
Thanks to Jure Leskovec, Stanford and Panayiotis Tsaparas,
Univ. of Ioannina for slides

 Network Communities
 Community Detection
 Method 1: Girvan-Newman
 Method 2: Modularity Optimization

 Community Detection
 Graph Cuts
 Spectral Clustering

 Network Profiling
 Communities: Issues and Questions

 We often think of networks “looking”
like this:

 What lead to such a conceptual picture?

 How information flows through the network?

 What structurally distinct roles do nodes play?

 What roles do different links (short vs. long) play?

 How people find out about new jobs?

 Mark Granovetter, part of his PhD in 1960s

 People find the information through personal contacts

 But: Contacts were often acquaintances
rather than close friends

 This is surprising: One would expect your friends to
help you out more than casual acquaintances

 Why is it that acquaintances are most helpful?

 Granovetter makes a connection between
social and structural role of an edge

 First point: Structure
 Structurally embedded edges are socially strong

 Long-range edges spanning different parts of the
network are socially weak

 Second point: Information
 Long-range edges allow you to gather information

from different parts of the network and get a job

 Structurally embedded edges are
heavily redundant in terms of
information access

a
b

S

Weak
S

S

W

Strong

S

 Granovetter’s theory leads to the following
conceptual picture of networks

Strong ties

Weak ties

 Granovetter’s theory
suggest that networks
are composed of
tightly connected
sets of nodes

 Network communities:

 Sets of nodes with lots of connections inside and
few to outside (the rest of the network)

Communities, clusters,
groups, modules

 How to automatically
find such densely
connected groups of
nodes?

 Ideally such automatically
detected clusters would
then correspond to real
groups

 For example:
Communities, clusters,

groups, modules

 Zachary’s Karate club network:

 Observe social ties and rivalries in a university karate club

 During his observation, conflicts led the group to split

 Split could be explained by a minimum cut in the network

Nodes: Teams
Edges: Games played

Can we identify
node groups?
(communities,

modules, clusters)

NCAA conferences

Nodes: Teams
Edges: Games played

Nodes: Users
Edges: Friendships

Can we identify
social communities?

High school Company

Stanford (Squash)

Stanford (Basketball)

Social communities
Nodes: Users
Edges: Friendships

Nodes: Proteins
Edges: Interactions

Can we identify
functional modules?

Functional modules

Nodes: Proteins
Edges: Interactions

How to find communities?

We will work with undirected (unweighted) networks

 Edge betweenness: Number of
shortest paths passing over the edge

 Intuition:

Edge strengths (call volume)
in a real network

Edge betweenness
in a real network

b=16
b=7.5

 Divisive hierarchical clustering based on the
notion of edge betweenness:

Number of shortest paths passing through the edge

 Girvan-Newman Algorithm:
 Undirected unweighted networks

 Repeat until no edges are left:

 Calculate betweenness of edges

 Remove edges with highest betweenness

 Connected components are communities

 Gives a hierarchical decomposition of the network

[Girvan-Newman ‘02]

Need to re-compute

betweenness at

every step

49
33

12
1

Step 1: Step 2:

Step 3: Hierarchical network decomposition:

Communities in physics collaborations

 Zachary’s Karate club:
Hierarchical decomposition

1. How to compute betweenness?
2. How to select the number of

clusters?

 Want to compute
betweenness of
paths starting at
node 𝑨

 Breadth first search
starting from 𝑨:

0

1

2

3

4

 Count the number of shortest paths from
𝑨 to all other nodes of the network:

 Compute betweenness by working up the
tree: If there are multiple paths count them
fractionally

1 path to K.

Split evenly

1+0.5 paths to J

Split 1:2

1+1 paths to H

Split evenly

The algorithm:

•Add edge flows:

-- node flow =

1+∑child edges

-- split the flow up

based on the parent

value

• Repeat the BFS

procedure for each

starting node 𝑈

 Compute betweenness by working up the
tree: If there are multiple paths count them
fractionally

1 path to K.

Split evenly

1+0.5 paths to J

Split 1:2

1+1 paths to H

Split evenly

The algorithm:

•Add edge flows:

-- node flow =

1+∑child edges

-- split the flow up

based on the parent

value

• Repeat the BFS

procedure for each

starting node 𝑈

1. How to compute betweenness?
2. How to select the number of

clusters?

