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ABSTRACT
The capacity to collect and analyze the actions of individuals in
online social systems at minute-by-minute time granularity offers
new perspectives on collective human behavior research. Macro-
scopic analysis of massive datasets raises interesting observations
of patterns in online social processes. But working at a large scale
has its own limitations, since it typically doesn’t allow for interpre-
tations on a microscopic level. We examine how different types of
individual behavior affect the decisions of friends in a network. We
begin with the problem of detecting social influence in a social sys-
tem. Then we investigate the causality between individual behav-
ior and social influence by observing the diffusion of an innovation
among social peers. Are more active users more influential? Are
more credible users more influential? Bridging this gap and find-
ing points where the macroscopic and microscopic worlds converge
contributes to better interpretations of the mechanisms of spreading
of ideas and behaviors in networks and offer design opportunities
for online social systems.

Categories and Subject Descriptors
H.3.4 [Information Storage and Retrieval]: Systems and Soft-
ware—Information Networks; J.4 [Computer Applications]: So-
cial and Behavioral Science

General Terms
Algorithms, Human Factors, Experimentation

Keywords
Social Networks, Behavior, Influence, Diffusion, Geotagging

1. INTRODUCTION
Over the last several years the Web witnessed a prolific growth

largely due to the changing trends in the use of Web 2.0 technol-
ogy that aims to enhance interconnectivity, self-expression and in-
formation sharing. These trends have led to the development and
evolution of virtual communities and services, such as social net-
working sites, photo and video sharing services, blogs, wikis, and

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
HT’11, June 6–9, 2011, Eindhoven, The Netherlands.
Copyright 2011 ACM 978-1-4503-0256-2/11/06 ...$10.00.

folksonomies, but also to the creation of voluminous user-generated
data in the form of text, images, videos and more. Even though
these new social media change the way we communicate, the un-
derlying social processes remain governed by long-standing prin-
ciples of human behavior and social interaction.

To date, analysis of human behavior and interaction has been
limited to a small number of self-reporting individuals, due to prac-
tical issues. As such, models and algorithms typically have been
based on a small number of temporary snapshots of the network
structure and data. On the other hand, social processes that take
place in online spaces can be monitored at unprecedented levels
of scale and resolution, producing massive datasets. The capacity
to collect and analyze the actions of millions of individuals at a
minute-by-minute time granularity offers new perspectives on col-
lective human behavior.

Macroscopic analyses of massive datasets raise interesting obser-
vations of temporal patterns of communication within social sys-
tems. The way we form connections, imitate actions, follow sug-
gestions, influence others in forming opinions or making decisions,
as well as the spread of behavior and the information flow in groups,
describe dynamics and phenomena of everyday life, now expressed
in an online setting. However, working at a large scale has its
own limitations. Monitoring social activity in an aggregate fashion
typically does not allow for interpretations on a microscopic level.
Questions of how influential an individual is and what makes her
more (or less) influential among her neighbors to a large extent re-
main disputed and open. Leveraging the interplay between macro-
scopic and microscopic worlds of online social processes and being
able to find points of convergence between them is a challenge [19]
and the main focus of this paper.

In this work, we examine how different types of individual be-
havior affect the decisions of friends in a network. We begin with
the problem of detecting social influence in a social system. In the
presence of social influence, an idea, behavior norm, or product
can diffuse through the social network like an epidemic. Thus be-
ing able to identify situations where social influence prevails in a
social system is important. Our analysis of social influence is based
on the diffusion of a technological innovation. Then, we focus on
two types of behavior expression, one that characterizes the quan-
tity property (i.e., how often) and one that characterizes the quality
property (i.e., how well) of the expressed behavior.

Detecting social influence derives from macroscopic analysis of
aggregated data, while characterization of user behavior derives
from microscopic analysis of user-specific actions. This setting al-
lows to investigate causality between individual behavior and social
influence in a principal way. In particular, we observe the diffusion
of an innovation among social peers and try to identify what is the
effect of particular behaviors in the social influence that individuals



exert to their network. This raises several research questions: Are
more active users more influential? Are more accurate users more
influential? How do we obtain and evaluate this information?

Our analysis of social influence is based on the adoption of the
geotagging innovation in Flickr1. Geotagging refers to the process
of adding geographical identification metadata to uploaded pho-
tographs, usually consisting of latitude and longitude coordinates,
by placing them on a map. In our analysis, we need to look closer to
individual actions and monitor how systematically and how accu-
rately they use the innovation. We carefully design the experiments
around Flickr and its geotagging innovation as it provides infor-
mation on user actions in an adequate degree of detail for carrying
out such research. Given this environment we make the following
contributions:

• We present a method that given a social network and a log
of user actions over a time period, detects and quantifies the
occurrence of social influence among peers. We apply this
method to show that adopting and using the geotagging in-
novation in Flickr does not happen randomly, but can to a
large extent be attributed to social influence among users in
the network (Section 3).

• We present a method that allows to characterize the quality
property of a user’s behavior by evaluating the accuracy with
which they use the innovation - a measure of user credibility.
(Section 4).

• We hypothesize there is a relation between a user’s social
influence and specific expressions of individual behavior and
design experiments to test the hypotheses (Section 5). Our
findings reveal an essential gap on the effect that these types
of behavior have on influencing other people in their network
and suggest design opportunities for online social systems.

The basic issue which we try to deal with in this research is the
way in which an individual’s choices depend on what other people
do. Our work suggests an experimental framework of investigating
causality of individual behavior and social influence in a network,
while the methods we describe make a relatively small number of
assumptions about the data, are general and can probably be easily
adapted to other analysis of social systems.

