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Spreading Through Networks

Spreading through
networks:
Cascading behavior
Diffusion of innovations
Network effects
Epidemics

Behaviors that cascade
from node to node like
an epidemic

Examples:
Biological:

Diseases via contagion

Technological:
Cascading failures
Spread of information

Social:

Rumors, news, hew
technology

Viral marketing



Information Diffusion: Media

Obscure
tech story
Small tech
blog
Engadget
Slashdot Wired
BBC

NYT CNN



Twitter & Facebook post sharing

)

When life gives you an almost empty jar of nutella, add some ice cream...
(and other useful tips)

AY

Lada Adamic shared a link via Erik Johnston.

e ad

50 Life Hacks to Simplify your World

tuarictadecifrar ~amn
twisteasirter.com

Like - Comment - Share 240 {3 B 25



Timeline Photos

Back to Album - | love science's Photos - | love science’'s Page Previous - Next
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| love science Album: Timeline Photos
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Seriously. If you have a pizza with radius "z" and thickness "a", its volume is

Shared with Public
Pi(z*2)a. — -

Iman Khallaf, M&83(F and 73,191 others like this. Open Photo Viewer
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Diffusion in Viral Marketing

Product adoption:
Senders and followers of recommendations
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Spread of Diseases (e.q., Ebola)




Network Cascades

Contagion that spreads over the edges
of the network

It creates a propagation tree, i.e., cascade

/.

I>

e

Cascade

Network .
(propagation graph)
Terminology:
« Stuff that spreads: Contagion
» “Infection” event: Adoption, infection, activation

 We have: Infected/active nodes, adoptors




How Do We Model Diffusion?

Decision based models (Threshold Model):

Models of product adoption, decision making

A node observes decisions of its neighbors
and makes its own decision

Example:

You join demonstrations if k of your friends do so too
Probabilistic models:

Models of influence or disease spreading

An infected node tries to “push”
the contagion to an uninfected node

Example:

You “catch” a disease with some prob.
from each active neighbor in the network



Decision Based Models of
Diffusion



Decision Based Model of Diffusion
Granovetter’s Model of Collective Action
Threshold Model of Diffusion
Game Theoretic Model of Diffusion

Extending the Model: Allow People to Adopt A & B
(skipped)



Granovetter’s Model of
Collective Action



[Granovetter ‘78]

Decision Based Models

Collective Action [Granovetter, ‘78]

Model where everyone sees everyone else’s
behavior (that is, we assume a complete graph)

Examples:

Clapping or getting up and leaving in a theater
Keeping your money or not in a stock market
Neighborhoods in cities changing ethnic composition
Riots, protests, strikes

How does the number of people participating
in a given activity grow or shrink over time?



Collective Action: The Model

n people — everyone observes all actions
Each personihas a threshold t; (0 < ¢; < 1)

Node i will adopt the behavior iff A

at least t; fraction of people have T

already adopted:
Small t;: early adopter t
Large t;: late adopter

Time moves in discrete steps

The population is described by {t,,...,t }
F(x) ... fraction of people with threshold t; < x

F(x) is a property of the contagion given to us. F(x) is the c.d.f. of x

o
A4

P(adoption)



Collective Action: Dynamics

F(x) ... fraction of people with threshold t; < x
F(x) is non-decreasing: F(x + €) > F(x)

The model is dynamic:
Step-by-step change

in number of people
adopting the behavior:

F(x) ... frac. of people
with threshold < x

s(t) ... number of people
participating at time t

Simulate:
s(0)=0 s(1)F(0)
s(1) = F(0)

Frac. of people y=x
with threshold < x

Frac. of population |

s(2) = F(s(1)) = F(F(0)) Threshold, x




Collective Action: Dynamics

Step-by-step change in number of people :
F(x) ... fraction of people with threshold < x
s(t) ... number of participants at time t

Easy to simulate:
s(0)=0
s(1) = F(0)
s(2) = F(s(1)) = F(F(0))
s(t+1) = F(s(t)) = F**1(0)

Frac. of population

Fixed point: F(x)=x
Updates to s(t) to converge
to a stable fixed point F(0)

There could be other fixed
points but starting from 0
we only reach the first one

lterating to y=F(x).
Fixed point.

