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ABSTRACT
As online social networking emerges, there has been increased in-
terest to utilize the underlying social structure as well as the avail-
able social information to improve search. In this paper, we focus
on improving the performance of information collection from the
neighborhood of a user in a dynamic social network. To this end,
we introduce sampling based algorithms to quickly approximate
quantities of interest from the vicinity of a user’s social graph. We
then introduce and analyze variants of this basic scheme exploring
correlations across our samples. Models of centralized and dis-
tributed social networks are considered. We show that our algo-
rithms can be utilized to rank items in the neighborhood of a user,
assuming that information for each user in the network is avail-
able. Using real and synthetic data sets, we validate the results of
our analysis and demonstrate the efficiency of our algorithms in
approximating quantities of interest. The methods we describe are
general and can probably be easily adopted in a variety of strategies
aiming to efficiently collect information from a social graph.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Information Search
and Retrieval—Search process; H.3.4 [Information Storage and
Retrieval]: Systems and Software—Information networks; H.2.4
[Database Management]: Systems—Query processing

General Terms
Algorithms, Performance, Human Factors

Keywords
Sampling Social Networks, Social Search, Personalization

1. INTRODUCTION
The widespread adoption of Web2.0 is evident by the multitude

of activity related to social networks and web collaboration. Web
sites like Myspace, Facebook, LinkedIn to name a few attract mil-
lions of users that interact, share and collaborate. At the same time
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the desire to connect and interact evolves far beyond centralized so-
cial networking sites and takes the form of ad hoc social networks
formed by instant messaging clients, VoIP software, etc; although
interactions with people beyond one’s contact list is not currently
possible (e.g., via query capabilities), the implicit social network-
ing structure is in place.

Given the large adoption of these networks, there has been in-
creased interest to explore the underlying social structure and data
towards social search. The main idea of social search is to use
information collected from a user’s social network to improve the
accuracy of search results. Social search has recently gained at-
tention as an approach towards personalized search. The utility
of social search has been established via experimental user studies
[16]. However, for large online social networks, usually consisting
of millions of users, a complete crawl of a user’s extended neigh-
borhood is infeasible. Therefore, efficient methods are required.

We build on these observations and focus on improving the per-
formance of information collection from the neighborhood of a user
in a social network. We model environments in which social peers
participate in a centralized social network (where knowledge of the
network structure is assumed) or distributed (where network struc-
ture is unknown or limited). The rate of change of the structure of
these networks is also an important factor. We make cases for static
and dynamic networks. In each case we assume access to user log
data (e.g., clickthrough logs, as is frequently the case for research
related to search personalization) that are frequently updated.

Given such an environment we make the following contributions:

• We introduce sampling based algorithms for quickly approx-
imating the number of users in the neighborhood of v that
have actually endorsed an item.

• We introduce and analyze variants of this basic sampling
scheme in which we aim to minimize the total number of
nodes in the network visited by exploring correlations across
samples.

• We evaluate our sampling based algorithms in terms of accu-
racy and efficiency using real and synthetic data and demon-
strate the utility of our approach.

• We show that our sampling schemes can be utilized for a va-
riety of strategies aiming to rank items in a network, assum-
ing that information for each user in the network is available.

The rest of the paper is organized as follows. In Section 2 we
review related work. Section 3 formally defines the problem and in-
troduces appropriate notation. The foundational ideas of our method-
ology are presented in Section 4 and Section 5 introduces our al-
gorithms. Section 6 presents our experimental evaluation. We con-
clude in Section 7.



2. RELATED WORK
The need for efficient information collection in a network ap-

pears in many contexts ranging from peer-to-peer systems to social
networks. Our work, is mostly related to work on sampling large
graphs via random walks and on personalized search.

Generating a uniform random subset of nodes of a graph via ran-
dom walks is a well studied problem; it frequently arises in the
analysis of convergence properties of Markov chains (e.g., see [11,
4, 14, 10]) or the problem of sampling a search engine’s index [6,
5]. The basic idea is to start from any specific node, say v, and ini-
tiate a random walk by proceeding to neighbors selected at random
at every iteration. Let the probability of reaching any node u after
k steps of this walk be p(u). It is known that if k is suitably large
(the value of k depends on the topological properties of the graph,
more specifically on the second eigenvalue of the adjacency matrix
of the graph), this probability distribution is stationary, i.e that it
does not depend on the starting node. However, this stationary dis-
tribution is not uniform; the probability associated with each node
is inversely related to its degree in the graph. This final station-
ary distribution can be made uniform using techniques such as the
Metropolis Hastings algorithm (see [12]), or using rejection sam-
pling (where, after reaching a final node, the node is selected to be
included in the sample with probability inversely proportional to its
degree). This process can be repeated to obtain random samples of
a desired size. Our research presents ways to improve upon these
generic random walk methods on graphs by leveraging the fact that
we need to sample from the neighborhood of a node v with a small
depth (i.e., just a few links away from v).