2. RELATED WORK
The process of ideas and practices spreading through a popula-

tion contagiously, with the dynamics of an epidemic, has long been
of interest in the social sciences [38]. Its systematic study devel-
oped in the middle of the 20th century into an area of sociology
known as the diffusion of innovations [32]. The theory of diffusion
of innovations examines the effect of word-of-mouth information
sharing and explores the role of social networks in influencing the
spread of new ideas and behaviors. At a particular point in time,
some nodes in the network become aware of new ideas, technolo-
gies, fads, rumors, or gossip, and they have the potential to pass
them on to their friends and colleagues, causing the resulting be-
havior to cascade through the network. Models of diffusion of in-
novations in a social network have since been considered in many
disciplines including mathematical sociology [12, 13], mathemati-
cal epidemiology, viral marketing, and game theory (see Kleinberg
[11, 18] and the references therein). Diffusion of innovations is
usually related to the problem of finding influential nodes in a net-
work [17, 24, 31].
1www.flickr.com visited February 2010

More recently, information diffusion in technological networks
raises interesting connections to theoretical models [19]. As news
and stories become available in the real-world, they spread online
forming information cascades. The capacity to collect and analyze
information cascades can be useful in various domains, such as pro-
viding insight into public opinion on a variety of topics [1, 14, 30]
or developing better predictive models of the spread of ideas and
behaviors [2, 15, 22, 25].

Other researchers have investigated forms of cascading effects
in the Flickr social graph. Singla et Weber [34] monitor the phe-
nomenon of brand congruence in Flickr for hundreds of thousands
of users and over a period of two years. Among other observations,
their study suggests that two friends have a higher probability of
being using the same brand, compared to two random users, sug-
gesting the existence of social influence effects. Che et al. [6],
study the distribution of photo popularity in the Flickr social graph
by monitoring the favoring mechanism (users can flag photos as fa-
vorite). Their study suggests that information spreading is limited
to individuals who are within close proximity of the uploaders, sug-
gesting that social influence happens on the level of direct friends.

Characterizing the relationship between user behavior and their
social environment is also the focus of other research work recently.
Christakis and Fowler [16, 26] investigate cascading effects of in-
dividual behavior in human social networks. Online, Singla and
Richardson [35] focus on Instant Messenger interactions and try to
characterize the relationship between a person’s social group and
its personal behavior. They apply data mining techniques to quan-
tify how similarity is altered based on various attributes, such as
communication time with another user and more, while in [7], the
authors try to quantify how social interactions affect personal inter-
ests and vice versa. A similar approach has been taken in the work
of Leskovec et al. [23] where the focus was on node arrival and
edge creation actions that collectively lead to macroscopic prop-
erties of networks and in [21], where authors study the diffusion
of recommendations in a network by controlling a single threshold
value that determines whether a user will forward a recommenda-
tion. Characterizing individual behavior in social systems has also
been the topic of interest in [33], but authors do not investigate
the relation of behavior and social influence. Our research com-
plements these works in that we are interested in investigating the
causality of social influence in social systems due to individual be-
havior, thus exploring the interplay between macroscopic and mi-
croscopic properties in the diffusion process.

3. DETECTING SOCIAL INFLUENCE
Identifying situations where social influence is present in a social

system is important. In the presence of social influence, an idea,
norm of behavior, or a product diffuses through the social network
like an epidemic. We assume that social influence occurs in a social
system when an individual’s thoughts or actions are affected by one
of his friends in the network.

Formally, assume a directed graph G(V,E) where nodes V rep-
resent users and edges E represent friendships among users. Sup-
pose user a adopts an innovation at time t1. We say that user a
influences user b if and only if at time t2 when user b adopts the
innovation, user a has already adopted it at an earlier time t1, at
which time a and b were already friends. We therefore assume that
social influence occurs when the information of a friend adopting
the innovation has the potential to flow to neighboring nodes in the
social network.

Note that we narrow the definition of social influence to the spe-
cial case where a user has at least one friend in the network that has
previously adopted the innovation. We show that we can make this



assumption without any loss of generality and can be generalized to
more strict definitions of social influence. Our definition of social
influence does not aim to be universal, but rather to help distinguish
the existence of some sort of social influence from randomness in
the process of adopting an innovation in a social system.

3.1 Methodology
We would like to be able to reason about whether - and if yes,

in what extent - social influence occurs during the adoption of an
innovation in a social system. Depending on whether they have
adopted the innovation or not, nodes in the social graph G(V,E)
are distinguished between active or inactive respectively. We moni-
tor the adoption of the innovation during a period [0, T ] and assume
that activation is a binary decision, thus a node in the network that
adopts the innovation remains active for the rest of the period, oth-
erwise it remains inactive. At time t = 0 all nodes are inactive,
while at the end of the monitoring period, t = T , a set A of k
nodes in the network have been activated.

We now describe a method for determining if the activation of
the nodes can be attributed to social influence. The idea is to test
whether the activation of nodes over the monitoring period [0, T ]
happens randomly or is affected by earlier activation of neighboring
nodes in the network. If the latter is true, then we can assume that
some social influence takes place, and therefore nodes that have al-
ready active neighbors have a higher probability of being activated.
Note that the time of activations is important in determining social
influence. LetA = {v1, v2, ..., vk} be the set of k users that are ac-
tivated during the period [0, T ] and assume that user vi is activated
at time ti. Since activations happen in discrete time, a total ordering
of all k activation times is possible. To determine whether there is
a social influence, we run the following test, called the shuffle test,
which consists of two steps.

