What is Data Analytics?
Data contains value and knowledge
Data Analytics

- But to extract the knowledge, data needs to be
 - Stored
 - Managed
 - Analyzed \(\leftarrow\) emphasis on this class
 - Visualized \(\leftarrow\) emphasis on this class

Data Analytics \(\approx\) Data Mining \(\approx\) Big Data \(\approx\) Predictive Analytics \(\approx\) Data Science
what is data analytics?
Objective of Data Analysis

- **Input:** lots of data
- **Output:** patterns and models that are:
 - **Valid:** hold on new data with some certainty
 - **Useful:** should be possible to act on the item
 - **Unexpected:** non-obvious to the system
 - **Understandable:** humans should be able to interpret the pattern
Types of Data Analysis

- **Descriptive methods**
 - Find human-interpretable patterns that describe the data
 - **Example:** Clustering (e.g., find communities of interest)

- **Predictive methods**
 - Use some variables to predict unknown or future values of other variables
 - **Example:** Recommendations (e.g., suggest new friends in a social network)
Data Analytics: Cultures

- **Data analysis overlaps with:**
 - **Databases:** Large data, simple queries
 - **Machine learning:** Large data, complex models
 - **CS Theory:** (Randomized) Algorithms

- **Different cultures:**
 - To a DB person, data analysis is an extreme form of **analytic processing** – queries that examine large amounts of data
 - Result is the query answer
 - To a ML person, data analysis is the **inference of models**
 - Result is the parameters of the model
Growing market revenue of Big Data Analytics in billion U.S. dollars from the year 2011 to 2027

https://www.edureka.co/blog/what-is-big-data/
What Type of Data?

Text Data

Network Data

Multivariate Data
The “Age of Networks”

Technological Social Biological
why should we care about networks?
Why Networks? Why Now?

- **Universal language for describing complex data**
 - Networks from science, nature, and technology are more similar than one would expect
- **Shared vocabulary between fields**
 - Computer Science, Social science, Physics, Economics, Statistics, Biology
- **Data availability (/computational challenges)**
 - Web/mobile, bio, health, and medical
- **Impact!**
 - Social networking, Social media, Brain, Drug design
 - *We will never understand these systems unless we understand the networks behind them!*
how do we reason about networks?
How do we reason about networks?

- **Empirical**: Study network data to find organizational principles
- **Mathematical models**: Probabilistic, graph theory
- **Algorithms**: Methods for analyzing graphs
What do we study in networks?

- **Structure and evolution**
 - What is the structure of a network?
 - Why and how did it become to have such structure?

- **Processes and dynamics**
 - Networks provide “skeleton” for spreading of information, behavior, diseases
What We Have Covered?

- **basic graph theory**
 - graphs, networks
 - bow-tie structure

- **network measurements**
 - degree distributions, power-laws
 - shortest paths, clustering coefficient

- **network models**
 - Erdos-Renyi model
 - small-world model
 - configuration model
 - scale-free networks

- **models of evolving graphs**
 - preferential attachment model
 - microscopic/macroscopic evolution of networks
 - forest-fire model

- **community structure in networks**
 - Strength of weak ties, structural holes
 - community detection, Girvan-Newman algorithm
 - graph partitioning, graph cuts, conductance
 - spectral graph theory, spectral graph clustering
 - overlapping communities in networks

- **link analysis**
 - web search
 - hubs and authorities (HITS)
 - PageRank, topic-sensitive PageRank

- **link prediction**
 - neighborhood-based methods
 - node proximity based methods
 - supervised learning models, FB's "PYMK", Twitter's "WtF"

- **cascading behavior in networks**
 - Granovetter’s model, threshold model
 - game theoretic model
 - epidemic model on trees
 - disease spreading models (SIR, SIS, SIRS)
 - independent cascade model
 - influence maximization
 - outbreak detection

- **data visualization**
 - visual variables (Jacques Bertin’s)
 - perception & cognition
 - pre-attentive vs attentive processing
 - gestalt principles
 - principles of graphical excellence (Tufte’s)
 - a taxonomy of representation
 - visual elements intro (charts, graphs, maps)
How It All Fits Together

Properties
- Small diameter, Edge clustering
- Scale-free
- Strength of weak ties, Core-periphery
- Densification power law, Shrinking diameters
- Information virality, reproductive number

Models
- Small-world model, Erdös-Renyi model
- Preferential attachment, Copying model
- Community-affiliation Graph Model
- Microscopic model of evolving networks
- Independent cascade model, Game theoretic model, SIR

Algorithms
- Decentralized search
- PageRank, Hubs and authorities
- Community detection: Girvan-Newman, Modularity
- Link prediction, Supervised random walks
- Influence maximization, Outbreak detection, LIM
Small-World Phenomena

Properties:
- Six degrees of separation
 - Networks have small diameters
- Edges in the networks cluster
 - Large clustering coefficient

Models:
- Erdös-Renyi model
 - Baseline model for networks
- The Small-World model
 - Small diameter and clustered edges

Algorithms:
- Link analysis in networks
 - PageRank algorithm; link prediction
Scale-Free Networks

- **Properties:**
 - Power-law degrees
 - Degrees are heavily skewed
 - Network resilience
 - Networks are resilient to random attacks

- **Models:**
 - Preferential attachment
 - Rich get richer

- **Algorithms:**
 - Hubs and Authorities
 - Recursive: \(a_i = \sum_{j \rightarrow i} h_j, \ h_i = \sum_{i \rightarrow j} a_j \)
 - PageRank
 - Recursive formulation, Random jumps
Community Detection