Personalization of web search has been an open research topic
for years [13]. The premise there is that by tailoring search to the
individual improved result accuracy may be brought off. In a sense,
utilizing information from one’s digital social environment to im-
prove on user satisfaction is a form of “extended” personalization,
with the extent being defined as a function of the social neighbor-
hood of an individual in the network. In [17] the CubeSVD ap-
proach was developed to improve Web search by taking into ac-
count clickthrough information of the type “user, query, url” and
trying to automatically capture the latent factors that govern the
relations among users, queries and urls. Further studies showed
that taking into account such clickthrough information and build-
ing simple statistical models for user behavior can improve the re-
sult ranking quality significantly [2, 18]. Moreover, recent work
[1, 17] presents strong evidence that result ranking can be greatly
improved by taking into account the interactions of multiple users
with a search engine. Many other approaches exist that utilize some
notion of relevance feedback in order to re-rank web search results.
Our research is complementary as we aim to offer performance im-
provements, via sampling, to the process of collecting information
from clickthrough logs by exploring the underlying graph structure
offered by a social network.

3. PROBLEM DEFINITION
LetG be a graph depicting connections between users in a social

network. Depending on the degree of a priori knowledge of the net-
work structure, such a graph can be centralized, that is its structure
is fully known or distributed, in a sense that each node in the graph
is aware of its adjacent nodes only. Centralized graphs are typical
in social networking sites in which complete knowledge of users’s
network is maintained (e.g., del.icio.us, flickr, etc.). Distributed
graphs, where a user is aware only of its immediate connections,
are more common. Consider for example the case in ad hoc social
networks formed by typical instant messaging or VoIP protocols

(e.g., MSN, Skype). There are also cases that the model of the
graph is between the two extremes allowing limited knowledge of
a node’s neighborhood. Our methods apply to these models as well,
with potentially slight modifications.

Moreover the rate of change in these graphs is also an important
factor. The most typical case is for such networks to change rapidly
as users join and depart from the graph by forming or destroying
social connections. Although one can make a case for relatively
static social networks (in which the graph structure changes less
frequently) in general such graphs are expected to be highly dy-
namic. We focus on dynamic networks (either centralized or dis-
tributed) but also treat the relatively easier case of static networks.

Let nodes in the graph represent users. For each user we assume
availability of a log accumulated over time. The log, in its most
simple form, at node v, has the form (x, countvx) where x is an
item and countvx is the number of times x has been endorsed by
user v (or a numeric value that represents the endorsement of user
v to item x). Endorsement of an item is defined in a generic sense
and it may have various instantiations, for example clicking on a
url, renting a DVD, rating a movie, buying from a seller on an e-
market, etc. Endorsements of items by users in the neighborhood of
v consist valuable social information that may be utilized to form
personalized rankings of items to v.

Using G and starting at v we can obtain the total count of the
number of times that an item x has been endorsed by consulting
the neighborhood of v at some specific depth (number of hops) d.
Formally, if we define yv as the quantity countvx, then for an item
x we may obtain its exact aggregate value Y =

∑
i∈Dd(v) yi by

visiting and querying the log at every node in the specified vicinity
of v, Dd(v).

However, crawling the entire neighborhood Dd(v) and comput-
ing the exact aggregate value Y for an item x at runtime may be
prohibitively slow, especially as the size of the neighborhood in-
creases in number of nodes. Therefore, we have to resort to ef-
ficient approximation methods such as sampling. By sampling we
avoid visiting all nodes in the vicinity of v and thus attain improved
performance. We formally define the following problem:

PROBLEM 1. Let a graph G and a user v ∈ G. Let Dd(v) a
user specified vicinity of v at depth d. For a specific item x, obtain
through sampling nodes of G in Dd(v) an approximate value of
Y =

∑
i∈Dd(v) yi.

Note here that the sampling process operates on a node v and
should respect the underlying network structure of v’s neighbor-
hood, in a sense that all v’s neighbors in depth d should have the
same chance to be selected in the sample.