 Communities: sets of
tightly connected nodes

 Define: Modularity 𝑸

 A measure of how well
a network is partitioned
into communities

 Given a partitioning of the
network into groups 𝒔 𝑺:

Q  ∑s S [(# edges within group s) –

(expected # edges within group s)]

Need a null model!

 Given real 𝑮 on 𝒏 nodes and 𝒎 edges,
construct rewired network 𝑮’

 Same degree distribution but
random connections

 Consider 𝑮’ as a multigraph

 The expected number of edges between nodes

𝒊 and 𝒋 of degrees 𝒌𝒊 and 𝒌𝒋 equals to: 𝒌𝒊 ⋅
𝒌𝒋

𝟐𝒎
=

𝒌𝒊𝒌𝒋

𝟐𝒎

 The expected number of edges in (multigraph) G’:

 =
𝟏

𝟐
σ𝒊∈𝑵σ𝒋∈𝑵

𝒌𝒊𝒌𝒋

𝟐𝒎
=

𝟏

𝟐
⋅
𝟏

𝟐𝒎
σ𝒊∈𝑵𝒌𝒊 σ𝒋∈𝑵𝒌𝒋 =

 =
𝟏

𝟒𝒎
𝟐𝒎 ⋅ 𝟐𝒎 = 𝒎

j

i

෍

𝑢∈𝑁

𝑘𝑢 = 2𝑚

Note:

 Modularity of partitioning S of graph G:

 Q  ∑s S [(# edges within group s) –

(expected # edges within group s)]

 𝑸 𝑮, 𝑺 =
𝟏

𝟐𝒎
σ𝒔∈𝑺σ𝒊∈𝒔σ𝒋∈𝒔 𝑨𝒊𝒋 −

𝒌𝒊𝒌𝒋

𝟐𝒎

 Modularity values take range [−1,1]

 It is positive if the number of edges within
groups exceeds the expected number

 0.3-0.7<Q means significant community structure

Aij = 1 if ij,

0 else
Normalizing cost.: -1<Q<1

 Modularity is useful for selecting the
number of clusters:

Why not optimize Modularity directly?

Q

 Let’s split the graph into 2 communities!
 Want to directly optimize modularity!

 max
𝑆

𝑄 𝐺, 𝑆 =
1

2𝑚
σ𝑠∈𝑆σ𝑖∈𝑠σ𝑗∈𝑠 𝐴𝑖𝑗 −

𝑘𝑖𝑘𝑗

2𝑚

 Community membership vector s:

 si = 1 if node i is in community 1
-1 if node i is in community -1

 𝑄 𝐺, 𝑠 =
1

2𝑚
σ𝑖∈𝑁σ𝑗∈𝑁 𝐴𝑖𝑗 −

𝑘𝑖𝑘𝑗

2𝑚

𝑠𝑖𝑠𝑗+1

2

=
1

4𝑚
σ𝑖,𝑗∈𝑁 𝐴𝑖𝑗 −

𝑘𝑖𝑘𝑗

2𝑚
𝑠𝑖𝑠𝑗

𝑠𝑖𝑠𝑗 + 1

2
=

1.. if si=sj

0.. else

 Define:

 Modularity matrix: 𝑩𝒊𝒋 = 𝑨𝒊𝒋 −
𝒌𝒊𝒌𝒋

𝟐𝒎

 Membership: 𝒔 = {−𝟏,+𝟏}

 Then: 𝑄 𝐺, 𝑠 =
1

4𝑚
σ𝑖∈𝑁σ𝑗∈𝑁 𝐴𝑖𝑗 −

𝑘𝑖𝑘𝑗

2𝑚
𝑠𝑖𝑠𝑗

=
1

4𝑚
σ𝑖,𝑗∈𝑁𝐵𝑖𝑗𝑠𝑖𝑠𝑗

=
1

4𝑚
σ𝑖 𝑠𝑖 σ𝑗𝐵𝑖𝑗𝑠𝑗 =

1

4𝑚
𝑠𝑇𝐵𝑠

 Task: Find s{-1,+1}n that maximizes Q(G,s)

