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 Spreading through 
networks:

 Cascading behavior

 Diffusion of innovations

 Network effects

 Epidemics

 Behaviors that cascade 
from node to node like 
an epidemic

 Examples:

 Biological:

 Diseases via contagion

 Technological:

 Cascading failures

 Spread of information

 Social:

 Rumors, news, new 
technology

 Viral marketing



Obscure 
tech story

Small tech 
blog

WiredSlashdot

Engadget

CNNNYT

BBC









 Product adoption:

 Senders and followers of recommendations







 Contagion that spreads over the edges 
of the network

 It creates a propagation tree, i.e., cascade

Cascade 
(propagation graph)

Network

Terminology:

• Stuff that spreads: Contagion

• “Infection” event: Adoption, infection, activation

• We have: Infected/active nodes, adoptors



 Decision based models (Threshold Model):
 Models of product adoption, decision making

 A node observes decisions of its neighbors 
and makes its own decision

 Example:
 You join demonstrations if k of your friends do so too

 Probabilistic models:
 Models of influence or disease spreading

 An infected node tries to “push”
the contagion to an uninfected node

 Example:
 You “catch” a disease with some prob. 

from each active neighbor in the network





 Decision Based Model of Diffusion
 Granovetter’s Model of Collective Action
 Threshold Model of Diffusion
 Game Theoretic Model of Diffusion
 Extending the Model: Allow People to Adopt A & B 

(skipped)





 Collective Action [Granovetter, ‘78]

 Model where everyone sees everyone else’s 
behavior (that is, we assume a complete graph)

 Examples:

 Clapping or getting up and leaving in a theater

 Keeping your money or not in a stock market

 Neighborhoods in cities changing ethnic composition

 Riots, protests, strikes

 How does the number of people participating 
in a given activity grow or shrink over time?

[Granovetter ‘78]



 n people – everyone observes all actions
 Each person i has a threshold ti (0 ≤ 𝑡𝑖 ≤ 1)

 Node i will adopt the behavior iff
at least ti fraction of people have 
already adopted:

 Small ti: early adopter

 Large ti: late adopter

 Time moves in discrete steps

 The population is described by {t1,…,tn}

 F(x) … fraction of people with threshold ti  x
 F(x) is a property of the contagion given to us. F(x) is the c.d.f. of x
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 F(x) … fraction of people with threshold ti  x
 F(x) is non-decreasing: 𝑭 𝒙 + 𝜺 ≥ 𝑭 𝒙

 The model is dynamic:
 Step-by-step change 

in number of people 
adopting the behavior:
 F(x) … frac. of people 

with threshold  x
 s(t) … number of people

participating at time t

 Simulate:
 s(0) = 0
 s(1) = F(0)
 s(2) = F(s(1)) = F(F(0))

Threshold, x

F(x)

F(0)

F
ra

c.
 o

f 
p

o
p

u
la

ti
o

n

0 1

1 Frac. of people

with threshold ≤ 𝒙
y=x

s(0)

s(1)



 Step-by-step change in number of people :
 F(x) … fraction of people with threshold  x
 s(t) … number of participants at time t

 Easy to simulate:
 s(0) = 0
 s(1) = F(0)
 s(2) = F(s(1)) = F(F(0))
 s(t+1) = F(s(t)) = Ft+1(0)

 Fixed point: F(x)=x
 Updates to s(t) to converge

to a stable fixed point
 There could be other fixed 

points but starting from 0
we only reach the first one

Threshold, x

F(x)

y=x

Iterating to y=F(x).

Fixed point.
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 What if we start the process somewhere else?

 We move up/down to the next fixed point 

 How is market going to change?