We are now ready to formally define the problem of interest in
this paper:

PROBLEM 2. Let a graph G and a user v ∈ G. Let Dd(v)
a user specified vicinity of v at depth d. Let X be a set of items.
Obtain through sampling nodes of G in Dd(v) an approximate or-
dering of the items in set X .

To obtain a solution to Problem 2 we have to repeat the process
and seek solution to Problem 1 for each item x ∈ X . The ordering,
incorporates the behavior of the users with which v has some social
relationship.

Note that the objective of our work is to efficiently collect in-
formation in social networks and is orthogonal to any re-ranking
strategy. Once the social information has been collected, a number
of strategies are possible to re-rank the items in X taking into ac-
count the item counts and possibly the distance of a sampled user
to user v. Designing and evaluating a re-ranking algorithm that
increases the user satisfaction is out of the scope of this paper.



4. METHODOLOGY
In this section we discuss the foundational ideas behind our sam-

pling based approaches to solve Problem 1. We first describe an
idealized approach in which we assume it is possible to efficiently
obtain a uniform random sample of Dd(v). Let y1, y2, ..., yN

be the values of the nodes in D(v). Suppose we could obtain a
uniform random sample S of size n � N with S ⊂ Dd(v) and
values y1, y2, ..., yn. Let y be the sample sum, i.e. y =

∑
i∈S yi.

Then it is well known that the quantity Y ′ = y · (N/n), i.e., the
sample sum scaled by the inverse of the sampling fraction, is an
approximation for Y . In fact, Y ′ is a random variable whose mean
and standard deviation can be approximated (for large N ) by the
following sampling theorem [7].

THEOREM 1.

E[Y ′] = Y

sd[Y ′] = N · σ/
√
n

Remind that in Problem 2, that is of interest in this paper, we seek
for an approximate ordering of the items in a set X . This ordering
can be obtained directly by the estimated sample sums without the
need to scale them by the inverse of the sampling fraction (i.e.,
N/n). Practically, the total number of nodes in D(v) (i.e. N )
from which we form the sample does not need to be known. Given
this basic framework, the main challenge confronting us is how
to obtain a uniform or near-uniform random sample of the nodes
in Dd(v). We discuss this issue under assumption of static and
dynamic network topologies.

4.1 Assuming Static Networks
We first consider the case where the topology of the social net-

work is static, or changes only slowly over time (although the click-
through logs, i.e., the “data” stored at each node are rapidly chang-
ing). For this case a straightforward solution exists where each
node, in a precomputation phase, performs a complete crawl of
its neighborhood Dd(v) and selects a uniform random sample S
of n nodes, whose addresses (or access paths) are then stored at
the initiating node. At runtime, the value stored at each sample
node is retrieved and aggregated. Clearly, such a precomputation
phase is computationally intensive. However, this phase needs to
be recomputed infrequently; once the social network topology has
undergone significant changes.

4.2 Assuming Dynamic Networks
We next consider the case where the topology of the network is

dynamic, i.e, where nodes and links are being added/ deleted to the
network rapidly in addition to the data changes at each node. In
such a case, it makes little sense to precompute samples of Dd(v)
as such samples go stale very quickly. Thus, the task of sampling
from Dd(v) has to be deferred to runtime. This problem is inter-
esting because we cannot crawl the entire neighborhood Dd(v) at
runtime (this will be prohibitively slow). It becomes even more
interesting by the fact that we are constrained to simulate random
walks by only following edges of the social network.

We first make a simplifying assumption, that the graph structure
of the neighborhood D(v) resembles a tree rooted at v. The so-
lution that we first present will consist of random walks that are
initiated from the root of this tree v and follow edges towards the
leaves of the tree. Later, we shall describe how to generalize this
basic approach for more general graph structures that are not trees -
essentially by constraining our random walks to only follow edges
of a spanning tree of Dd(v) rooted at v.

Figure 1: Tranformation of T to T ′.

4.2.1 Assuming that Dd(v) is a Tree
Assume that the subgraph of the social network induced by the

nodes in Dd(v) is a tree T with N nodes (a1, . . ., aN ), where each
node is a member of Dd(v). Assume that v = a1 is the root and
that all edges are directed downwards, i.e., from root to leaf. The
maximum depth of this tree is d. Recall that each node ai in T
contains a value yi which we wish to aggregate. To allow for better
conceptualization, let us first convert the tree T to another tree T ′,
such that the values are only at the leaf nodes, and not at internal
nodes. We do this as follows: for each internal node ai we add a
leaf bi and connect ai to bi via a new edge. We then move the value
of ai to bi (see Figure 1).