Threshold, x



Starting Elsewhere

What if we start the process somewhere else?
We move up/down to the next fixed point

How is market going to change?
y=X
F(x)

Frac. of pop.

Note: we are
assuming a fully

Threshold, x connected graph




Stable vs. Unstable Fixed Point

y=X

Unstable
fixed point

Frac. of pop.

Stable
fixed point

Threshold, x
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Each threshold t; is drawn independently from
some distribution F(x) = Pr[thresh <x]
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Discontinuous Transition

w0 Normal(45, 10)
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Discontinuous Transition
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But if we increase the variance the fixed point starts going down




Weaknesses of the Model

No notion of social network:
Some people are more influential

It matters who the early adopters are, not just how many
Models people’s awareness of size of participation
not just actual number of people participating

Modeling perceptions of who is adopting the behavior vs.
who you believe is adopting

Non-monotone behavior — dropping out if too many
people adopt

People get “locked in” to certain choice over a period of
time

Modeling thresholds
Richer distributions

Deriving thresholds from more basic assumptions
game theoretic models



Threshold Model of
Diffusion



Linear Threshold Model

Q Inactive Node
Q Active Node

. Threshold
. Active neighbors

Thresholds:
9, ~ U[o,1]

Influenced when:

>
Example 2 B.ze,

w active neighbor of v



Game-theoretic Model of
Cascades



[Morris 2000]

Game Theoretic Model of Cascades

Based on 2 player coordination game
2 players — each chooses technology A or B
Each person can only adopt one “behavior”, A or B

You gain more payoff if your friend has adopted the
same behavior as you

Local view of the
network of node v




Example: VHS vs. BetaMax




Example: BlueRay vs. HD DVD

PHILIPS |
f ; s

. DOUBLE LAYER
50,}70.\..-.

Blu-roy Disc S S <



The Model for Two Nodes

Payoff matrix:
If both v and w adopt behavior A,
they each get payoffa >0

If vand w adopt behavior B,
they each get payoff b>0

If vand w adopt the opposite
behaviors, they each get 0

In some large network:

Each node v is playing a copy of the

a,a 0,0

game with each of its neighbors 0,0 b,b

Payoff: sum of node payoffs per game



Calculation of Node v

Threshold:

v chooses A |If

P> b__ g
8 a+b

p... frac. v's nbrs. with A
g... payoff threshold

(1-p)d
neighbors
use B

pd neighbors
use A

Let v have d neighbors
Assume fraction p of v's neighbors adopt A

Payoff, = a:p-d , If v chooses A
= b-(1-p)-d , If v chooses B

Thus: v chooses A if: a-p-d > b-(1-p)-d




Example Scenario

Scenario:
Graph where everyone starts with B
Small set S of early adopters of A

Hard-wire § — they keep using A no matter
what payoffs tell them to do

Assume payoffs are set in such a way that
nodes say:

If more than 50% of my friends take A

I’ll also take A

(this means: a = b-€ and q>1/2)



Example Scenario

S ={u,v}

If more than
q=50% of my
friends are red
'll also be red



Example Scenario

S ={u,v}

If more than
q=50% of my
friends are red
'll also be red



Example Scenario

S ={u,v}

If more than
q=50% of my
friends are red
'll also be red



Example Scenario

S ={u,v}

If more than
q=50% of my
friends are red
'll also be red



Example Scenario

S ={u,v}

If more than
q=50% of my
friends are red
'll also be red



Example Scenario

S ={u,v}

If more than
q=50% of my
friends are red
'll also be red



Infinite Graphs

v chooses A if p>Q

Consider infinite graph G g-_2

a+b

(but each node has finite number of neighbors!)
We say that a finite set S causes a cascade in
G with threshold q if, when S adopts A,
eventually every node in G adopts A
Example: Path