Threshold, x
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Note: we are 

assuming a fully

connected graph
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 Each threshold ti is drawn independently from 
some distribution F(x) = Pr[thresh  x]

 Suppose: Normal with  =n/2, variance 

Small : Medium :
Normal(45, 10) Normal(45, 27)



Bigger variance let’s you build a bridge from early adopters to mainstream

Small 
Medium 

F(x)
F(x)

No cascades! Small cascades

Fixed 

point is 

low

Normal(45, 10) Normal(45, 27)



But if we increase the variance the fixed point starts going down

Big  Huge 

Big cascades!

Fixed point

gets lower!

Fixed point

is high!

Normal(45, 33) Normal(45, 50)



 No notion of social network:
 Some people are more influential
 It matters who the early adopters are, not just how many

 Models people’s awareness of size of participation 
not just actual number of people participating
 Modeling perceptions of who is adopting the behavior vs. 

who you believe is adopting
 Non-monotone behavior – dropping out if too many 

people adopt
 People get “locked in” to certain choice over a period of 

time
 Modeling thresholds

 Richer distributions
 Deriving thresholds from more basic assumptions

 game theoretic models
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 Based on 2 player coordination game
 2 players – each chooses technology A or B

 Each person can only adopt one “behavior”, A or B

 You gain more payoff if your friend has adopted the 
same behavior as you

[Morris 2000]

Local view of the 

network of node v







 Payoff matrix:

 If both v and w adopt behavior A, 
they each get payoff a > 0

 If v and w adopt behavior B,
they each get payoff b > 0

 If v and w adopt the opposite 
behaviors, they each get 0

 In some large network:

 Each node v is playing a copy of the 
game with each of its neighbors

 Payoff: sum of node payoffs per game

A B

A a, a 0,0

B 0,0 b,b
v

w



 Let v have d neighbors
 Assume fraction p of v’s neighbors adopt A

 Payoffv = a∙p∙d , if v chooses A
= b∙(1-p)∙d , if v chooses B

 Thus: v chooses A if: a∙p∙d > b∙(1-p)∙d

q
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b
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
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Threshold:

v chooses A if

p… frac. v’s nbrs. with A

q… payoff threshold



 Scenario:
Graph where everyone starts with B
Small set S of early adopters of A
 Hard-wire S – they keep using A no matter 

what payoffs tell them to do

 Assume payoffs are set in such a way that 
nodes say:
If more than 50% of my friends take A
I’ll also take A

(this means: a = b-ε and q>1/2)



If more than 
q=50% of my 
friends are red 
I’ll also be red
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 Consider infinite graph G

 (but each node has finite number of neighbors!)

 We say that a finite set S causes a cascade in 
G with threshold q if, when S adopts A,
eventually every node in G adopts A

 Example: Path
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
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v chooses A if p>q

If q<1/2 then cascade occurs 

S
p… frac. v’s nbrs. with A

q… payoff threshold



S

S

If q<1/3 then 

cascade occurs 

 Infinite Tree:

 Infinite Grid:

If q<1/4 then 

cascade occurs 



 What prevents cascades from spreading?
 Def: Cluster of density ρ is a set of nodes C

where each node in the set has at least ρ
fraction of edges in C

ρ=3/5 ρ=2/3



 Let S be an initial set of 
adopters of A

 All nodes apply threshold 
q to decide whether 
to switch to A

 Two facts:

 1) If G\S contains a cluster of density >(1-q)
then S can not cause a cascade

 2) If S fails to create a cascade, then 
there is a cluster of density >(1-q) in G\S

Sρ=3/5

No cascade if q>2/5 





 So far: 
 Behaviors A and B compete

 Can only get utility from neighbors of same behavior: A-A
get a, B-B get b, A-B get 0

 Let an extra strategy “AB”
 AB-A : gets a

 AB-B : gets b

 AB-AB : gets max(a, b)

 Also: Some cost c for the effort of maintaining 
both strategies (summed over all interactions)
 Note: a given node can receive a from one neighbor and b from 

another by playing AB, which is why it could be worth the cost c

A B AB

A a, a 0,0 a, a

B 0,0 b,b b,b

AB a, a b,b max(a,b), max(a,b)

v

w



 Every node in an infinite network starts with B
 Then a finite set S initially adopts A
 Run the model for t=1,2,3,…

 Each node selects behavior that will optimize 
payoff (given what its neighbors did in at time t-1)

 How will nodes switch from B to A or AB?