• Step 1 (Original): We observe the adoption of the innova-
tion in the social graph in the time period [0, T ]. For each
node activation we determine whether it can be attributed to
social influence according to our definition of social influ-
ence (i.e., at least one friend is already active). LetASI ⊆ A
denote the set of activations that can be attributed to social
influence. Then the total effect of social influence SIoriginal
in adopting the innovation is given by:

SIoriginal =
ASI
A

• Step 2 (Shuffled): Next we create a second problem instance
with the same graphG and the same setA of active nodes, by
picking a random permutation π of {1, 2, ..., k} and setting
the time of activation of node vi to t′i := tπ(i). Again we
observe the adoption of the innovation in the period [0, T ] as
in Step 1, and determine the new set A′SI ⊆ A of activations
that can be attributed to social influence and the total effect
of social influence SIshuffled in adopting the innovation is
given by:

SIshuffled =
A′SI
A

If SIoriginal > SIshuffled then we can conclude that some sort
of social influence has been detected in the adoption of the inno-
vation. Note that we can monitor the effect of social influence at
any specific time t ∈ [0, T ] (or when a specific number of acti-
vations has occurred) by comparing the number of activations that
are due to social influence as opposed to random activations by the
following formula:

SItt∈[0,T ] = SItoriginal − SItshuffled

Table 1: Contacts Per User
min max avg stddev median

indegree 1 27404 89.2 270 15
outdegree 1 19542 99.9 309 19

Table 2: Contacts Per Geotagger
min max avg stddev median

indegree 1 14664 104 277.4 28
outdegree 1 14432 104 299.2 30

Table 3: Geotagged Photos Per Geotagger
min max avg stddev median

1 92782 144 580 21

The test is based on the idea that if social influence plays an
important role in adopting an innovation, then the timing of acti-
vations is not independent but rather is affected by the number of
already activated neighboring nodes in the network. The idea of
using timestamp permutations to distinguish influence from corre-
lation in a social network hinges on the shuffle test suggested in
Anagnostopoulos and al. [3]. However, our method does not make
any assumption about a priori knowledge of the distribution of each
node’s influence over its neighbors (this information cannot be as-
sumed to be known in a real system) and does not need to simulate
a theoretical cascade model to determine which nodes are eventu-
ally activated. A similar randomization technique has been used by
La Fond and Neville [20] to measure the gain that is due to influ-
ence and/or homophily in a social network. Their method assumes
that users have attributes (e.g., age or gender) that are assumed to
be known. Das et al. [8] describe sampling based methods to ef-
ficiently collect such information from a social graph. Again, our
method does not make any assumption about node attributes, and
as such, it is simpler, more practical and designed to efficiently be
applied to other online social systems where we would like to both
detect and quantify the existence of social influence.

3.2 Adoption of the Geotagging Innovation in
Flickr

We apply our method of detecting social influence in Flickr.
Flickr is a popular online social system centered around photo shar-
ing, where users upload and share photos, comment on and tag their
own photos and the photos of others, establish “friend” links and
join groups of other users. Our analysis of social influence is based
on the adoption of the geotagging innovation in Flickr.

3.2.1 Data
We crawled a large social network of the Flickr graph. To guar-

antee that our data includes a large number of users that have adopted
the geotagging innovation, we started with a seed set of the 100
most active geotaggers and collected their contacts, and their con-
tacts’ contacts. Our final social graph consists of 525,000 nodes and
47 million directed edges. (Note that friendships are not reciprocal
in Flickr.) From these users, 120,000 users have used the geotag-
ging activity at least once (geotaggers). Table 1 gives descriptive
information about the network structure for all users, and Table 2
for geotaggers only. Moreover, Table 3 provides information about
the distribution of photos per geotagger. There are approximately
13 million geotagged photos in our data.



(a) At least 1 active neighbor (b) Activation Histogram

Figure 1: Original vs. Shuffled Activations

We run the shuffle test on the Flickr social graph and observe the
diffusion of the geotagging innovation (i.e., node activations) for
the original and the shuffled timestamps. Figure 1(a) shows that for
a fixed number of activations, the number of nodes activated at a
given timestamp is larger in the original timestamps than the shuf-
fled ones. Therefore we attribute adoption of the geotagging inno-
vation to the social influence of users. This effect is more obvious
in the beginning of the diffusion process where the chance of hav-
ing a random active node as a neighbor is smaller. As the process
unfolds the network is filled with more and more active nodes. This
increases the chance of having at least one active neighbor node and
eventually causes the process to saturate. Saturation occurs when
all subsequent activations can be attributed to social influence in
both the original and the shuffled scenarios (i.e., upper right part of
Figure 1(a)).

So far we have constrained our definition of social influence to
having at least one active neighbor at the time of activation. We
examine how this is affected by restricting the definition of social
influence to having more active neighbors at the time of activation.
To generalize on this observation, we show in Figure 1(b) the distri-
bution of the number of already active nodes at the time that a node
is activated for both the original and the shuffled timestamps. Note
that in the case of the shuffled timestamps the number of nodes
that have no other active neighbor at the time of activation (the ini-
tiators) is larger than that of the original timestamps. This alone
means that initiators are distributed more uniformly in the graph in
the case of the shuffled timestamps than in the original timestamps.
This is a first indication that activations are not random. Moreover,
note that for all the subsequent cases (i.e., at least 1, at least 2, at
least 3, ..., at least 10 active nodes at the time of activation) the num-
ber of active neighbors is always larger in the case of the original
than in the shuffled scenario. Therefore, even for more restricted
definitions of social influence, there always exist an essential part
of activations that may be attributed to social influence as opposed
to random activations.

From this analysis we conclude that the diffusion of the geotag-
ging innovation in Flickr (i.e., users start geotagging photos) is not
random but can to a large extent be attributed to social influence
of neighboring users in the Flickr social network. This observation
provides evidence of a cascading process that takes place in the so-
cial graph; a process of users passing to their neighbors a signal of
access to the geotagging innovation.

4. USER GEOTAGGING CREDIBILITY
We have seen evidence that users are influenced by their friends

to start geotagging photos. In this Section, we develop a methodol-
ogy that allows to characterize the quality of the geotagging behav-
ior of users. As a surrogate of quality we define a credibility metric,
based on the accuracy with which users make use of the geotagging

innovation. Note that our data contains two types of geotags; either
coming from GPS-enabled devices or manually assigned by a user.
GPS-enabled devices give very accurate coordinates. But, to de-
velop a user credibility metric we are more interested in the second
type of geotags, which are determined by the system when a user
manually places a photo on the Earth map.