= 𝑩𝒊⋅ ⋅ 𝒔

Note: each row/col of B
sums to 0: σ𝒋𝑨𝒊𝒋 = 𝒌𝒊,

σ𝒋
𝒌𝒊𝒌𝒋

𝟐𝒎
= 𝒌𝒊σ𝒋

𝒌𝒋

𝟐𝒎
= 𝒌𝒊

 Symmetric matrix A
 That is positive semi-definite:
𝑨 = 𝑼 ⋅ 𝑼𝑻

 Then solutions 𝝀, 𝒙 to equation 𝑨 ⋅ 𝒙 = 𝜆 ⋅ 𝒙 :
 Eigenvectors 𝒙𝒊 ordered by the magnitude of their

corresponding eigenvalues 𝜆𝑖 (𝜆1 ≤ 𝜆2… ≤ 𝜆𝑛)

 𝒙𝒊 are orthonormal (orthogonal and unit length)

 𝒙𝒊 form a coordinate system (basis)

 If 𝑨 is positive-semidefinite: 𝜆𝑖 ≥ 0 (and they always exist)
 Eigen Decomposition theorem: Can rewrite matrix
𝑨 in terms of its eigenvectors and eigenvalues: 𝑨 =
σ𝒊𝒙𝒊 ⋅ 𝜆𝑖 ⋅ 𝒙𝒊

𝑻

 Rewrite: 𝑄 𝐺, 𝑠 =
1

4𝑚
𝑠T𝐵𝑠 in terms of its

eigenvectors and eigenvalues:

= sT ෍

𝑖=1

𝑛

𝑥𝑖𝜆𝑖𝑥𝑖
𝑇 𝑠 =෍

𝑖=1

𝑛

𝑠𝑇𝑥𝑖𝜆𝑖𝑥𝑖
𝑇𝑠 =෍

𝑖=1

𝑛

𝑠𝑇x𝑖
2𝜆𝑖

 So, if there would be no other constraints on 𝒔
then to maximize 𝑸, we make 𝒔 = 𝒙𝒏
 Why? Because 𝝀𝒏 ≥ 𝝀𝒏−𝟏 ≥ ⋯

 Remember 𝒔 has fixed length!

 Assigns all weight in the sum to 𝝀𝒏 (largest eigenvalue)
 All other 𝒔𝑻𝒙𝒊 terms are zero because of orthonormality

s

x1

x2

 Let’s consider only the first term in the
summation (because 𝝀𝒏 is the largest):
max
𝑠

𝑄 𝐺, 𝑠 = σ𝑖=1
𝑛 𝑠𝑇𝑥𝑖

2𝜆𝑖 ≈ 𝑠𝑇𝑥𝑛
2𝜆𝑛

 Let’s maximize: σ𝒋=𝟏
𝒏 𝒔𝒋 ⋅ 𝒙𝒏,𝒋 where sj{-1,+1}

 To do this, we set:

 𝒔𝒋 = ൝
+𝟏
−𝟏

𝒊𝒇 𝒙𝒏,𝒋 ≥ 𝟎 (j−th coordinate of 𝒙𝒏 ≥ 𝟎)

𝒊𝒇 𝒙𝒏,𝒋 < 𝟎 (j−th coordinate of 𝒙𝒏 < 𝟎)

 Continue the bisection hierarchically

 Fast Modularity Optimization Algorithm:

 Find leading eigenvector 𝒙𝒏 of modularity matrix B

 Divide the nodes by the signs of the elements of 𝒙𝒏
 Repeat hierarchically until:

 If a proposed split does not cause modularity to increase,
declare community indivisible and do not split it

 If all communities are indivisible, stop

 How to find 𝒙𝒏? Power method!

 Start with random v(0), repeat :

 When converged (v(t) ≈ v(t+1)), set xn = v(t)

)(

)(
)1(

t

t
t

Bv

Bv
v 

 Girvan-Newman:

 Based on the “strength of weak ties”

 Remove edge of highest betweenness

 Modularity:

 Overall quality of the partitioning of a graph

 Use to determine the number of communities

 Fast modularity optimization:

 Transform the modularity optimization to a
eigenvalue problem

 Graph Partitioning
 Graph Cuts
 Spectral Clustering

 Undirected graph 𝑮(𝑽, 𝑬):

 Bi-partitioning task:

 Divide vertices into two disjoint groups 𝑨,𝑩

 Questions:
 How can we define a “good” partition of 𝑮?

 How can we efficiently identify such a partition?

1

3
2

5

4
6

A B

1

3

2

5

4
6

 What makes a good partition?

