

Agenda*

- Review
 - What is data visualization?
 - Jacques Bertin's visual variables (semiotics)
 - Perception & cognition (pre-attentive vs attentive processing)
 - Gestalt principles
 - Tufte's principles of graphical excellence
- Data Types
- A Taxonomy of Representation
 - A detailed listing of data representations

Part I Review

Why visualize data? Anscombe's Quartet

Summary statistics for all four datasets

- avg(x) = 9
- avg(y) = 7.50
- Var(x) = 11
- Var(y) = 4.12
- Correlation(x,y) = 0.816
- A linear regression line:
 y = 0.5x + 3

Always plot your data!

Anscombe's Quartet

Anscombe, F. (1973). Graphs in statistical analysis. American Statistician, 27:17--21.

What is data visualization?

Use of **visual elements** like charts, graphs, and maps to see and understand trends, outliers, and patterns in data

Jacques Bertin's visual variables (vv)

Perception & cognition

Image: Ware, Colin. Visual thinking: For design. Morgan Kaufmann, 2010

- perception is fragmented
- eyes are constantly scanning and constructing reality

The "Door Study"*

https://www.youtube.com/embed/FWSxSQsspiQ

^{*} Daniel J. Simons and Daniel T. Levin. 1998. "Failure to detect changes to people during a real world interaction." Psychonomic Bulletin and Review. 5: 644–669.

Pre-attentive vs attentive processing

Pre-attentive Processing

- bottom-up
- fast, automatic
- instinctive
- efficient
- multitasks

Attentive Processing

- top-down
- slow, deliberate
- focused
- singe-task

goal of information design

- help humans process information as efficiently as possible
- make as much use of pre-attentive processing as possible

Gestalt Principles (Princ. of Visual Grouping)

- Figure/Ground
- Proximity
- Similarity
- Symmetry
- Continuity
- Closure

Gestalt Principles

Good Figure

Objects groupped together tend to be perceived as a single figure. Tendency to simplify.

Proximity

Objects tend to be grouped together if they are close to each other.

Similarity

Objects tend to be grouped together if they are similar.

Continuation

When there is an intersection between two or more objects, people tend to perceive each object as a single uninterrupted object.

Closure

Visual connection or continuity between sets of elements which do not actually touch each other in a composition.

Symmetry

The object tend to be perceived as symmetrical shapes that form around their center.

Principles of Graphical Excellence (Tufte' 01)

- Show the data
- Induce the viewer to think about the substance of the findings rather that the methodology, the graphical design, or other aspects
- Avoid distorting what the data have to say
- Present many numbers in a small space, i.e., efficiently
- Make large data sets coherent
- Encourage the eye to compare different pieces of data
- Reveal the data at several levels of detail, from a broad overview to the fine structure
- Serve a clear purpose: description, exploration, tabulation, decoration
- Be closely integrated with the statistical and verbal descriptions of the data set

High data to ink ratio (demo)

What makes a visualization beautiful?

https://informationisbeautiful.net/visualizations/what-makes-a-good-data-visualization/

Physical visualizations (data sculpture)

Keyboard Frequency Sculpture

A 3D bar chart on top of a keyboard which shows the frequency of each letter in the alphabet Source: Michael Knuepfel

2011 – Tōhoku Japanese Earthquake Sculpture

A data sculpture by Luke Jerram that depicts nine minutes of seismographic readings during the 9.0 earthquake.

Source: Gizmodo

Data Types

Data types

Information Visualization Taxonomy

Information Visualization Taxonomy

Quantitative Comparison Structures

Pie Chart

Doughnut Chart

Bar Chart

Stacked Bar Chart

Clustered/Grouped Bar Chart

Grouped-stacked Bar Chart

Bubble Chart

Bubble Chart (interactive)

Four Ways to Slice Obama's 2013 Budget Proposal

Explore every nook and cranny of President Obama's federal budget proposal.