To motivate our approach, let us first make the (unrealistic) as-
sumption that for each node ai, we know size(ai) the number of
leaves in the subtree rooted at ai. Let us also assume that each edge
of the tree is weighted as follows: Let the set of children of node
ai be Ai. Consider any child node aj in Ai. Then, weight(ai, aj)
is defined as size(aj)∑

a∈Ai
size(a)

. It is easy to see that each weight is in

[0, 1] and for each node, the sum of the outgoing edge weights add
up to 1.

Once T has been transformed to T ′, we shall perform random
walks on T ′. A random walk starts from the root and ends at a
leaf. At every internal node, it picks an outgoing edge with proba-
bility equal to its weight. Once the walk has ended, the leaf node
is returned by the random walk. The main thing to note is that any
specific leaf node bi is picked with the same probability (i.e., the
product of the weights of all edges encountered along the walk).
This random walk procedure can be repeated n times to obtain a
uniform random sample of the nodes in Dd(v) of size n.

Of course, for the above scheme to work, we have to know the
sizes of each node and the weights of each edge of the tree. Clearly,
computing these at runtime will be prohibitive as it will require a
full traversal of the tree. Therefore, without knowing these quan-
tities in advance, we are left with no choice but to select each out-
going edge with equal probability, i.e., 1

|Ai|
. But if we perform the

random walk this way, we shall pick leaf nodes in a biased manner,
because some leaves are more likely to be destinations of random
walks than other leaves.

Correcting for the Bias: One way to correct for this bias is to let
the random walk reach a leaf, but instead of accepting it into the
sample, we toss a biased coin and only accept it if the coin turns
up as heads. So, we have to determine what should the bias (i.e.,
the acceptance probability) of the coin be. Let the probability of
reaching the leaf bi be p(bi). Let maxDeg be the maximum out-
degree of the tree. The following lemma suggests how to set the
acceptance probability of a leaf bi.

LEMMA 1. The acceptance probability of a leaf bi is set to
C/p(bi) where C ≤ 1/maxDegd.



Proof: The probability that a random walk returns a leaf bi is equal
to the probability of reaching that leaf, multiplied by its accep-
tance probability, which is equal to p(bi) · C/p(bi) = C, which
is constant for all leaves. To ensure uniform sampling we require
that C ≤ min(p(bi)) but since 1/maxDegd is a lower bound
of p(bi), it is C ≤ 1/maxDegd. Note that C also represents a
probability, hence it has to be at most 1. This is guaranteed since
p(bi) ≥ 1/maxDegd ≥ C.
end

Note that unlike the previous case where each random walk re-
turns a random node, here we are not always guaranteed that a ran-
dom node will be returned. In fact, often a random walk fails to
return a node.

We refer to the maximum value of C that ensures a near-uniform
random sample as Copt (i.e., Copt = 1

maxDegd ). However, this
approach has two problems. One is of course the necessity of hav-
ing to knowmaxDeg in advance. This problem is perhaps not that
crucial; after all, the maximum degree maxDeg of the tree can be
bounded if one has a reasonable idea of the maximum degree of the
entire social network. However, the second problem is that setting
such a conservative value of C (i.e., C = Copt = 1/maxDegd)
results in an extremely inefficient process for collecting samples.
This is because a very small C, such as Copt, while ensuring near-
uniform random samples, almost always rejects a leaf node from
being included in the sample, and consequently, numerous random
walks may have to be undertaken before a leaf node is eventually
accepted into the sample. To help alleviate this problem of ineffi-
ciency we propose setting a larger C.

Setting a larger C: We observe that setting C to be larger than
Copt would result in a larger acceptance probability per node (i.e.,

C
p(bi)

), which would eventually result in fewer random walks needed
to generate a sample of desired size n. However, a larger C is
likely to introduce non-uniformity, or bias into the sample. This is
because for all leaves bi since C > Copt it will be C

p(bi)
>

Copt

p(bi)
.

What this means is that once leaves are reached they are more likely
to be accepted into the sample and that are therefore going to be
unduly over-represented in the sample. Thus, the parameter C can
serve to illustrate an interesting tradeoff between ease of collecting
sample nodes and the bias of the sample obtained. We investigate
the effect of the parameter C in the accuracy and efficacy of our
sampling methods in the experimental evaluation section.

4.2.2 Generalizing when Dd(v) is not a Tree
For purposes of exposition we have been assuming that the in-

duced subgraph of the social network over Dd(v) is a tree; most
induced subgraphs are not trees, but graphs with higher connectiv-
ity. However, we can adopt our solution of sampling from trees to
this specific scenario by ensuring that the union of all random walks
made in collecting a sample always resembles a tree. To do so, we
have to keep a history of all random walks processed in response to
this query, and make sure that at any point in time, their union has
no cycles (see Figure 2).