BA A ABa a max(a,b)
AB

b

Payoff

-c -c



 Path graph: Start with all Bs, a > b (A is better) 
 One node switches to A – what happens?

 With just A, B: A spreads if a > b

 With A, B, AB: Does A spread? 

 Example: a=3, b=2, c=1

BAA
a=3

B B
0 b=2 b=2

BAA
a=3

B B
a=3 b=2 b=2

AB

-1

Cascade stops

a=3



 Example: a=5, b=3, c=1

BAA
a=5

B B
0 b=3 b=3

BAA
a=5

B B
a=5 b=3 b=3

AB

-1

BAA
a=5

B B
a=5 a=5 b=3

AB

-1

AB

-1

AAA
a=5

B B
a=5 a=5 b=3

AB

-1

AB

-1
Cascade never stops!



 Infinite path, start with all Bs
 Payoffs for w: A:a, B:1, AB:a+1-c
 What does node w in A-w-B do?

a

c

1

1

B vs A

AB vs A

wA B

AB vs B

B

B

AB AB

A

A
a+1-c=1

a+1-c=a



 Infinite path, start with all Bs
 Payoffs for w: A:a, B:1, AB:a+1-c
 What does node w in A-w-B do?

a

c

1

1

B vs A

AB vs A

wA B

AB vs B

B

B

AB AB

A

A
a+1-c=1

a+1-c=a

Since 

a<1, c>1

a is big

c is big

a is high

c <1, AB is opt



 Same reward structure as before but now payoffs 
for w change: A:a, B:1+1, AB:a+1-c

 Notice: Now also AB spreads
 What does node w in AB-w-B do?

wAB B

a

c

1

1

B vs A

AB vs A

AB vs B

B

B
AB AB

A

A

2



 Same reward structure as before but now payoffs 
for w change: A:a, B:1+1, AB:a+1-c

 Notice: Now also AB spreads
 What does node w in AB-w-B do?

wAB B

a

c

1

1

B vs A

AB vs A

AB vs B

B

B
AB AB

A

A

2

a<2, c>1

then 2b > 2a

a is big

c >1

c <1, then

a+1-c > a

AB is opt



 Joining the two pictures:

a

c

1

1

B

AB B→AB → A

A

2

AB spreads indefinitely, followed 
by A (B becomes vestigial)

A spreads directly 
(no adoption of AB)

neither A nor AB 
spreads

AB spreads 
but then stops



 B is the default throughout the 
network until new/better A
comes along. What happens?
 Infiltration: If B is too 

compatible then people 
will take on both and then 
drop the worse one (B)

 Direct conquest: If A makes 
itself not compatible – people
on the border must choose. 
They pick the better one (A)

 Buffer zone: If you choose an 
optimal level then you keep 
a static “buffer” between A and B

a

c

B

stays

B→AB B→AB→A

A spreads

B → A



 So far:
Decision Based Models

 Utility based

 Deterministic

 “Node” centric: A node observes decisions of its 
neighbors and makes its own decision

 Require us to know too much about the data

 Next: Probabilistic Models

 Let’s you do things by observing data

 We lose “why people do things”





 Epidemic Model Based on Trees
 Models of Disease Spreading
 Independent Cascade Model
 Modeling Interactions Between Contagions 

(Optional)



Understanding the spread of viruses 
and epidemics is of great interest to 
• Health officials
• Sociologists
• Mathematicians
• Hollywood 

The underlying contact network clearly affects the 
spread of an epidemic

66



 Model epidemic spread as a random process 
on the graph and study its properties

 Questions that we can answer: 

 What is the projected growth of the infected 
population?