Image: http://www.nytimes.com/interactive/2012/02/13/us/politics/2013-budget-proposal-graphic.html?_r=1&

Pictogram Chart (for discrete data)

use of icons to give a more engaging overall view of small sets of discrete data

can help overcome differences in language, culture and education

Quantitative Relational Structures

Line Chart

Scatter Plot

3d Coordinate Systems

Alternative ways to define plane or 3D-space:

- Cartesian
- Cylindrical
- Spherical

Radar Chart

Image: https://python-graph-gallery.com/390-basic-radar-chart/

Surface Plot

Heat Map

Google eye-tracking heatmap study to optimize analysis of search results

Image: https://google.github.io/charts/flutter/gallery.html

Heat Map/ Co-occurrence Map

Flows into all fund classes (all, including ETFs) - a time series

Fund Category	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013 YTI
Total Equity Funds	4%	3%	3%	1%	-3%	2%	2%	-1%	1%	3.49
Total Developed Market Equity Funds	4%	2%	2%	-1%	-3%	-1%	0%	0%	0%	3.89
International Equity Funds	8%	6%	7%	6%	-4%	4%	1%	1%	1%	3.89
US Equity Funds	1%	-1%	-1%	0%	0%	-4%	0%	0%	-1%	3.5
Western Europe Equity Funds	1%	-1%	7%	-13%	-12%	1%	-3%	-2%	-2%	0.4
Japan Equity Funds	52%	44%	0%	-27%	-18%	-19%	-3%	5%	10%	24.7
Pacific Equity Funds	7%	-3%	12%	-1%	-16%	17%	8%	-8%	1%	7.9
Total Emerging Market Equity Funds	3%	16%	11%	12%	-7%	27%	16%	-5%	7%	0.4
Global Emerging Market Equity Funds	-10%	3%	4%	10%	-4%	32%	23%	-1%	12%	2.5
EMEA Equity funds	27%	40%	-6%	-2%	-8%	11%	20%	-11%	-4%	-7.4
Latin America Equity Funds	10%	81%	27%	46%	-12%	48%	4%	-12%	-1%	-8.5
Asia Pacific Ex-Japan Funds	21%	22%	27%	14%	-9%	21%	10%	-7%	3%	0.2
Total Bond Funds	14%	4%	8%	-2%	-10%	24%	16%	4%	11%	1.5
International Bond Funds	12%	12%	10%	-2%	-24%	25%	23%	3%	6%	1.1
Corporate High Yield Bond Funds	NA	-18%	-2%	-4%	-5%	40%	15%	4%	18%	1.4
US Bond Funds	NA	-17%	-9%	4%	-2%	23%	10%	6%	12%	2.2
Western Europe Bond funds	NA	1%	58%	-8%	-46%	29%	-7%	-28%	2%	-3.4
Germany Bond funds	NA	NA	NA	NA	NA	NA	29%	25%	-13%	-5.7
Switzerland Bond funds	NA	NA	NA	NA	NA	NA	-65%	-19%	-2%	-2.0
United Kingdom Bond funds	NA	22%	-17%	-141%	-26%	64%	8%	-3%	0%	-4.1
Emerging Markets Debt Funds	12%	24%	18%	9%	-21%	19%	54%	7%	25%	2.4
Asia ex-Japan Bond funds	NA	4%	3%	16%	-10%	2%	71%	25%	12%	2.2
Emerging Europe Bond funds	NA	40%	-12%	-18%	-37%	-19%	-8%	-39%	-9%	0.1
Lat-Am Bond funds	NA	-28%	-22%	-33%	-30%	19%	46%	38%	68%	2.8
Money Market Funds	NA	NA	NA	NA	31%	-17%	-15%	-4%	-1%	-2.7
	Co	lour Legend:		116	74.1	70				
		13%	8%	3%	-3%	-8%	-13%			