More precisely, for each fresh random walk we have to ensure
that it can be partitioned into two parts; the first part is a prefix of a
previous random walk, while the second part is a random walk that
does not visit a single node that has been visited by earlier random
walks. To comply with the above constraints, when a random walk
is progressing, state information can be maintained as to whether it
is still a prefix of a previous random walk, or whether it has moved
on into the unvisited region of Dd(v). Thus, if the last node aj

along the random walk is a previously visited node, then the set
of neighboring nodes that are candidates for the next random step

Figure 2: Random walks that obey structural properties of
Tree

will be the neighbors of aj minus the nodes that have been visited
earlier. It is not hard to see that such an effort will ensure that the
union of all random walks is a tree which is a subset of the graph
induced by Dd(v).

5. ALGORITHMS
In this section we present algorithmic details of our proposed

methods. First, we describe SampleDyn, an algorithm that is
able to compute a near-uniform sample of users in dynamic social
networks. Then, we introduce two algorithms, EvalSingle and
EvalBatch, that make use of SampleDyn in order to estimate
approximate counts in a user’s vicinity for a set of items.

5.1 Sampling Dynamic Social Networks
Let Dd(v) be the vicinity of a user v at depth d. We introduce

the algorithm SampleDyn that takes as input the user v, the size
of the sample n, the network depth d, and a constant value for pa-
rameter C and obtains a near-uniform random sample of users by
performing random walks on the nodes of Dd(v). The pseudocode
is given in Algorithm 1.

Let children(u) denote the nodes that are directly connected to
the current node u and are either nodes that have not been visited by
any of the previous random walks (unseen nodes) or nodes that ex-
tend on the prefix random walk that has been followed so far. Then,
children(u) ∪ u represents the set of candidate nodes for the next
step of the walk (line 12). Each of the candidate nodes is selected
with the same probability. Thus, a random walk starts at user v and
ends either when a self-link is followed, a link that connects a node
with itself (line 16) or when a node in depth d has been reached
(line 11). Note that, as the random walk progresses, state informa-
tion is maintained regarding previous walks and visited nodes that
ensures the random walk obeys structural properties of a tree. We
require that T ∪ v has no cycle to represent this information (line
13). Once a node has been reached it is selected to the sample with
probability equal to the acceptance probability C/p (line 17).

5.2 Estimating Item Counts
Recall that our goal, as defined in Problem 2, is to compute the

counts of items in a set X , which are then used to assume an order-
ing. We present two approaches to estimate the ordering of a set of
items in Dd(v) using sampling.

5.2.1 Using Separate Samples
A first approach is to draw a separate independent sample from

D(v) and estimate the aggregate counts for each item. Formally,
we introduce an algorithm that for each x ∈ X , obtains an ap-
proximate value of

∑
i∈Dd(v) count

i
x through sampling nodes of

Dd(v). The algorithm takes as input v, d, C, n and X and returns
an array of the approximate counts. We refer to this algorithm as



Algorithm 1 Sampling in Dynamic Social Networks
1: procedure SAMPLEDYN(u, n, d, C)
2: T = NULL, samples = 0, Sample array of size n
3: while samples <= n do
4: if (v = randomWalk(u, d, C, T )) ! = 0 then
5: Sample[samples+ +] = v
6: end if
7: end while
8: end procedure
9: procedure RANDOMWALK(u, d, C, T )

10: depth = 0, ps = 1
11: while depth < d do
12: pick v ∈ children(u) ∪ u with pv = 1

degree(u)+1

13: if T ∪ v has no cycle then
14: add v to T
15: ps = ps ∗ pv

16: if v = u then
17: accept with probability C

ps

18: if accepted then
19: return v
20: else
21: return 0
22: end if
23: else
24: u = v, depth+ +
25: end if
26: end if
27: end while
28: return 0
29: end procedure

EvalSingle because it evaluates a single item at each visit to a
sampled node. The pseudocode is given in Algorithm 2. While
such an approach is statistically sound, the drawback is efficiency
- this approach is unlikely to allow us to complete the re-ranking
process fast enough to satisfy end users.

5.2.2 Using the Same Sample
An alternate approach is to draw a sample S only once, and reuse

the same sample to estimate the aggregate counts for each item x ∈
X . We refer to this algorithm asEvalBatch because it evaluates a
batch of items at each visit to a sampled node. Algorithm 3 presents
the pseudocode for this case.