The next paragraphs provide details of our methodology. In
brief, it involves steps that allow to determine with high probability
the location that was intented by the user (i.e., the target location)
and then to measure the geodesic distance between the actual loca-
tion (where the photo was placed on the earth map) and the target
location. More specifically, we try to associate each user v in the
network with a credibility value cv that expresses the accuracy with
which she geotags photos. Eventually, the method allows to com-
pare a user’s geotagging accuracy to the accuracy of other users
and to determine who is more or less credible. As such, the method
provides a primitive way to assess and argue about the quality of a
user’s expressed behavior.

Part of this work is performed by using freely available services
of Yahoo! Geo Technologies [39], such as Yahoo! PlaceMaker and
Yahoo! GeoPlanet.

4.1 Distinguishing Location Tags from Free-
text Tags

Each photo in the dataset is associated with a set of free-text tags
or tags, which are non-hierarchical keywords assigned informally
to a photo by its owner. This metadata provides clues to both the
context and the content of the photo and allows it to be found by
browsing or searching. Tags often refer to geographical places.
Throughout the paper, we refer to these tags as location tags.

To identify location tags, we utilize Yahoo! Placemaker, a geop-
arsing Web service. Provided with text, the service returns the
probability that the text is a placename (e.g, the probability of the
word “altitude” or “urban area” to be a placename is 0.077 and
0.055 respectively, while the probability of the word “lake echo”
or “quebec city” to be a placename is 0.71 and 0.89 respectively).
The Yahoo! Placemaker service takes care of the data cleansing
process and considers variants of placenames in the identification
process. Furthermore, the probability model (text is recognized as
place with a certain probability) provides flexibility in which tags
to accept as location tags, by filtering out those that are below a
threshold θ.

For each photo we compute the set of its location tags by scan-
ning the set of its tags and omitting those that are unlikely to refer
to geographical places. For our needs, a threshold of 0.7 is appro-
priate in identifying location tags with high precision. More specif-
ically, from an initial set of 6,756,605 unique tags, distributed over
approx. 13.3M photos, we were able to identify 241,072 unique lo-
cation tags. Note that this is the number of distinct location tags, so
even if a location tag is very popular (e.g., “paris”) it only appears
once in the set. (See examples in Figure 2.)

4.2 Mapping Location Tags to Places
Location tags may be defined at various levels of granularity, for

example, Country, Province, Town, etc. Yahoo! GeoPlanet uses
a hierarchical model for places that provides both vertical consis-
tency and horizontal consistency of place geography. Spatial en-
tities in Geoplanet are identified by a unique 32-bit identifier: the
Where On Earth ID or WOEID. Every named place represented
by a WOEID can be mapped to a location type in the hierarchical
model (e.g., Country, Town, Point Of Interest-POI, etc.). We would
like to find a one-to-one mapping of the photo to a place, given the
set of its location tags.



(a) Gaudi’s Sagrada Familia in
Barcelona, Spain

(b) Waterfalls in Edessa,
Greece

Figure 2: Distinguishing Location Tags from Free-text Tags.
(a) Tags = {sagrada familia, gaudi, barcelona, modernist, cathe-
dral, construction, cranes, infrared}, Location tags = {sagrada
familia, barcelona}. (b) Tags = {waterfall, edessa, greece, green,
pond, wall, tree, fall, balcony}, Location Tags = {edessa, greece}

Normally a geographic name alone is not sufficient to identify
a geographic place unambiguously because it may have been as-
signed to more than one place [9]. This happens particularly with
descriptive names (for example, Newcastle, Takayama (Japanese =
high mountain) and Matsushima (Japanese = pine island)), names
of saints, or emigrated communities (for example, Athens). How-
ever, it is reasonable to assume that people deliberately use unam-
biguous placenames within local areas. Under this assumption it
is possible to eliminate the problem of duplication of geographical
place using two heuristics:

• Heuristic 1: Focus the Search Near a Reference Point:
If we can focus the search of the geographical place around
or close to another reference point (i.e., another place), then
a location tag has a higher chance of uniquely identifying a
place under this restriction (See Figure 3(a)).

• Heuristic 2: Knowledge of Higher Levels in a Hierarchy
of Places: If the wider area in which the geographical place
resides (a higher level in a hierarchy of places, such as Coun-
try, etc.) can be identified, then a location tag has a higher
chance of uniquely identifying a place under this restriction
(See Figure 3(b)).

The first heuristic is always available. Each time a photo is
placed on a map, latitude and longitude coordinates are assigned.
These coordinates can be used to define a reference point place that
guides the search and helps to disambiguate the location mention
from other geographical places with the same name. The second
heuristic offers further support in the disambiguation process when
a photo has been assigned more than one location tag. In this case,
it is expected that these can be mapped to different levels in a hi-
erarchy of places. For example “Toronto, Canada” is mapped to
(Town, Country) or “Sagrada Familia, Barcelona, Spain” is mapped
to (Point of Interest, Town, Country).

Using the heuristics described above and Yahoo! GeoPlanet, we
are able to efficiently disambiguate geographical names, to derive
the target location. Each query submitted to Geoplanet, returns a

(a) Heuristic 1 (b) Heuristic 2

Figure 3: Disambiguation Heuristics: Assume that red dots
represent places on Earth with the same location tag. Our
method efficiently disambiguates places by searching for a
place that satisfies the location tag and in addition (a) is closer
to a reference point (i.e., closer to the triangle on the map)
or/and (b) resides in the specified boundaries of a known higher
level in the hierarchy of places (i.e., Country is known)

(a) WOEIDs (b) Location Types

Figure 4: WOEID and Location Type Frequency Distributions

list of places (WOEIDs) ordered from the most likely to the least
likely. Due to the well-defined semantics of the above heuristics, in
almost all cases we are able to identify the most likely WOEID with
a probability larger than 0.9. Thus, we are able to almost always
unambiguously identify the target location by its intended WOEID.