 Will the epidemic take over most of the network?

 How can we contain the epidemic spread?

67

Diffusion of  ideas and the spread of influence 
can also be modeled as epidemics



Simple probabilistic model of 

cascades where we will learn about 

the reproductive number



 Branching process: A person transmits the 
disease to each people she meets 
independently with a probability p

 An infected person meets k (new) people 
while she is contagious

 Infection proceeds in waves

Contact network is a 
tree with branching 
factor k

69



 We are interested in the number of people 
infected (spread) and the duration of the 
infection

 This depends on the infection probability p
and the branching factor k

An aggressive 
epidemic with high 
infection probability

The epidemic survives
after three steps

70



 We are interested in the number of people 
infected (spread) and the duration of the 
infection

 This depends on the infection probability p
and the branching factor k

A mild epidemic with 
low infection 
probability

The epidemic dies out
after two steps

71



 Basic Reproductive Number (𝑹𝟎): the expected 
number of new cases of the disease caused by a single 
individual

𝑹𝟎 = 𝒌𝒑

 Claim: (a) If R0 < 1, then with probability 1, the disease 
dies out after a finite number of waves. (b) If R0 > 1, 
then with probability greater than 0 the disease 
persists by infecting at least one person in each wave

1. If 𝑹𝟎 < 𝟏 each person infects less than one person in 
expectation. The infection eventually dies out

2. If 𝑹𝟎 > 𝟏 each person infects more than one person in 
expectation. The infection persists

72



 𝑋𝑛: random variable indicating the number of 
infected nodes after n steps

 𝑞𝑛 = Pr[𝑋𝑛 ≥ 1]: probability that there exists 
at least 1 infected node after n steps

 𝑞∗ = lim𝑞𝑛: the probability of having 
infected nodes as 𝑛 → ∞

It can be shown that
a 𝑅0 < 1 ⇒ 𝑞∗ = 0

(b) 𝑅0 > 1=> 𝑞∗ > 0.

73



 Epidemic Model based on Random Trees

 (a variant of branching processes)

 A patient meets k other people

 With probability p > 0 infects each 
of them

 Q: For which values of k and p
does the epidemic run forever?

 Run forever: 

 Die out: -- || -- = 0

Root node,

“patient 0”

Start of epidemic

k subtrees

0
ndepth at  node

 infected 1least At 
lim 










P

n



 𝒒𝒏𝒋 = prob. there is an infected node at depth 𝒏
starting from a specific child node

𝑞𝑛𝑗 = 𝑝 ⋅ 𝑞𝑛−1
 Fails with probability (the complementary view)

1 − 𝑝 ⋅ 𝑞𝑛−1
 All k subtrees fail with probability

1 − 𝑝 ⋅ 𝑞𝑛−1
𝑘

k subtrees

j

n-1 levels



 𝒒𝒏 = prob. there is an infected node at depth 𝒏
 We need: lim

𝑛→∞
𝑞𝑛 = ? (based on 𝑝 and 𝑘)

 All k subtrees fail with probability
1 − 𝑝 ⋅ 𝑞𝑛−1

𝑘

 Taking the complement:
𝑞𝑛 = 1 − 1 − 𝑝 ⋅ 𝑞𝑛−1

𝑘

 𝒍𝒊𝒎
𝒏→∞

𝒒𝒏 = result of iterating

f x = 1 − 1 − 𝑝 ⋅ 𝑥 𝑘

 Starting at 𝑥 = 1 (since 𝑞1 = 1)

No infected node

at depth n from the root

k subtrees



 𝑓 0 = 0 , so intercepts at point (0,0)

