
355–359.

[39] S. Manikandan. Measures of dispersion. Journal of Pharmacology & Pharma-
cotherapeautics 2, 4 (2011), 315.

[40] L. Miralles-Pechuán, F. Jiménez, H. Ponce, and L. Martínez-Villaseñor. 2020.
A methodology based on deep q-learning/genetic algorithms for optimizing
covid-19 pandemic government actions. In Proc. of the 29th ACM Intl. Conf. on
Information & Knowledge Management. 1135–1144.

[41] M. F. Mokbel, S. Abbar, and R. Stanojevic. Contact Tracing: Beyond the Apps.
arXiv:2006.04585 (2020).

[42] D. M. Morens and A. S. Fauci. The 1918 influenza pandemic: insights for the 21st
century. The Journal of infectious diseases 195, 7 (2007), 1018–1028.

[43] W. H. Organization et al. Coronavirus disease 2019 (COVID-19): situation report,
72. WHO situation reports (2020).

[44] W. H. Organization, C. for Disease Control, Prevention, et al. 2015. Implementation
and management of contact tracing for Ebola virus disease: emergency guideline.
Technical Report. World Health Organization.

[45] M. J. Papagrigorakis, C. Yapijakis, P. N. Synodinos, and E. Baziotopoulou-Valavani.
DNA examination of ancient dental pulp incriminates typhoid fever as a probable
cause of the Plague of Athens. Intl. Journal of Infectious Diseases 10, 3 (2006),
206–214.

[46] T. Pechlivanoglou, J. Li, J. Sun, F. Heidari, and M. Papagelis. Epidemic Spreading
in Trajectory Networks. Big Data Research 27 (2022).

[47] T. Pechlivanoglou and M. Papagelis. 2018. Fast and Accurate Mining of Node
Importance in Trajectory Networks. In 2018 IEEE Intl. Conf. on Big Data (Big
Data). 781–790.

[48] J. S. Peiris, K. Y. Yuen, A. D. Osterhaus, and K. Stöhr. The severe acute respiratory
syndrome. New England Journal of Medicine 349, 25 (2003), 2431–41.

[49] L. Perez and S. Dragicevic. An agent-based approach for modeling dynamics of
contagious disease spread. Intl. journal of health geographics 8, 1 (2009), 50.

[50] T. Qian, B. Liu, Q. V. H. Nguyen, and H. Yin. Spatiotemporal Representation
Learning for Translation-Based POI Recommendation. 37, 2 (Jan 2019).

[51] L. Reichert, S. Brack, and B. Scheuermann. Privacy-Preserving Contact Tracing
of COVID-19 Patients. IACR Cryptol. ePrint Arch. 2020 (2020), 375.

[52] A. Sawas, A. Abuolaim, M. Afifi, and M. Papagelis. 2018. Tensor methods for
group pattern discovery of pedestrian trajectories. In 19th IEEE Intl. Conf. on
Mobile Data Management (MDM). 76–85.

[53] A. Sawas, A. Abuolaim, M. Afifi, and M. Papagelis. 2018. Trajectolizer: Interactive
analysis and exploration of trajectory group dynamics. In 2018 19th IEEE Intl.
Conf. on Mobile Data Management (MDM). IEEE, 286–287.

[54] A. Sawas, A. Abuolaim, M. Afifi, and M. Papagelis. A versatile computational
framework for group pattern mining of pedestrian trajectories. GeoInformatica
23, 4 (2019), 501–531.

[55] K. Toohey and M. Duckham. Trajectory similarity measures. SIGSPATIAL Special
7, 1 (2015), 43–50.

[56] C. Troncoso, M. Payer, J.-P. Hubaux, M. Salathé, J. Larus, E. Bugnion, W. Lueks,
T. Stadler, A. Pyrgelis, D. Antonioli, et al. Decentralized privacy-preserving
proximity tracing. arXiv:2005.12273 (2020).

[57] A. R. Tuite, D. N. Fisman, and A. L. Greer. Mathematical modelling of COVID-19
transmission and mitigation strategies in the population of Ontario, Canada.
CMAJ 192, 19 (2020), E497–E505.

[58] S. Wang, J. Cao, and P. Yu. Deep learning for spatio-temporal data mining: A
survey. IEEE Transactions on Knowledge and Data Engineering (2020).

[59] J. S. Weitz, S. J. Beckett, A. R. Coenen, D. Demory, M. Dominguez-Mirazo, J.
Dushoff, C.-Y. Leung, G. Li, A. Măgălie, S.W. Park, et al. Modeling shield immunity
to reduce COVID-19 epidemic spread. Nature medicine (2020), 1–6.

[60] S. Woodhams. 2020. COVID-19 Digital Rights Tracker.
[61] D. Yao and R. Durrett. Epidemics on Evolving Graphs. arXiv:2003.08534 (2020).
[62] Y. Zheng. Trajectory data mining: an overview. ACM Transactions on Intelligent

Systems and Technology (TIST) 6, 3 (2015), 1–41.
[63] A. Zumla, D. S. Hui, and S. Perlman. Middle East respiratory syndrome. The

Lancet 386, 9997 (2015), 995–1007.