4.3 Defining and Assessing User Credibility
Manually placing photos on a map is not an easy task and can

be inaccurate at times. In our research, we focus on manually geo-
tagged photos and try to determine the reliability of individuals by
assessing the accuracy with which they place photos on the map;
the closer to the target, the more reliable a user is. We measure
the proximity of a user’s geotagging to the target location by com-
puting their geodesic distance d (see next paragraph). The coor-
dinates of the target location are assumed to be known through its
WOEID (all WOEIDs in our dataset are assigned a number of at-
tributes by third-party authoritative sources, such as longitude and
latitude, which we consider as the ground truth in our research).
Recall that given a photo and its set of location tags we know how to
unambiguously map it to its WOEID with high probability. For lo-
cations with a surface area (such as a city, as opposed to a building
or statue), a wide range of latitude/longitude coordinates will fall
within its boundaries. The coordinates associated with a WOEID
indicate the centroid of the bounding box that encompasses the lo-
cation. It is possible that the centroid of the bounding box is not
the same location as the human-centric logical center of the loca-
tion. Therefore, rather than comparing the user’s accuracy to the
coordinates of the WOEID directly, we compare the user’s accu-
racy, to the average accuracy of all users. We assume that in the
aggregate, in large numbers, users are accurate, and can capture
place boundaries with a sophistication that is not represented by a



centroid-based coordinate system. An example of this phenomenon
is the work of Tom Taylor.2

4.3.1 Geodesic Distance d
Geodesic distance is the distance of two points measured along

the surface of the Earth. Calculating geodesic distance is typically
based on some level of abstraction, which ignores changes in el-
evation and other irregularities in Earth’s surface. Common ab-
stractions assume a flat, spherical, or ellipsoidal Earth. We employ
an ellipsoidal approximation of the surface and compute the ellip-
soidal distance between two points. The Ellipsoidal distance is the
shortest distance between two points along the surface of an ellip-
soid. It is more accurate than methods such as great-circle distance
which assume a spherical Earth. We use the inverse method of Vin-
centy’s formula[37]. This method has been widely used in geodesy
because it is accurate to within 0.5 mm on the Earth ellipsoid. In
our experiments we compute geodesic distances using theWGS84
standard Earth reference ellipsoid, used by the Global Positioning
System.

4.3.2 The Wisdom of the Crowd
The geodesic distance provides a measure of proximity of the

user’s geotagging to the target location, but presents little informa-
tion on how reliable a user is in comparison to others. Moreover,
geotagging happens at different levels of location granularity. For
example one user geotags at the city level and another at the coun-
try level. Thus, it is not valid to compare user credibility based on
different sets of photos and different sets of intended target loca-
tions. To compensate for this limitation, we rely on a wisdom of
the crowd practice. The wisdom of the crowd refers to the process
of taking into account the collective opinion of a group of individ-
uals rather than a single expert to answer a question. In our case,
we would like to compare the performance of a user to the col-
lective behavior of all users that have tried to geotag a photo that
corresponds to the same target location.

Let W = {w1, w2, ..., wk} be the set of all distinct WOEIDs in
our data after mapping each photo to a WOEID. Figure 4(a) plots
on a log-log scale the distribution of the WOEIDs (the number of
times a given WOEID has been a target location). Let a random
variable D represent geodesic distances in the users’ geotagging
activity. For a specific WOEID wi the random variable D takes
on N real values dwi

1 , dwi
2 , ..., dwi

N , with arithmetic mean dwi and
standard deviation σwi . We compute these values (dwi and σwi )
for all WOEIDs in our data and use them to characterize the quality
of the geotagging behavior of users, through hits and misses.

4.3.3 Hits and Misses
We consider geotagging to be a binary decision: a hit or a miss.

We define a user’s geotagging to be a hit when dwi
v (the geodesic

distance of user’s v actual geotagging to the target place wi) is
smaller than the average distance dwi of all users geotaggings for
this target place plus λ times the standard deviation σwi of these
distances. By definition, if it is not a hit, then it is considered a
miss. More specifically:

hit : dwi
v < dwi + λ · σwi

miss : dwi
v ≥ dwi + λ · σwi

where v is a user, and λ is a parameter that controls the selectivity
of hits and misses in the geotagging process. A larger λ indicates

2http://tomtaylor.co.uk/projects/boundaries/ visited February 2010.

Figure 5: Illustrative example of the way a Hit (or Miss) is de-
fined for a specific target location wi following a wisdom of the
crowd practice and provided the distances of all users’ geotag-
gings to the target location

that a hit is easier (i.e., larger geodesic distance from the target is
allowed) and vice versa (See Figure 5).

Recall that our initial objective was to associate each user v with
a single credibility value cv . However, individuals may tag photos
at different levels in the place hierarchy (different location types)
and a WOEID can be mapped to any location type. Figure 4(b)
plots in a log-log scale the distribution of the location types in our
data (that is, the number of times a target place was of that location
type). Determining the semantics of a user credibility in a single
value that aggregates information from all location types (Country,
Town, POI, etc.) is challenging (as semantics of the hierarchy of
places could be violated). Instead, we prefer to maintain a vector
representation of a user’s credibility, let Cv = {cl1v , cl2v , ..., clnv },
where each vector dimension represents the user credibility at a
specific location type. We define the credibility value of a user v at
a specific location type li (e.g., Town) to be the number of hits hliv
for a given location type, divided by the total number of geotagged
photos by this user of that location type tliv . Note here, that we are
allowed to aggregate averages over all WOEIDs of the same loca-
tion type, despite the fact that some places are more popular than
other. This is because our definition of hits and misses incorporates
these semantics (i.e., despite how popular a place is, in order to get
a hit you must be at least as accurate as many other people that
tried to geotag photos for the same place). Our methodology aims
to provide common ground in assessing the quality of the geotag-
ging behavior. Designing measures of behavior quality in a generic
way is challenging as it largely depends on the application of inter-
est and, as such, is out of the scope of this paper.