 𝑓 1 = 1 − 1 − 𝑝 𝑘 < 1, so at x=1, f(1) is 

below the y=x line

 𝑓′ 𝑥 = 𝑝 ⋅ 𝑘 1 − 𝑝𝑥 𝑘−1, positive and f’ 

monotonically decreasing on [0,1], so 

concave curve

 𝑓′ 0 = 𝑝 ⋅ 𝑘 = 𝑅0, so 

 for 𝑹𝟎 > 𝟏 f starts above the y=x line 

 for 𝑹𝟎 < 𝟏 f starts below the y=x line 



x

f(x)

1

y=x=1

𝑓 0 = 0, 𝑓 1 = 1 − 1 − 𝑝 𝑘 < 1, so at x=1, f(1) is below the y=x line

𝑓′ 𝑥 = 𝑝 ⋅ 𝑘 1 − 𝑝𝑥 𝑘−1, so concave on [0,1]

𝑓′ 0 = 𝑝 ⋅ 𝑘 = 𝑅0, so for 𝑅0 > 1 f starts above the y=x line 

What do we know about f(x)?

Going to first 

fixed point

y = f x

When is this going to 0?

1

Case 1:

𝑹𝟎 = 𝒑𝒌 > 𝟏



x

f(x)

1

y=x

y = f x

For the epidemic to die out 

we need f(x) to be below y=x!
So: 𝒇′ 𝟎 = 𝒑 ⋅ 𝒌 < 𝟏

lim
𝑛→∞

𝑞𝑛 = 0 𝑤ℎ𝑒𝑛 𝒑 ⋅ 𝒌 < 𝟏

𝒑 ⋅ 𝒌 = expected # of people that we infect

Reproductive

number 𝑹𝟎 =
𝒑 ⋅ 𝒌:

There is an 

epidemic if 

𝑹𝟎  𝟏

Case 2:

𝑹𝟎 = 𝒑𝒌 < 𝟏



 Assumes no network structure, no triangles or 
shared neighbors





 Each node may be in the following states

 Susceptible: healthy but not immune

 Infected: has the virus and can actively propagate it

 Removed: (Immune or Dead) had the virus but it is no 
longer active

 Parameter p: the probability of an Infected node to 
infect a Susceptible neighbor



 Initially all nodes are in state S(usceptible), 
except for a few nodes in state I(nfected).

 An infected node stays infected for 𝑡𝐼 steps.

 Simplest case: 𝑡𝐼 = 1

 At each of the 𝑡𝐼 steps the infected node has 
probability p of infecting any of its susceptible
neighbors

 p: Infection probability

 After 𝑡𝐼 steps the node is Removed













 Percolation: we have a network of “pipes” 
which can carry liquids, and they can be 
either open, or closed

 The pipes can be pathways within a material

 If liquid enters the network from some nodes, 
does it reach most of the network?

 The network percolates



 There is a connection between SIR model and 
percolation

 When a virus is transmitted from u to v, the edge 
(u,v) is activated with probability p

 We can assume that all edge activations have 
happened in advance, and the input graph has 
only the active edges

 Which nodes will be infected?
 The nodes reachable from the initial infected nodes

 In this way we transformed the dynamic SIR 
process into a static one
 This is essentially percolation in the graph





 Susceptible-Infected-Susceptible
 Susceptible: healthy but not immune

 Infected: has the virus and can actively propagate 
it

 An Infected node infects a Susceptible

neighbor with probability p
 An Infected node becomes Susceptible again 

with probability q (or after 𝑡𝐼 steps)
 In a simplified version of the model q = 1

 Nodes alternate between Susceptible and 
Infected status



 When no Infected nodes, virus dies out
 Question: will the virus die out?