Clearly this approach will be much faster, since we need to com-
pute only one sample. Note however, that though practical, this
process is flawed since the same sample is reused for a set of items,
which are likely to exhibit strong correlations, i.e., a bad sample
can affect the counts of all |X| items.

This phenomenon is well studied in statistics, and is known as
simultaneous statistical inference (see [15]). The classical solution
proposed in [15] is to make Bonferroni corrections to ensure that
the estimated counts of the items fall within their confidence inter-
vals. A similar problem also arises in sampling-based approximate
query answering techniques. For example, popular approaches in
approximate query answering is to pre-compute a sample and use
the same sample to answer a stream of aggregation queries (see
[9]). Likewise, due to practical considerations, our proposed ap-
proach is to also reuse the same drawn sample for estimating the
counts of all returned items. We experimentally evaluate the im-
pact of such correlations and results indicate that in practice, the
errors in the approximations are not unduly severe.

Algorithm 2 Counts Estimation - Separate Samples
1: procedure EVALSINGLE(v, d, C, n, X)
2: S array of size n
3: Count array of size |X|
4: for all x ∈ X do
5: S = SampleDyn(v, n, d, C)
6: for all i ∈ S do
7: Count[x] = Count[x] + countix
8: end for
9: end for

10: return Count
11: end procedure

Algorithm 3 Counts Estimation - Same Sample
1: procedure EVALBATCH(v, d, C, n, X)
2: S array of size n
3: Count array of size |X|
4: S = SampleDyn(v, n, d, C)
5: for all i ∈ S do
6: for all x ∈ X do
7: Count[x] = Count[x] + countix
8: end for
9: end for

10: return Count
11: end procedure

6. EXPERIMENTAL EVALUATION
Having presented our sampling methods and algorithms we now

turn to evaluation. For the needs of our experiments we consider
the application area of social search. Let G be a graph depicting
connections between users in a social network, where each node in
the graph represents a user. For each user we assume availability of
a clickthrough log accumulated over time via browsing. The log, in
its most simple form, at node v, has the form (q, urlq, count

v
urlq )

where q is a query, urlq is the url clicked as a result of q and
countvurlq is the number of times urlq has been clicked by v.

Now, consider the scenario where a query q is submitted to a
popular search engine by a user v and a set of urls rqv is returned.
A social search algorithm would try to personalize this result. In-
tuitively, an algorithm might collect information from v’s social
network and use this information to re-rank the results according
to a re-ranking strategy. Using G and starting at v we can obtain
the total count of the number of times that each url urlq ∈ rqv has
been clicked by consulting the neighborhood of v at some specific
depth (number of hops) d. Then a re-ranking r′qv

of rqv is possible
that incorporates the behavior of the users with which v has some
social relationship.

6.1 Description of Datasets
In our experiments we consider one real and two synthetic net-

work topologies. The real network topology, epinions-net, is an
instance of the Epinions’ real graph, consisting of 75888 nodes and
450740 edges. The first synthetic topology, uniform-net, simulates
a uniform random network topology and the second, prefatt-net,
simulates a preferential attachment network topology.

The synthetic networks were generated so that they have similar
number of vertices and edges to the real network of Epinions. Note
however that since they are not based on the same model they de-
pict different topology characteristics, such as average path length,
clustering coefficient and degree distribution. Our objective is to
study the application of our sampling based algorithms under di-



(a) prefatt-net, synth_log (b) uniform-net, synth_log (c) epinions-net, real_log

Figure 3: Sampling Accuracy

(a) prefatt-net, synth_log (b) epinions-net, real_log

Figure 4: Batch Sampling Effect

verse assumptions of network connectivity and stress any interest-
ing differentiation on performance due to network topology.

We experiment with real and synthetic user search history logs.
For the needs of our experiments we create real_log by randomly
selecting 75888 users from the AOL dataset along with their search
history logs (about 4M queries, 3M urls) [8]. The synthetic log,
synth_log, consists of the same users as the real_log but we popu-
late user’s history logs with high numbers of queries and url counts
for the urls of interest.

In order to generate suitable final data sets for our experiments
we randomly map each of the 75888 AOL users in a search history
log to the 75888 nodes of a network topology to resemble data of
a social search network. Note that since the focus of our work is
on performance we do not require that “similar” users are placed in
adjacent network nodes.