5. INFLUENCE VS. BEHAVIOR
Understanding the way in which an individual’s choices depend

on what other individuals do requires analysis that can be per-
formed at two conceptually different levels of network resolution.
A global one, in which we observe network effects in aggregate,
and a local one, in which we observe how individuals are influ-
enced by their network neighbors [10]. In Section 3, we detected
the occurrence of social influence in the adoption of the geotagging
innovation in Flickr by monitoring aggregate information of user
actions on a macroscopic scale. In Section 4, we focused on indi-
viduals and monitored user behavior on a microscopic scale. In this
section we try to find points where these two different levels of res-
olution converge and investigate the causality of social influence.



(a) User Geotagging Activity (b) Credibility Scores Histogram

Figure 6: User Geotagging Behavior

Many of our interactions with the rest of the world happen at
a local, rather than a global, level - we often don’t care as much
about the full population’s decisions as about the decisions made
by friends and colleagues. To this end, we bring the analysis closer
to the detailed network level and look at how individuals are influ-
enced by their particular network neighbors. A particular individual
behavior, such as geotagging, can be communicated to the network
in different ways. In our research we focus on (a) intensity and on
(b) credibility of geotagging. These properties are distinct as inten-
sity of geotagging characterizes the quantity of the expressed be-
havior (i.e., how many times a user expressed the behavior ), while
credibility of geotagging characterizes the quality of the expressed
behavior (i.e., how well a user expressed the behavior). Our re-
search examines which of the two primitive types of the expressed
behavior (related to quantity vs. related to quality) has more effect
in the influence that a user exerts in her social network. Associat-
ing aggregate observations with individual behaviors improves our
understanding of how individual’s choices depend on what others
do and eventually how ideas, behaviors and innovations diffuse in
a population.

5.1 Data
As mentioned earlier, different users may be more or less accu-

rate for different location types. We consider a user’s credibility
for each location type independently. In the following experiments
we focus on the credibility of users at the town level. Limiting our
analysis to a single location type provides more clear semantics
when comparing users. We pick towns because they are the most
popular location type in our data. In addition, there is a very large
variation in user credibility scores at the town level.

To produce a more reliable data set, we reject users who only oc-
casionally used the geotagging technology or who were extremely
inaccurate in identifying the places associated with their photos.
Thus we eliminated users who had fewer than ten photos geotagged
as well as users that had a credibility score of zero. The final set
consisted of approximately 25,000 users that have geotagged more
than 5 million photos. Figure 6(a) plots in a log-log scale the distri-
bution of user geotagging activity. The x-axis represents the rank of
each user, taking values from 1 to approximately 25,000, ordered
by activity from the most to the least active.

Recall that λ is a parameter that controls the selectivity of hits
and misses in the geotagging process, and setting it correctly is de-
pendent on the particular application. Since we are investigating in
a general setting, with no specific application in mind, we seek a
setting that provides variability in the credibility scores. We exper-
imented with different settings of λ, and found that making λ large
(i.e., 1.0 and over) causes most users to be highly credible, while
making λ small (i.e., 0.5 and below) is too strict and no users are
credible. For values between 0.5 and 1.0, most users are assigned
intermediate credibility scores. For our experiments we fix lambda

to 0.75 as it provides sufficient variability in the credibility scores
of users. Figure 6(b) shows a histogram of the credibility scores for
λ = 0.75. Still, the majority of users have low credibility scores.
The peak at credibility of one may be because all of the user’s pho-
tos were from one location, or because the location was sufficiently
large that the user could drop it in the appropriate place on the map.
It may also be the case of users that tend to geotag photos of their
hometown, thus being very accurate, or the images were taken with
GPS-enabled cameras.

5.2 Experiment Sketch
We design an experiment that measures how influential is a user

u to its social network, in adopting the geotagging innovation. The
semantics hinge on the social influence experiment discussed in
Section 3, but differ in focus. Here the focus is not on determining
if a user’s activation was due to a neighbor’s influence, but rather
the opposite, to evaluate how influential a user is in her network,
i.e. her social influence effect. Formally, we say that user a has
the potential to influence user b, if and only if user a adopted the
geotagging technology at time t1, and user b adopted it at time t2,
and a and b became friends at time t3, where t1 < t2 and t3 < t2.
That is, a user a has the potential to influence a user b, if a was
activated before b and they became friends at least before b was
activated. Therefore a user is said to influence a neighbor if he
has the potential to pass to his neighbor a signal of access to the
geotagging innovation.

Given these semantics, it is possible to algorithmically assess
the potential social influence of a user (or a set of users V ) to the
network over a time period. Algorithm 1 gives the details of a re-
cursive computational procedure for evaluating social influence in
a finite number of steps. It takes as input a set of users V , a social
graph G and the activation times of all users A in the monitoring
period [0, T ], and returns the number of users that have potentially
been influenced by the set of users V .

In our experiments we do not assume that users have the same
amount of time to influence others. In fact, earlier adopters have
larger amount of time. It is important to note though that we mon-
itor the adoption of a real technology from its launch (time 0 in
our experiments), and therefore provide to all users “equal” oppor-
tunity to be early adopters (through a form of external influence;
reading about it, testing the innovation, etc.). Could late adopters
complain that they didn’t have the chance or the time to influence
others? Yes, but this is always the case in a real setting (e.g., po-
litical influence, fads, diffusion of innovation, etc.) and we would
like to be able to capture this effect. Algorithm 1 is the basic tool
to assess and compare the social influence effect of varying sets of
users in our experiments.