APPENDIX

A BASIC REPRODUCTIVE NUMBER 𝑅0
LIMITATIONS AND BEYOND

The basic reproductive number 𝑅0 (sometimes called basic repro-
duction ratio), is the most widely used parameter in epidemiology.
It can be thought of as the expected number of new infections
caused by a single infected individual. Commonly used epidemio-
logical models suggest that 𝑅0 = 1 is a critical value. On one hand
when 𝑅0 < 1, each infected person produces less than one new
case in expectation, therefore the size of the outbreak is constantly
trending downwards, until eventually the disease dies off. On the
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other hand, when 𝑅0 > 1, each infected person produces more than
one new case in expectation, therefore the size of the outbreak is
constantly trending upwards. In principle, the larger the value of
𝑅0, the more challenging it is to control the epidemic. Despite its
usefulness as an approximate indication of the spreading power
of the disease, many studies have stressed the limitations of 𝑅0.
An underlying assumption of 𝑅0 is that the disease is spreading in
a network that resembles a regular tree network – a special type
of a network topology that has no cycles and that each internal
node has a constant number of children defined by a branching
factor 𝑑 . However, real-world communities do not resemble regular
trees, as it is common for people to have common friends (forming
triangles or cycles) and some people may have more contacts than
others. It is also easy to see how the basic computation of 𝑅0 breaks
down when we consider transmission of infection to be a stochastic
process involving discrete individuals [34]. In addition, the compu-
tation of 𝑅0 assumes the homogeneous mixing of individuals that
do not take into account any mobility-based individual variation.

B TAXONOMY OF SEIR EPIDEMIC MODELS
Epidemic compartmental models partition the population into sev-
eral compartments where people transition between them accord-
ing to their infection status. Classical models employ the SIR
model [5, 10] (susceptible, infected, removed compartments). How-
ever our work instead utilizes the SEIR model, allocating an
additional exposed compartment specifically designed for individ-
uals that have been infected, yet not been infectious themselves.
This is particularly useful for infectious diseases that comes with
a significant latent (incubation) time period. There are two main
classes of SEIR models, depending on the assumptions made of
population structure and transmission progression:
Homogeneous Population. This class assumes homogeneous
mixing of population, in which individuals progress between com-
partments at certain transition rates as described by ordinary dif-
ferential equations [23, 32]:

dS
d𝑡

= − 𝛽IS
𝑁

;
dE
d𝑡

=
𝛽IS
𝑁
−𝜆E; dI

d𝑡
= 𝜆E−𝛾I; dR

d𝑡
= 𝛾I

where 𝛽 , 𝜆 and 𝛾 are the transmission, incubation, and recovery
rates, respectively. As this model is deterministic, a fixed parameter
set and model initialization (𝑡 = 0), each simulation generates the
same result. Although this model can provide insights on the state
of epidemic spread and of health policy [57], it is also limited by
the assumption that individuals share the same characteristic.
Heterogeneous Population. This class is based on an agent-based
SEIR model, where each agent represents an individual [33, 49].
Through this approach, individual characteristics and behaviors
(such as mobility and contact patterns overtime) can be modelled
towards the epidemic. Various mobility patterns result in complex
spatiotemporal social interactions among people in the community
[47, 61]. These models pose a challenge of analysis and interpretabil-
ity that is due to their dependence on probabilistic epidemic spread.
Such models are more complex [29], yet are more realistic. In addi-
tion, they can aid in better understanding a disease due to individual
behaviors, as well as provide opportunities for designing targeted
intervention strategies that better translates with health policies.

C HEXAGONAL BLOCK REPRESENTATION
We elected hexagons to represent our blocks, as these are preferred
over other shapes (such as squares or triangular tessellations) for
various reasons. For one, the “circular nature” of regular hexes
allows such polygon to tessellate a map, forming evenly-spaced
grid. Moreover, the nature of its “circularity” enables a natural
representation of curvatures in (mobility) trajectory data [8].

D STOCHASTIC TO DETERMINISTIC MODEL
USING PERCOLATION THEORY

Algorithm 2 exhibits a probabilistic process that is random in na-
ture. With the same initial conditions (eg. the same sets of infected
individuals, etc.) and parametric values, multiple independent simu-
lations of epidemic spreading process can generate several various
outputs, in terms of the total number of infected individuals at
the end of the observation period. This is due to the biased coin-
flipping mechanism that occurs at each timestep to decide whether
the infection would be transmitted to another individual. Fortu-
nately, a model based on percolation theory3 presents itself to be
an equivalent deterministic model that allows faster simulations
than that of a stochastic model. To bring in this idea of percolation
in the model of epidemic spread, we can make a decision for each
edge "interaction" between any two given individuals in P at the
beginning of the observation process, as opposed to deferring this
decision at runtime. In practice, we simply have to flip the biased
coin with probability 𝛽 for each edge as many times as the dura-
tion of contact (expressed in time units); and then decide whether
to keep or remove it from the network. At the end of the whole
process, we have constructed a smaller interaction network.

E DETAILS ON DATA GENERATION
To model individuals’ mobility at a microscopic-level, having a
small-scale high-fidelity trajectory data is vital. Such data can easily
be obtained through camera motion tracking or motion sensors.
However, acquiring real trajectory datasets is challenging and not
a trivial task. This is mostly due to their sensitive nature, as using
real data comes with considerable privacy concerns – which we
have briefly covered in Sec. 1. While simulated datasets are not
always accurate of a real scenario, we have made an effort to create
“realistic” synthetic data with the goal of achieving results as close
as possible to experiments performed on real data. We believe
that the lack of sensitive real datasets should not refrain us from
working on interesting problems where we can demonstrate the
validity and effectiveness of models, provide support to health
policy and decision making, and have a potentially high social
and economic impact. As such, we instead developed a parametric,
stochastic agent-based synthetic data generator through a mobility
simulator SUMO4. This allows us to produce data reflecting both
realistic and extreme scenarios, while enables us to fully explore
the problem space. Furthermore, this tool could enable a domain
expert to produce highly customized datasets tailored to specific
conditions that would better reflect reality despite being synthetic.

3Percolation theory in physics can help explain how fluids can flow through certain
types of porous material [28]. In network science, percolation can help describe the
behavior of a network when nodes or links are removed.
4https://www.eclipse.org/sumo/
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