6.2 Evaluation Metrics
We assess the performance of our algorithms according to accu-

racy and efficiency measures.
Accuracy concerns how well our sampling framework estimates

the exact count of a url and how well it estimates the ordering of
a set of urls in the vicinity of a user. To assess the accuracy in the
first case we use the Relative Error (RE) metric, which is usually
employed to express accuracy of an estimate. Formally, the relative
error between an exact value y and an estimated value ŷ is given by:

RE = |y − ŷ
y
|

To assess the accuracy in the second case we employ two met-
rics that are usually considered for comparison of ranked lists, the
Normalized Spearman’s Footrule Distance and the Precision at k.
Spearman’s Footrule Distance measures the distance between two
ranked lists. Formally, given two full lists r′ and r that rank items

of the set r, their Spearman Footrule Distance is given by

F (r, r′) =
∑
e∈r

|r′(e)− r(e)|

After dividing this number by the maximum value ( 1
2
)|r|2, one can

obtain a normalized value of the footrule distance, which is always
between 0 and 1. Precision at k (P@K) measures the precision at
a fixed number of retrieved items (i.e., top k) of the ordered list r′

and the ordered list r. Assume TopK and TopK′ are the retrieved
items of r and r′ respectively, then the precision at k is defined as

P@K =
|TopK′ ∩ TopK|

k

Efficiency concerns the cost of our sampling framework. To as-
sess the efficiency of our sampling algorithms we use as a surrogate
for cost the number of random walks performed to obtain n sam-
ples from the network. Formally, the cost of the sampling is

Cost = #RandomWalks

6.3 Experimental Results

6.3.1 Sampling Accuracy
In our first set of experiments, we evaluate the sampling accuracy

of EvalSingle under assumption of different network topologies.
More specifically, we first determine the top url when submitting
q to Google. Then, we apply EvalSingle to quickly compute an
estimate of its count in Dd(v). The process is repeated many times
for different queries and users and at each iteration the relative error
of the estimated url count to the exact url count is computed. We
experiment for variable network depth d and sample size n. Figure
3 presents the results for the different topologies.

In all topologies for a fixed network depth d the sampling ac-
curacy increases with the sample size n (i.e., the average relative
error decreases for larger sample sizes). Furthermore, for a fixed
sample size n the sampling accuracy decreases as d increases. The



observed behavior is in accordance with theory. The total popula-
tion N (from which we sample) increases with the network depth
d (d ∼ N ) and from the Theorem 1 is true that the sampling stan-
dard error is proportional to the total population N (sd ∼ N ) and
inversely proportional to the number of samples (sd ∼ 1

n
).

In the case of the synthetic network topologies, for a fixed depth
d and a fixed sample size S the sampling accuracy in the uniform-
net is better than the one in the prefatt-net. This is explained by the
fact that the preferential model has a systematically shorter average
path length than the random graph model [3]. As a result, for a
fixed depth d the average total population N of the prefatt-net is
larger than the one of the uniform-net. Since N is larger in prefatt-
net than in uniform-net for a fixed d the standard error will also be
larger according to Theorem 1 (sd ∼ N ).

In the case of the real network topology (epinions-net with real_log)
the sampling accuracy results are not directly compared to the re-
sults in the synthetic data. This is due to the fact that the exact url
counts in the real data are much smaller and leverage the sampling
performance. As a result, even if trends are identical to the ones
observed in the synthetic data, slightly larger absolute errors are
demonstrated.

For the rest of the experimental evaluation we set the parameter
d = 4. This is a reasonable choice for our data set. For d =
1 and d = 2 the network populations are small and sampling is
not needed. For d = 4 we are able to reach almost all nodes in
the network, thus, there is no need to consider d > 4. Between
d = 3 and d = 4 we choose d = 4 that will increase the network
population and therefore make the approximation problem harder.

6.3.2 Batch Sampling Effect
In Section 5 we introduced EvalBatch, which is much faster than

EvalSingle as it needs to compute only one sample. However, it is
also flawed since the same sample is reused for a set of urls, which
are likely to exhibit strong correlations. In this set of experiments
we evaluate the impact of such correlations.

Accuracy results reported are average relative errors over a num-
ber of runs for random users and queries. At each run the set of
the top-k urls is determined by submitting the query q to Google.
Then, EvalSingle and EvalBatch compute the estimates of the url
counts, which are then compared to the exact counts.