If g<1/2 then cascade occurs

@—0 0 0 0

S

p... frac. v's nbrs. with A
g... payoff threshold



Infinite Graphs

Infinite Tree: ) 4
7 If q<1/3 then

« cascade occurs
;\
Infinite Grid:
If g<1/4 then
5 cascade occurs



Stopping Cascades

What prevents cascades from spreading?
Def: Cluster of density p is a set of nodes C
where each node in the set has at least p
fraction of edgesin C

p=3/5 P=2/3



Stopping Cascades

Let S be an initial set of
adopters of A

All nodes apply threshold
g to decide whether

to switchto A p=3/5
Two facts: No cascade if g>2/5

1) If G\S contains a cluster of density >(1-q)
then S can not cause a cascade

2) If S fails to create a cascade, then
there is a cluster of density >(1-q) in G\S

S



Extending the Model:
Allow People to Adopt A and B



Cascades & Compatibility

So far:
Behaviors A and B compete

Can only get utility from neighbors of same behavior: A-A
get a, B-Bget b, A-Bget0

W
Let an extra strategy “AB”
AB'A . gEtS a d, d 0,0 d, d
AB-B : gets b v o0 bb bb
AB-AB : gets max(a b) a,a b,b max(a,b), max(a,b)

Also: Some cost ¢ for the effort of maintaining
both strategies (summed over all interactions)

Note: a given node can receive a from one neighbor and b from
another by playing AB, which is why it could be worth the cost ¢



Cascades & Compatibility: Model

Every node in an infinite network starts with B
Then a finite set S initially adopts A
Run the model for t=1,2,3,...

Each node selects behavior that will optimize
payoff (given what its neighbors did in at time t-1)

_C _C

AB max(ab) AB

\ Payoff

How will nodes switch from B to A or AB?

b




Example: Path Graph (1)

Path graph: Start with all Bs, a > b (A is better)
One node switches to A — what happens?
With just A, B: Aspreadsifa>b

With A, B, AB: Does A spread?
Example: a=3, b=2, c=1

Cascade stops



Example: Path Graph (2)

Example: a=5, b=3, c=1

0

a=5 b=3

A B

a=b a=5

A

Cascade never stops!



For what pairs (c,a) does A spread?

Infinite path, start with all Bs
Payoffs for w: A:a, B:1, AB:a+1-c
What does node w in A-w-B do?

BvsA AB vs B
a+l-c=1

AB vs A
a+l-c=a




For what pairs (c,a) does A spread?

Infinite path, start with all Bs
Payoffs for w: A:a, B:1, AB:a+1-c
What does node w in A-w-B do?

BvsA AB vs B
a+l-c=1

Since
a<l, c>1

ais high
c <1, AB is opt

AB




For what pairs (c,a) does A spread?

Same reward structure as before but now payoffs
for w change: A:a, B:1+1, AB:a+1-c
B

Notice: Now also AB spreads

What does node win AB-w-B do?

BvsA AB vs B

C

A

1 ABvs A

AB | AB




For what pairs (c,a) does A spread?

Same reward structure as before but now payoffs
for w change: A:a, B:1+1, AB:a+1-c
B

Notice: Now also AB spreads

What does node win AB-w-B do?

BvsA AB vs B

C

B

a<2, c>1
then 2b > 2a

1 ABvs A

c <1, then

A B atl-c>a

AB is opt




For what pairs (c,a) does A spread?

Joining the two pictures:

A spreads directly

(no adoption of AB)
C
neither A nor AB
spreads B A
1
1 2 :a
AB spreads AB spreads indefinitely, followed

but then stops by A (B becomes vestigial)



Lesson

B is the default throughout the
network until new/better A

comes along. What happens? C
Infiltra:.itc))ln:‘!;‘] B is too | A spreads
compatible then people
will take on both and then B B—A
drop the worse one (B) stays
Direct conquest: If A makes
itself not compatible—people |  ———>7 e
on the border must choose.
They pick the better one (A) B_LA B—AB—A
Buffer zone: If you choose an 5

optimal level then you keep
a static “buffer” between A and B



Models of Cascading Behavior

So far:
Decision Based Models

Utility based
Deterministic

“Node” centric: A node observes decisions of its
neighbors and makes its own decision

Require us to know too much about the data
Next: Probabilistic Models

Let’s you do things by observing data

We lose “why people do things”



Probabilistic Contagion and
Models of Influence



Epidemic Model Based on Trees

Models of Disease Spreading

Independent Cascade Model

Modeling Interactions Between Contagions
(Optional)



Epidemics

and epidemics is of great interest to

° Health officials HOTHING SPREADS LIKE FEAR'
* Sociologists
* Mathematicians
* Hollywood

Understanding the spread of viruses

The underlying contact network clearly affects the
spread of an epidemic

66



Model epidemic spread as a random process
on the graph and study its properties
Questions that we can answer:

What is the projected growth of the infected
population?