- **Properties:**
 - Strength of weak ties
 - Core-periphery structure

- **Models:**
 - Community-affinity model

- **Algorithms:**
 - Spectral Clustering
 - Girvan-Newman (Betweenness centrality)
 - **Modularity:** \(\text{#edges within group} - E[\text{#edges within group}] \)
 - Clique Percolation Method
 - Overlapping communities
Network Diffusion

- **Properties:**
 - Node-to-node influence
 - Node threshold
 - Cascade spread

- **Models:**
 - Game theoretic model:
 - Payoffs, Competing products
 - Independent Cascade Model
 - Each node infects a neighbor with some probability
Map of Superpowers

Properties
- Small diameter, Edge clustering
- Scale-free
- Strength of weak ties, Core-periphery
- Densification power law, Shrinking diameters
- Information virality, reproductive number

Models
- Small-world model, Erdös-Renyi model
- Preferential attachment, Copying model
- Community-affiliation Graph Model
- Microscopic model of evolving networks
- Independent cascade model, Game theoretic model, SIR

Algorithms
- Decentralized search
- PageRank, Hubs and authorities
- Community detection: Girvan-Newman, Modularity
- Link prediction, Supervised random walks
- Influence maximization, Outbreak detection, LIM
Applying Your Superpowers
Applying Your Superpowers

- Social media analytics
- Viral marketing
Applying Your Superpowers

- Predicting epidemics: Ebola
Applying Your Superpowers

- Interactions of human diseases
- Drug design
Data Visualization – Review
Why Visualize Data?

Summary statistics for all four datasets
- \(\text{avg}(x) = 9 \)
- \(\text{avg}(y) = 7.50 \)
- \(\text{Var}(x) = 11 \)
- \(\text{Var}(y) = 4.12 \)
- \(\text{Correlation}(x,y) = 0.816 \)
- A linear regression line: \(y = 0.5x + 3 \)

Always plot your data!

Anscombe’s Quartet
Jacques Bertin’s Visual Variables

Jacques Bertin proposed an original set of “retinal variables” in Semiology of Graphics (1967)

- **Position**: changes in x, y, (z) location
- **Size**: change in length/area
- **Shape**: changes in shape
- **Value**: changes in light value
- **Hue**: changes in hue value
- **Orientation**: changes in alignment
- **Texture**: changes in pattern
perception is fragmented
eyes are constantly scanning and constructing reality

The “Door Study”*
https://www.youtube.com/embed/FWSxSOsspiQ

Pre-attentive vs Attentive Processing

PRE-ATTENTIVE PROCESSING
- bottom-up
- fast, automatic
- instinctive
- efficient
- multitasks

ATTENTIVE PROCESSING
- top-down
- slow, deliberate
- focused
- singe-task

goal of information design
- help humans process information as efficiently as possible
- make as much use of pre-attentive processing as possible
Gestalt Principles

- Figure/Ground
- Proximity
- Similarity
- Symmetry
- Continuity
- Closure

Gestalt Principles

Good Figure
Objects grouped together tend to be perceived as a single figure. Tendency to simplify.

Proximity
Objects tend to be grouped together if they are close to each other.

Similarity
Objects tend to be grouped together if they are similar.

Continuation
When there is an intersection between two or more objects, people tend to perceive each object as a single uninterrupted object.

Closure
Visual connection or continuity between sets of elements which do not actually touch each other in a composition.

Symmetry
The object tend to be perceived as symmetrical shapes that form around their center.
What Makes a Good Visualization?

https://informationisbeautiful.net/visualizations/what-makes-a-good-data-visualization/
Data Types

Data

Qualitative (Descriptive)
- Nominal
 - Data has no natural order
 - examples: gender, race, religion, sport
- Ordinal
 - Data can be arranged in order or rank
 - examples: sizes (s/m/l), attitudes (disagree, neutral, agree), house number.

Quantitative (Numerical)
- Continuous
 - Data is measured on a continuous scale
 - examples: temperature, length, height
- Discrete
 - Data is countable, and exists only in whole numbers
 - examples: number of people taking this class
Use of **visual elements** like **charts**, **graphs**, and **maps** to see and understand **trends**, **outliers**, and **patterns** in data.
What’s Next?
What’s Next?

- **Project presentation**
 - Mon, Mar 23rd and Mar 30th online (Zoom)
 - 12 minutes + 3 min QA
 - See course website for more info

- **Project final report**
 - Fri, Apr 17th Midnight (11:59PM) Pacific Time
 - Email and submit electronically your PDF report
 - see course website for more info
What Next?

- **Related conferences / Journals:**
 - **Conferences**
 - **DSAA:** IEEE Data Science and Advanced Analytics
 - **KDD:** ACM Conf. on Knowledge Discovery & Data Mining
 - **WWW:** ACM World Wide Web Conference
 - **WSDM:** ACM Web search and Data Mining
 - **ICDM:** IEEE International Conference on Data Mining
 - **ICWSM:** AAAI Int. Conf. on Web-blogs & Social Media
 - **Complex Networks:** Int. Conf. on Complex Networks
 - **Journals**
 - **Complex Networks:** Journal of Complex Networks
 - **TKDD:** ACM Transactions on Knowledge Discovery from Data
 - **TKDE:** IEEE Transactions on Knowledge and Data Engineering
In Closing...

You have worked a lot...

...and (hopefully) learned a lot!
thank you & happy holidays