 If A is the adjacency matrix of the network, then the 
virus dies out if

𝜆1 𝐴 ≤
𝑞

𝑝
 Where 𝜆1(𝐴) is the first eigenvalue of A

Y. Wang, D. Chakrabarti, C. Wang, C. Faloutsos. Epidemic Spreading in Real 
Networks: An Eigenvalue Viewpoint. SRDS 2003



 Initially, some nodes e in the I state and all others in 
the S state

 Each node u that enters the I state remains 
infectious for a fixed number of steps tI. During each 
of these tI steps, u has a probability p of infecting 
each of its susceptible neighbors

 After tI steps, u is no longer infectious. Enters the R
state for a fixed number of steps tR. During each of 
these tR steps, u cannot be infected nor  transmit the 
disease

 After tR steps in the R state, node u returns to the S
state



We will learn about the 

epidemic threshold



Virus Propagation: 2 Parameters:
 (Virus) Birth rate β: 

 probability that an infected neighbor attacks

 (Virus) Death rate δ:

 Probability that an infected node heals

Infected

Healthy

NN1

N3

N2

Prob. β

Prob. δ



 General scheme for epidemic models:

 Each node can go through phases:

 Transition probs. are governed by the model parameters

S…susceptible

E…exposed

I…infected

R…recovered

Z…immune



 SIR model: Node goes through phases

 Models chickenpox or plague: 

 Once you heal, you can never get infected again

 Assuming perfect mixing (The network is a 
complete graph) the 
model dynamics are:
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Kermack-McKendrick Model: http://mathworld.wolfram.com/Kermack-McKendrickModel.html

http://mathworld.wolfram.com/Kermack-McKendrickModel.html


 Susceptible-Infective-Susceptible (SIS) model 
 Cured nodes immediately become susceptible
 Virus “strength”: s = β / δ
 Node state transition diagram:

Susceptible Infective

Infected by neighbor 

with prob. β

Cured with 

prob. δ



 Models flu:
 Susceptible node 

becomes infected

 The node then heals 
and become 
susceptible again

 Assuming perfect 
mixing (complete 
graph):

Susceptible Infected
ISI

dt

dI
 

ISI
dt

dS
 

time

N
u

m
b

er
 o

f 
n

o
d

es

I(t)

S(t)



 SIS Model: 
Epidemic threshold of an arbitrary 
graph G is τ, such that:

 If virus strength s = β / δ < τ

the epidemic can not happen 
(it eventually dies out)

 Given a graph what is its epidemic threshold?



 We have no epidemic if:

β/δ < τ = 1/ λ1,A

► λ1,A alone captures the property of the graph!

(Virus) Birth rate

(Virus) Death 
rate

Epidemic threshold

largest eigenvalue
of adj. matrix A

[Wang et al. 2003]
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 Does it matter how many people are 
initially infected?



[Gomes et al., Assessing the International Spreading Risk Associated with the 2014 West African Ebola Outbreak, PLOS Current Outbreaks, 2014]
http://currents.plos.org/outbreaks/article/assessing-the-international-spreading-risk-associated-with-the-2014-west-african-ebola-outbreak/

http://currents.plos.org/outbreaks/article/assessing-the-international-spreading-risk-associated-with-the-2014-west-african-ebola-outbreak/


Model States
S: susceptible individuals
E: exposed individuals
I: infectious cases in the community 
H: hospitalized cases
F: dead but not yet buried
R: individuals no longer transmitting the disease

Model Parameters
βI: transmission coefficient in the community
βH: transmission coefficient at the hospital
βF: transmission coefficient during funerals
θ1: computed so that θ% of infectious cases are hospitalized
δ: Compartment specific δ1 and δ2 so that overall case-fatality ratio is δ
α−1: the mean incubation period
γh

−1: the mean duration from symptom onset to hospitalization 
γdh

−1: the mean duration from hospitalization to death
γi

−1: the mean duration of the infectious period for survivors
γih

−1: the mean duration from hospitalization to end of infectiousness for survivors 
γf

−1: the mean duration from death to burial



Gomes et al., 2014]



Gomes et al., 2014]





 Initially some nodes S are active
 Each edge (u,v) has probability (weight) puv

 When node u becomes active/infected: 
 It activates each out-neighbor v with prob. puv

 Activations spread through the network!
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