Will the epidemic take over most of the network?
How can we contain the epidemic spread?

Diffusion of ideas and the spread of influence
can also be modeled as epidemics



Epidemic Model Based on
Trees



A Simple Model

Branching process: A person transmits the
disease to each people she meets
independently with a probability p

An infected person meets k (new) people
while she is contagious

Infection proceeds in waves

Contact network is a
tree with branching
factor k



Infection Spread

We are interested in the number of people
infected (spread) and the duration of the
infection
This depends on the infection probability p
and the branching factor k

An aggressive

epidemic with high
infection probability

The epidemic survives
after three steps




Infection Spread

We are interested in the number of people
infected (spread) and the duration of the
infection
This depends on the infection probability p
and the branching factor k

A mild epidemic with

low infection
probability

The epidemic dies out
after two steps

OB 0060000 DbDOObLOOOBODBODLOODDOOD



Basic Reproductive Number

Basic Reproductive Number (Ry): the expected
number of new cases of the disease caused by a single

individual
Ry = kp

Claim: (a) If R, < 1, then with probability 1, the disease
dies out after a finite number of waves. (b) If R, > 1,
then with probability greater than O the disease
persists by infecting at least one person in each wave

If Ry < 1 each person infects less than one person in
expectation. The infection eventually dies out

If Ry > 1 each person infects more than one person in
expectation. The infection persists

72



X,,: random variable indicating the number of
infected nodes after n steps
q, = Pr|X,, = 1]: probability that there exists
at least 1 infected node after n steps
q" = lim g,,: the probability of having
infected nodesasn = o
It can be shown that
(A)Ry <1=>qg" =0
(b) Ry > 1=>qg~ > 0.



Probabilistic Spreading Models

Epidemic Model based on Random Trees

(a variant of branching processes) Root node,
“‘patient 0”

A patient meets k other people Start of epidemic

With probability p > 0 infects each
of them

Q: For which values of k and p

does the epidemic run forever?
At least 1infected }

k subtrees

n—oo

Run forever: |imp
node at depth n

Die out:



Probabilistic Spreading Models

q,; = prob. there is an infected node at depth n
starting from a specific child node

nj = P ' 9n-1
Fails with probability (the complementary view)
1 o p ) qn—l k subtrees
All k subtrees fail with probability j
(1 — P Qn—l)k !

/

/ - n-1 levels




Probabilistic Spreading Models

q,, = prob. there is an infected node at depth n
We need: lim g, =7 (based onp and k)

Nn—>00
; 15% k subtrees

All k subtrees fail with probability

(1 — P Qn—l)k
Taking the complement:
n=1-(1=p qn1)"

Y
No infected node
at depth n from the root

lim q,, = result of iterating

n—>0oo
f(x) =1—(1—p-x)~
Startingat x = 1 (since g; = 1)




Properties of f(x) = 1 — (1 — px)*

f(0) =0, so intercepts at point (0,0)
f(HD=1-(1-p)k <1,soatx=1,1(1)is
below the y=x line
f'(x) =p-k(1—px)*1, positive and f
monotonically decreasing on [0,1], so
concave curve
f'(0)=p-k =R, SO

for R, > 1 f starts above the y=x line

for R, < 1 f starts below the y=x line



Fixed Point: f(x) = 1 — (1 — px)¥

y:x:l

Case 1:

Ro=pk>1 y = f(x)

Going to first
fixed point

When is this going to 0?

What do we know about f(x)?
f(0)=0,f(1)=1-(1-p)* <1, soatx=1, f(1) is below the y=x line
f'(x) =p-k(1—-px)*1, soconcave on [0,1]
f'(0)=p-k =R, soforR,>1fstarts above the y=x line



Fixed Point: When is this zero?