Effect of Neighborhood Size: Before investigating the effect of
individual behaviors to the social influence, it is important to exam-
ine whether the number of neighbors that an individual has, plays
an important role in determining her social influence. To determine
this effect we explore the correlation between the network size of
an individual (i.e., number of neighbors in our context) and her so-
cial influence effect.

Figure 7 shows scatter plots and the regression lines for the cor-
relation tests we run (Pearson’s correlation was used as a measure
of correlation). Our analysis shows that there is direct and high
correlation between the neighborhood size of an individual and the
social influence she exerts to her social network (Figure 7(a)). This
is in alignment with [4], where authors report that adoption rates
quicken as the number of friends adopting increases and this effect
varies with the connectivity of a particular user. Due to the large
effect that the neighborhood size has to an individual’s social in-
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Figure 7: Network Size Effect

Algorithm 1 Social Influence Effect Estimation
1: procedure EVALSOCIALINFLUENCE(V , G, A)
2: V : Set of users
3: G: Social Graph (from, to, friendship_create_time)
4: A: Activation Times (user, activation_time)
5: I: Set of Influenced Users

6: I ← ∅
7: for all v ∈ V do
8: t1 = getActivationT ime(v,A)
9: Nv = getFriends(v,G)

10: for all n ∈ Nv do
11: t2 = getActivationT ime(n,A)
12: t3 = getFriendshipCreateT ime(v, n,G)
13: if t1 < t2 && t3 < t2 then
14: I ← I ∪ n
15: end if
16: end for
17: end for
18: return |I|
19: end procedure

fuence, for the rest of the experiments we had to normalize on the
neighborhood size parameter. The normalization allows to focus
on the individual behavior observations. Otherwise, these observa-
tions could simply be a function of larger or smaller neighborhood.
From now on, any time we refer to the social influence effect of a
user, we refer to a proportion that represents the number of influ-
enced neighbors over the total number of neighbors.

It’s also important to note that as shown in Figure 7(b) and Fig-
ure 7(c), there is very weak to negligible correlation between an
individual’s neighborhood size and any of the two behaviors under
investigatation. In other words, the number of the neighbors has no
effect in the expressed behaviors of an individual.

5.2.1 Social Influence vs. User Activity
We hypothesize that users who are more active are more influ-

ential. This stands to reason because users who are more active
upload more photos, and provide geotags for more photos, they are
“experts” of a sort, in the social system of user-generated content.
To test the hypothesis we run experiments that measure the relation-
ship between user activity (as determined by the number of photos
a user has geotagged) and influence in the Flickr social network.

From the set of 25,000 users, we first sort the users based on
their activity (number of geotagged photos), from the most active
to the least active. Then, we define 5 user groups, each consisting

of 5,000 users, based on their activity level. The first group has
the most active users and the last one the least active users (Figure
8(a)). For each activity level we compute the potential social influ-
ence in the network using Algorithm 1. We report the median value
of the normalized social influence effect, as the distribution of this
property is very skewed.

Assuming the increased visibility they have in their network such
as through notification mechanisms in Flickr, active users, because
they generate more content, are viewed by more people. In fact,
we see in Figure 8(b) that more active users can be as much as
23% more influential in the social network, in terms of encouraging
people to adopt the innovation of geotagging.

5.2.2 Social Influence vs. User Credibility
The measure of credibility based on geodesic distance is intu-

itive: a person is more accurate as a geotagger if she consistently
places her photos very close to the true intended location. However
credibility may relate not only to how accurate a person is, but how
accurate they are perceived to be by others. Thus there is an in-
terplay between influence and accuracy. We hypothesize that more
credible users are more influential. To test the hypothesis we run
experiments that measure the relationship between accuracy and
influence in the Flickr social network.

From the set of 25,000 users, we first sort the users based on their
credibility score, from the most credible to the least credible. Then,
we define 5 user groups, each consisting of 5,000 users, based on
their credibility level. The first group has the most credible users
and the last one the least credible users (Figure 9(a)). For each
user group we compute the potential social influence in the network
using Algorithm 1. We report the median value of the normalized
social influence effect, as the distribution of this property is very
skewed.

One would expect that users with higher credibility scores - that
is, users who are more accurate - would be more influential, assum-
ing that people adopt a technology because they have seen it done
well. But in fact, as we show in Figure 9(b), this is not the case.
It appears that the reasons people become good geotaggers do not
relate to social influence. That is, you may adopt the technology
when you see another person try it, but whether they are good at
it or not does not factor into your decision to adopt the technol-
ogy. We further discuss the consequences of this result in the next
paragraph.

Hidden Social Influence: This is an unexpected finding, as credi-
bility of a user consists an essential individual quality that appears
to be currently hidden in the social network. This is an important
observation, since it suggests that current design of online social



systems may refrain users from exploiting the full potential of their
social influence. In practice, it lessens or cancels the social influ-
ence of a user in her environment. This is not happening inten-
tionally, but it’s rather a consequence of stale design. Interfaces to
electronic systems have traditionally been designed as single-user
systems. The existence of other users and their activities have been
implicitly assumed to be an attribute of the system that should be
hidden from end-users. Similar design approach has been adopted
for accessing information on the web.

This observation raises a more general concern. While quan-
tity of behavior is usually clearly communicated in social systems,
quality of behavior is systematically not (e.g., due to lack of feed-
back mechanisms related to quality). As users interact in online
systems they expose or develop different qualities of individual be-
havior. This becomes more evident in modern online social sys-
tems, where behaviors may or (may not) be revealed by the system
to their social peers. For example, the quality of user-generated
content in Twitter3 or in Facebook4 varies drastically from being
of high quality to being abuse or spam. Quality of user behav-
ior consists an important part of a user’s social value, which might
translate to power of influencing her environment or decision mak-
ing processes, but largely remains hidden. As such, our research
suggests that users should have the option to reveal certain quali-
ties of their behavior to their social network. Acknowledging the
social value of users offers a design opportunity; in designing so-
cial systems, it is not only necessary to see other users, but to also
clearly communicate what behaviors are disclosed and how they
are formed - a design that entails a balance of visibility, awareness
of others and their qualities.