Figure 4(a) presents the results of the experiment in the case of
prefatt-net and synth_log for variable network depth d and sample
size n. Results indicate that using the same sample for evaluat-
ing url counts has a low effect in the sampling accuracy. Note that
when we generated the synthetic data we tried to avoid any cor-
relation by assigning queries and urls to users randomly. In the
absence of any correlations in the data, it was expected that in the
case of synthetic data, the two algorithms should perform equally.
From now on, whenever similar trends are demonstrated between
the two synthetic network topologies, we only present the results
for prefatt-net and omit the details for uniform-net. The preferen-
tial attachment model is favored since it widely exists in the social
information networks of interest and is also more challenging for
our sampling methods.

In the case of real data (epinions-net with real_log), we expect
that data exhibit some sort of correlation in the urls. Indeed, this ef-
fect is depicted in Figure 4(b) where the difference between EvalS-
ingle and EvalBatch is more obvious than it was in the synthetic
data. However, their accuracy performance is still comparable.

Since the errors in the computation of estimates that are due to
the use of the same sample are not unduly severe, our proposed
approach is to use EvalBatch for estimating the counts of urls which
is more efficient.

Figure 5: Correcting for Bias

Figure 6: C vs. #Random Walks

6.3.3 Ordering Accuracy
The end objective of our method is to approximate the ordering

of a set of urls in a user’s neighborhood and not necessarily their
exact counts. In this set of experiments we assess the ordering ac-
curacy of our sampling algorithms. Formally, for each query q we
retrieve the top-k urls returned by a search engine, such as Google.
Let this set of urls be rq . Then, for a given user v and network
depth d we compute the ordering rqv of these urls in the Dd(v) of
v according to their exact counts. On the other hand, EvalBatch es-
timates the url counts of each urlq ∈ rq and comes up with another
ordering r′qv

. The two lists are then compared using the Normal-
ized Spearman’s Footrule Distance and the Precision at k metrics.
Results are averaged over a number of random users and queries.

Figure 7(a) reports on the Normalized Spearman’s Footrule Dis-
tance of the two orderings in the case of prefatt-net and synth_log
for d = 4 and variable sample size n. The distance decreases as the
sample size increases signifying that our estimated counts become
increasingly more accurate. The same trend becomes evident in the
case of epinions and real_log as shown in Figure 7(b).

Figure 8(a) reports on the Precision at k (P@K) of the two order-
ings in the case of prefatt-net and synth_log for d = 4 and variable
sample size n. Precision at top k urls is high and increases with
the sample size. The same trend becomes evident in the case of
epinions and real_log as shown in Figure 8(b).

In the case of the real network topology (epinions-net with real_log)
the ordering accuracy results are not directly compared to the re-
sults in the synthetic data. This is due to the fact that the exact url
counts in the real data are much smaller and leverage the sampling
performance. As a result, even if trends are identical to the ones
observed in the synthetic data, slightly worse performance of the
ordering accuracy is demonstrated in the course of both metrics.

6.3.4 Effect of C
As discussed in Section 4, parameter C can serve to illustrate an

interesting tradeoff between ease of collecting sample nodes from
a tree and the bias of the sample obtained. This set of experiments
aims to demonstrate this tradeoff. We run experiments on the syn-
thetic data, prefatt-net with synth_log, for network depth d=4 and
for variable values of the parameter C and the sample size n. We
report on the sampling accuracy in terms of relative error RE and



(a) prefatt-net, synth_log (b) epinions-net, real_log

Figure 7: Ranking Accuracy - Spearman’s Footrule Distance

(a) prefatt-net, synth_log (b) epinions-net, real_log

Figure 8: Ranking Accuracy - Precision at k

the sampling cost in terms of the number of random walks needed
to form the sample. The values of C were arbitrarily selected to
better exhibit the tradeoff between accuracy and efficiency. Figure
5 clearly demonstrates the effect of the parameter C in the sam-
pling accuracy, where as C gets larger the relative error increases.
Meanwhile, Figure 6 demonstrates the effect of C in the sampling
cost, where as C gets smaller the number of random walks needed
to form the sample increases and eventually renders sampling in-
efficient. Depending on the application area, one would need to
adjust this parameter to balance time and accuracy performance.

7. CONCLUSIONS
In this paper, we focused on improving the performance of infor-

mation collection from the neighborhood of a user in a social net-
work. Our approach is to use sampling-based methods to quickly
approximate quantities of interest. We demonstrated the utility of
our approach by running experiments on real and synthetic data
sets and showed that our algorithms are able to efficiently estimate
the ordering of a set of items in a user’s network giving rise to any
search re-ranking strategy. Our sampling schemes are general and
can be utilized in a variety of strategies aiming to efficiently com-
pute interesting quantities in a dynamic social network.
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