Area Graph

Stacked Area Graph

Distribution Structures

Box and Whisker Box

Image: https://www.simplypsychology.org/boxplots.html

Box and Whisker Box

Histogram

Students scores

Quantitative Relational Structures

Networks: Force-directed Layout

Networks: Arc Graph

Networks: Adjacency Matrix

Networks: Chord Diagram

Networks: Chord Diagram (interactive)

Uber rides in SF by neighborhoods

Networks: Sankey Charts

Movement between countries Angola **Portugal** Brazil Senegal China France Canada Morocco Mexico India Spain South Africa USA England ្សិ<mark>ខប្</mark>ម Mali

Textual Structures

Word Cloud

Word Tree

Hierarchical Structures

Tree Diagram (root, branches, nodes, leaves)

Horizontal Trees

Node-link Diagram or Dendrogram

Indented Trees & Circular Dendrogram

Image: https://homes.cs.washington.edu/~jheer/files/zoo/

Radial Trees

Hyperbolic Trees

Image: https://infovis-wiki.net/wiki/Hyperbolic_trees

Rectangular TreeMaps: World Population

Image: https://www.populationpyramid.net/population-size-per-country/2020/

Voronoi TreeMap

Voronoi treemaps are an alternative to traditional rectangular treemaps

 often more aesthetically pleasing

Circular TreeMap

packing circles instead of subdividing rectangles can produce a different sort of enclosure diagram that has an organic appearance

- circle-packing layouts reveals the hierarchy
- node sizes can be rapidly compared using area

Radial TreeMap (aka Sunbursts)

Icicle TreeMap

Temporal Structures

Timeline of Space Exploration

Timeline of Space Exploration

Info source: www.wikipedia.org

Image: https://www.highcharts.com/

Timeline of 100 yrs of Rock Music (interact.)

Spatial Structures

Heatmaps: Fandom of Coldplay (on Youtube)

Image: https://www.nytimes.com/interactive/2017/08/07/upshot/music-fandom-maps.html

Choropleth Map

Graduated Symbol Map

Cartograms

Examples: Wind Map (interactive)

March 15, 2020

9:42 pm EST

(time of forecast download)

top speed: 26.5 mph average: 7.7 mph

Image: http://hint.fm/wind/

Spatiotemporal Structures

Napoleon's Russian campaign of 1812

Charles Minard's map of **Napoleon's disastrous Russian campaign of 1812**. The graphic is notable for its representation in two dimensions of six types of data: the number of Napoleon's troops; distance; temperature; the latitude and longitude; direction of travel; and location relative to specific dates

Hurricane Katrina Trajectory Over Time

Image: https://weather.com/storms/hurricane/news/hurricane-katrina-forecast-shift-aug26-2005

Tracing Earthquake Discussions in Real Time

Image/video: https://www.youtube.com/watch?v=ou8L0MzGvOU

Other

Chernoff Faces

a way to display *n* variables on a 2-D surface each variable is assigned one of *k* possible values

Chernoff Faces: Example

Chernoff faces for lawyers' ratings of 12 judges

Beyond digital visualizations

Physical visualizations (data sculpture)

Keyboard Frequency Sculpture

A 3D bar chart on top of a keyboard which shows the frequency of each letter in the alphabet Source: Michael Knuepfel

2011 – Tōhoku Japanese Earthquake Sculpture

A data sculpture by Luke Jerram that depicts nine minutes of seismographic readings during the 9.0 earthquake.

Source: Gizmodo

Physical visualizations

Manifest Justice Exhibition, Los Angeles, May 2015 http://www.afropunk.com/profiles/blogs/feature-manifestjustice-art-exhibit-in-los-angeles

Participatory visualization

Resources

Data Visualization Resources & Libraries

Data visualization catalog

http://www.datavizcatalogue.com/

Periodic table of visualization methods

http://www.visual-literacy.org/periodic_table/periodic_table.html

Interactive dynamics for visual analysis (Taxonomy of Tools)

http://queue.acm.org/detail.cfm?id=2146416

HighCharts library

https://www.highcharts.com/

D3 library

https://observablehq.com/@d3/gallery