5.3 Tests of Significance
Thoughout our study we based our observations on sample pop-

ulations. But, how dependent our observations on these samples
are? We performed statistical significance tests for the two behav-
iors in our study (i.e., user activity and user credibility) to assess
evidence in favor of or against our claims. The observations in the
samples (i.e., groups of users) are all real numbers that describe the
median value of the normalized social influence in each group of
individuals. The values of the property we observe typically has
skewed distributions. We actually run normality tests, based on
the Shapiro-Wilk method, to show that the samples in each group
do not follow a normal distribution. Thus, to compare k-samples
(i.e., the 5 different groups in each behavior) we employ a method
that does not assume a normal population of samples, such as the
Kruskal-Wallis test, for a selected significance level alpha = 0.05.
This test is a non-parametric method for testing equality of popula-
tion medians among groups. Intuitively, it is identical to a one-way
analysis of variance with the data replaced by their ranks. In the
case that the null hypothesis is rejected by the Kruskal-Wallis test,
we perform post-hoc analysis to identify which of the groups dif-
fer. We use the bonferroni adjustments post-hoc test to identify
these pairs. For the various cases in our study, we formally define
the following hypotheses:

H0: The samples are not significantly different
Ha: The samples do not come from the same population

For the case of Figure 8(b) (Social Influence vs. User Activity),
the Kruskal-Wallis test showed that the samples do not come from
the same population, thus rejecting the null hypothesis H0. The
post-hoc analysis revealed that all groups were significantly differ-

3www.twitter.com
4www.facebook.com

(a) User Activity By Group (b) Social Influence vs. User Ac-
tivity

Figure 8: Social Influence vs. User Activity

(a) User Credibility By Group (b) Social Influence vs. User
Credibility

Figure 9: Social Influence vs. User Credibility

ent with each other. This supported our claim that more active users
are more influential in the social network.

For the case of Figure 9(b) (Social Influence vs. User Credibil-
ity), the Kruskal-Wallis test showed that the samples come from
the same population, thus accepting the null hypothesis H0. This
supported our claim that being more credible does not necessarily
make a user more influential in the social network.

6. CONCLUSIONS
We developed a method that detects social influence in a social

system. The method is similar to the method proposed in [3], as
they both hinge on the idea of shuffling the timestamps of social
actions in a network. Despite its technical soundness and com-
pleteness, their method makes assumptions of prior knowledge of
the distribution of a node’s influence over its neighbors and of a
theoretical cascade model that when is simulated determines which
nodes are eventually activated. Our method is simpler and is de-
signed to both detect and quantify a user-defined social influence
in the context of a real social system. We applied our method in
Flickr to demonstrate that adoption of the geotagging innovation
can to a large extent be attributed to social influence between users.
This observation provides evidence of a cascading process taking
place in the social graph; a process of users passing to their neigh-
bors a signal of access to the geotagging innovation. The proposed
method is generic and can be useful for providing decision support
for designing viral marketing campaigns in social systems.

We performed a series of experimental and observational studies
on rich data coming from a large social system in order to investi-
gate causality, and in particular to draw a conclusion on the effect
of changes of user behavior in determining how influential they are
in their network. In particular, we studied the geotagging behavior
of individuals that collectively leads to macroscopic properties of
social influence and contagion. Our main objective was to investi-
gate potential points of convergence between the macroscopic and
microscopic view of the social system. This is significant because



it allows us to argue about higher levels of granularity by observing
individual behavior.

We investigated the role of the neighborhood size in an individ-
ual’s behavior. Our findings suggest that individuals that have many
neighbors have more potential to influence their friends in their so-
cial network. Then, we investigated two types of user behavior,
frequency of using the geotagging innovation and accuracy in plac-
ing images on a map, and tried to assess the effect of the assumed
behavior on its social influence in the network. Note that these two
behaviors are interesting, as the former characterizes the quantity
of the expressed behavior, while the latter characterizes the quality
of the expressed behavior.

Our findings suggest that the first is a potential reinforcing ac-
tivity such that when it occurs, the probability of a friend in the
network adopting the behavior increases. This is an important ob-
servation that relates to the concept of reinforcement in behavior
sciences [5, 36]. On the other hand, we found that the credibil-
ity of a user has only a small effect in how influential she is in
her network. This raises concerns for the design of social systems,
since user credibility, by construction, is an important indicator of
a user’s quality.

To the best of our knowledge, our work is the first that experi-
mentally unveils that there are qualities of individual behavior that
remain hidden, a practice that lowers the social influence of indi-
viduals in their network. As an outcome of our research, we pro-
pose the conception of mechanisms that inform users about their
friends’ activities and qualities, hoping that such a social feedback
would eventually help users to regain their hidden social value and
encourage other people in the network to expose or develop high
quality behaviors. Similar systems are seen in [28, 29] where users
become aware of similar people’s surfing behavior and in Yahoo!
Answers5 where users are encouraged to answer accurately within
a reward system based on a token economy.

There are many open issues left for future research. For instance,
in our experiments we assume that social influence occurs only
through internal stimuli, realized in Flickr through social feedback
mechanisms. As such we do not take into consideration any exter-
nal stimuli or source of communication. However, social systems
co-exist (for example Flickr, Blogosphere, our family, our class-
mates and more) and communication between social systems is
possible [27]. Formal verification of social influence occurrence
is tricky since it is susceptible to the assumptions made about the
social system. Being able to argue about causality of social influ-
ence on the whole is a challenging task that requires the design of
controlled user experiments.
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