Case 2:

y=X

Reproductive
number R, =
p - k:

There is an

y = f(x) epidemic if
|

1 X
For the epidemic to die out

we need f(x) to be below y=x!
So: f'(0)=p-k<1
limg, =0 when p-k<1

Nn—>00

p - k = expected # of people that we infect



Branching process

Assumes no network structure, no triangles or
shared neighbors



Models of Disease Spreading




The SIR model

Each node may be in the following states
Susceptible: healthy but not immune
Infected: has the virus and can actively propagate it

Removed: (Immune or Dead) had the virus but it is no
longer active

Parameter p: the probability of an Infected node to
infect a Susceptible neighbor



The SIR process

Initially all nodes are in state S(usceptible),

except for a few nodes in state I(nfected).

An infected node stays infected for t; steps.
Simplest case: t; = 1

At each of the t; steps the infected node has

probability p of infecting any of its susceptible

neighbors

p: Infection probability
After t; steps the node is Removed















Example SIR Epidemic

(e) (d)

Figure 21.2: The course of an SIR epidemic in which each node remains infectious for a
number of steps equal to t; = 1. Starting with nodes y and z initially infected, the epidemic
spreads to some but not all of the remaining nodes. In each step, shaded nodes with dark
borders are in the Infectious () state and shaded nodes with thin borders are in the Removed
(R) state.



Percolation

Percolation: we have a network of “pipes”
which can carry liquids, and they can be
either open, or closed

The pipes can be pathways within a material
If liquid enters the network from some nodes,

does it reach most of the network?

The network percolates



SIR and Percolation

There is a connection between SIR model and

percolation

When a virus is transmitted from u to v, the edge
is activated with probability

We can assume that all edge activations have

happened in advance, and the input graph has
the active edges

Which nodes will be infected?

The nodes reachable from the initial infected nodes
In this way we transformed the

Into a static one
This is essentially percolation in the graph



Figure 21.4: An equivalent way to view an SIR epidemic is in terms of percolation, where

we decide in advance which edges will transmit infection (should the opportunity arise) and
which will not.



The SIS model

Susceptible-Infected-Susceptible
Susceptible: healthy but not immune
Infected: has the virus and can actively propagate
It
An Infected node infects a Susceptible
nheighbor with probability p
An Infected node becomes Susceptible again
with probability g (or after t; steps)

In a simplified version of the model g =1
Nodes alternate between Susceptible and
Infected status



Example

VOLLY

Figure 21.5: In an SIS epidemic, nodes can be infected, recover, and then be infected again.
In each step, the nodes in the Infectious state are shaded.

When no Infected nodes, virus dies out
Question: will the virus die out?



An eigenvalue point of view

If A is the adjacency matrix of the network, then the

virus dies out if

1,4) <1

p
Where A,(A) is the first eigenvalue of A

Y. Wang, D. Chakrabarti, C. Wang, C. Faloutsos. Epidemic Spreading in Real
Networks: An Eigenvalue Viewpoint. SRDS 2003



SIRS

Initially, some nodes e in the / state and all others in
the S state

Each node u that enters the I state remains
infectious for a fixed number of steps t,. During each
of these t, steps, u has a probability p of infecting
each of its susceptible neighbors

After t, steps, u is no longer infectious. Enters the R
state for a fixed number of steps t,. During each of
these t, steps, u cannot be infected nor transmit the
disease

After t; steps in the R state, node u returns to the §
state



Models of Disease Spreading



Spreading Models of Viruses

Virus Propagation: 2 Parameters:
(Virus) Birth rate B:

probability that an infected neighbor attacks
(Virus) Death rate 6:

Probability that an infected node heals

Healthy

Infected



More Generally: S+E+I+R Models

General scheme for epidemic models:
Each node can go through phases:

Transition probs. are governed by the model parameters

recruitment exit exit exit

+ f % f
RN RN

E...exposed
|...infected

+ R...recovered

exit Z...immune

exit K’ ‘j :
[ 7 ] S...susceptible




SIR Model

SIR model: Node goes through phases

Infected Recovered

Models chickenpox or plague:

Once you heal, you can never get infected again
Assuming perfect mixing (The network IS a

complete graph) the o S0 e
model dynamics are: R _
ds dR Sel

- = - bS ] — = d[ qé 200 | “ 1(t)

dt dt g RS

“r _ bS]_ OI] Z o éf*’ , %"”’;;“““’45"::::Sé"“‘%
df time

Kermack-McKendrick Model: http://mathworld.wolfram.com/Kermack-McKendrickModel.html



http://mathworld.wolfram.com/Kermack-McKendrickModel.html

SIS Model

Susceptible-Infective-Susceptible (SIS) model
Cured nodes immediately become susceptible
Virus “strength”:s=B/ 6

Node state transition diagram:

Infected by neighbor
with prob. 3

Susceptible Infective

Cured with
prob. 6



SIS Model

AL — . . . . Models flu:
s T : Susceptible node
é 400 F :. ¢/,..........."m.....”.”“””-. becomes infected
2 0r LS ‘ The node then heals
S 300 L : and become
& ot . . susceptible again
é 2 D : Assuming perfect
180 \MW S(t) - mixing (complete
100 F :: PEELIEEE AL HE E  H b b graph):

dS
DD.-m/1:II 20 20 a0 20 B0 —IBSI + é‘l
time dt

- Rt Infected | dl £SI -4

dt



Question: Epidemic threshold t

SIS Model:
Epidemic threshold of an arbitrary
graph G is T, such that:

If virus strengths=f#/0<rt
the epidemic can not happen
(it eventually dies out)

Given a graph what is its epidemic threshold?



[Wang et al. 2003]

Epidemic Threshold in SIS Model

We have no epidemic if:

Epidemic threshold

(Virus) Death ——
rate jl
Blo<t=1/A1p

/ f

I

(Virus) Birth réce largest eigenvalue
of adj. matrix A

> A, 5 alone captures the property of the graph!



[Wang et al. 2003]

Experiments (AS graph)

500 - 10,900 nodes and
] 5= 0.001 31,180 edges
S 400 - S=B/6 > T
2 (above threshold)
©
2 300 -
(@)
2
=
« 200 -
2 s=p/d =1
S 100- (at the threshold)
Z
0
0 s=p/o <~

Time (below threshold)
0: === 0.05 == 0.06 =« 0.07



Experiments

Does it matter how many people are
initially infected?
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Example: Ebola

Transition

4

Transition rate

(S.E) = (S-1, E+1)
(E.1) — (E-1, 141)
(LH) — (I-1. H+1)
(H.F) — (H-1, F+1)
(F.R) — (F-1. R+1)
(LR) — (I-1, R+1)
(LF) — (I-1, F+1)
(H.R) — (H-1, R+1)

[Gomes et al., Assessing the International Spreading Risk Associated with the 2014 West African Ebola Outbreak, PLOS Current Outbreaks, 2014]
http://currents.plos.org/outbreaks/article/assessing-the-international-spreading-risk-associated-with-the-2014-west-african-ebola-outbreak/
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http://currents.plos.org/outbreaks/article/assessing-the-international-spreading-risk-associated-with-the-2014-west-african-ebola-outbreak/

Ebola: Model States & Parameters

Model States

S: susceptible individuals

E: exposed individuals

I: infectious cases in the community

H: hospitalized cases

F: dead but not yet buried

R: individuals no longer transmitting the disease

Model Parameters

B,: transmission coefficient in the community

B,: transmission coefficient at the hospital

Be: transmission coefficient during funerals

8,: computed so that 8% of infectious cases are hospitalized

6: Compartment specific 8, and §, so that overall case-fatality ratio is 6
a!: the mean incubation period

Y, 1: the mean duration from symptom onset to hospitalization

Yqn 1 the mean duration from hospitalization to death

v, 1: the mean duration of the infectious period for survivors

v;, 1 the mean duration from hospitalization to end of infectiousness for survivors
Y; 1: the mean duration from death to burial
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Example: Ebola

Calibration Region

Projection Region

o
w

Total number of deaths since July 1%
-]
o




Gomes et al., 2014]

Example: Ebola
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Independent Cascade Model



Independent Cascade Model

Initially some nodes S are active
Each edge (u,v) has probability (weight) p,,,

When node u becomes active/infected:

It activates each out-neighbor v with prob. p,,
Activations spread through the network!