 Maximize the number of within-group
connections

 Minimize the number of between-group
connections

1

3

2

5

4
6

A B

A B

 Express partitioning objectives as a function
of the “edge cut” of the partition

 Cut: Set of edges with only one vertex in a
group:

cut(A,B) = 2
1

3

2

5

4
6

 Criterion: Minimum-cut
 Minimize weight of connections between groups

 Degenerate case:

 Problem:
 Only considers external cluster connections

 Does not consider internal cluster connectivity

arg minA,B cut(A,B)

“Optimal” cut

Minimum cut

 Since the minimum cut does not always yield
good results we need extra constraints to
make the problem meaningful

 Graph Bisection

 Partition the graph into two equal sets of nodes

 Kernighan-Lin algorithm

 Start with random equal partitions

 Swap nodes to improve some quality metric (e.g.,
cut, modularity, etc)

Criterion: Ratio-cut
Normalize cut by the size of the groups

Ratio-cut=
Cut(U,V−U)

|𝑈|
+
Cut(U,V−U)

|𝑉−𝑈|

Criterion: Normalized-cut
Connectivity between groups relative to the
density of each group

𝑣𝑜𝑙(𝑈): total weight of the edges with at least
one endpoint in 𝑈: 𝑣𝑜𝑙 𝑈 = σ𝑖∈𝑈 𝑑𝑖

Why use these criteria?

 Produce more balanced partitions

50

Normalized-cut=
Cut(U,V−U)

𝑉𝑜𝑙(𝑈)
+

Cut(U,V−U)

𝑉𝑜𝑙(𝑉−𝑈)

Normalized-Cut(Red) =
1

1
+

1

27
=

28

27

Normalized-Cut(Green) =
2

12
+

2

16
=

14

48

Ratio-Cut(Red) =
1

1
+

1

8
=
9

8

Ratio-Cut(Green) =
2

5
+

2

4
=

18

20

Red is Min-Cut

Minimizing Normalized-
cut is even better for
Green due to density

Which of the three cuts has the best
(min, normalized, ratio) cut?

 Criterion: Conductance [Shi-Malik, ’97]

 Connectivity between groups relative to the
density of each group

𝒗𝒐𝒍(𝑨): total weight of the edges with at least
one endpoint in 𝑨: 𝒗𝒐𝒍 𝑨 = σ𝒊∈𝑨𝒌𝒊

 Why use this criterion?

 Produces more balanced partitions

 How do we efficiently find a good partition?

 Problem: Computing optimal cut is NP-hard

[Shi-Malik]

 Ratio-cut and normalized-cut can be
reformulated in matrix format and solved
using spectral clustering

 Three basic stages:

 1) Pre-processing

 Construct a matrix representation of the graph

 2) Decomposition

 Compute eigenvalues and eigenvectors of the matrix

 Map each point to a lower-dimensional representation
based on one or more eigenvectors

 3) Grouping

 Assign points to two or more clusters, based on the new
representation

 But first, let’s define the problem

 A: adjacency matrix of undirected G

 Aij =1 if (𝒊, 𝒋) is an edge, else 0

 x is a vector in n with components (𝒙𝟏, … , 𝒙𝒏)

 Think of it as a label/value of each node of 𝑮

 What is the meaning of A x?

 Entry yi is a sum of labels xj of neighbors of i

 Spectral Graph Theory:
 Analyze the “spectrum” of matrix representing 𝑮

 Spectrum: Eigenvectors 𝒙𝒊 of a graph, ordered by the
magnitude (strength) of their corresponding
eigenvalues 𝝀𝒊:

 Spectral clustering: use the eigenvectors of A or
graphs derived by it (mostly graph Laplacian)

𝑨 ⋅ 𝒙 = 𝝀 ⋅ 𝒙

Note: We sort 𝝀𝒊 in ascending (not descending) order!

 Adjacency matrix (A):
 n n matrix

 A=[aij], aij=1 if edge between node i and j

 Important properties:
 Symmetric matrix

 Eigenvectors are real and orthogonal

1

3

2

5

4
6

1 2 3 4 5 6

1 0 1 1 0 1 0

2 1 0 1 0 0 0

3 1 1 0 1 0 0

4 0 0 1 0 1 1

5 1 0 0 1 0 1

6 0 0 0 1 1 0

 Degree matrix (D):
 n n diagonal matrix

 D=[dii], dii = degree of node i

1

3

2

5

4
6

1 2 3 4 5 6

1 3 0 0 0 0 0

2 0 2 0 0 0 0

3 0 0 3 0 0 0

4 0 0 0 3 0 0

5 0 0 0 0 3 0

6 0 0 0 0 0 2

 Laplacian matrix (L):

 n n symmetric matrix

 Laplacian matrix L important properties:

 Eigenvalues are non-negative real numbers

 Eigenvectors are real and orthogonal

𝑳 = 𝑫 − 𝑨

1

3

2

5

4
6

1 2 3 4 5 6

1 3 -1 -1 0 -1 0

2 -1 2 -1 0 0 0

3 -1 -1 3 -1 0 0

4 0 0 -1 3 -1 -1

5 -1 0 0 -1 3 -1

6 0 0 0 -1 -1 2

1

3

2

5

4
6

 Three basic stages:

 1) Pre-processing

 Construct a matrix representation of the graph

 2) Decomposition

 Compute eigenvalues and eigenvectors of the matrix

 Map each point to a lower-dimensional representation
based on one or more eigenvectors

 3) Grouping

 Assign points to two or more clusters, based on the new
representation

 1) Pre-processing:
 Build Laplacian

matrix L of the
graph

 2)
Decomposition:
 Find eigenvalues 

and eigenvectors x
of the matrix L

 Map vertices to
corresponding
components of 2

0.0-0.4-0.40.4-0.60.4

0.50.4-0.2-0.5-0.30.4

-0.50.40.60.1-0.30.4

0.5-0.40.60.10.30.4

0.00.4-0.40.40.60.4

-0.5-0.4-0.2-0.50.30.4

5.0

4.0

3.0

3.0

1.0

0.0

= X =

How do we now
find the clusters?

-0.66

-0.35

-0.34

0.33

0.62

0.31

1 2 3 4 5 6

1 3 -1 -1 0 -1 0

2 -1 2 -1 0 0 0

3 -1 -1 3 -1 0 0

4 0 0 -1 3 -1 -1

5 -1 0 0 -1 3 -1

6 0 0 0 -1 -1 2

 3) Grouping:
 Sort components of reduced 1-dimensional vector
 Identify clusters by splitting the sorted vector in two

 How to choose a splitting point?
 Naïve approaches:
 Split at 0 or median value

 More expensive approaches:
 Attempt to minimize normalized cut in 1-dimension

(sweep over ordering of nodes induced by the eigenvector)

-0.66

-0.35

-0.34

0.33

0.62

0.31 Split at 0:

Cluster A: Positive points

Cluster B: Negative points

0.33

0.62

0.31

-0.66

-0.35

-0.34

A B

Rank in x2

V
a
lu

e
 o

f
x

2

Rank in x2

V
a
lu

e
 o

f
x

2

Components of x2

Components of x1

Components of x3

 How do we partition a graph into k clusters?

 Two basic approaches:

 Recursive bi-partitioning [Hagen et al., ’92]

 Recursively apply bi-partitioning algorithm in a
hierarchical divisive manner

 Disadvantages: Inefficient, unstable

 Cluster multiple eigenvectors [Shi-Malik, ’00]

 Build a reduced space from multiple eigenvectors

 Commonly used in recent papers

 A preferable approach…

 Use several of the eigenvectors to partition the
graph

 If we use m eigenvectors, and set a threshold for
each, we can get a partition into 2m groups, each
group consisting of the nodes that are above or
below threshold for each of the eigenvectors, in
a particular pattern.

1

3

2

5

4
6

If we use both the 2nd and 3rd eigenvectors:
• nodes 2 and 3 (positive in both)
• nodes 5 and 6 (negative in 2nd, positive in 3rd)
• nodes 1 and 4 alone

Note that while each eigenvector tries to produce a minimum-sized cut,
successive eigenvectors have to satisfy more and more constraints => the cuts
progressively worse.

 Approximates the optimal cut [Shi-Malik, ’00]
 Can be used to approximate optimal k-way normalized

cut
 Emphasizes cohesive clusters
 Increases the unevenness in the distribution of the data
 Associations between similar points are amplified,

associations between dissimilar points are attenuated
 The data begins to “approximate a clustering”

 Well-separated space
 Transforms data to a new “embedded space”,

consisting of k orthogonal basis vectors
 Multiple eigenvectors prevent instability due to

information loss

 METIS:
 Heuristic but works really well in practice
 http://glaros.dtc.umn.edu/gkhome/views/metis

 Graclus:
 Based on kernel k-means
 http://www.cs.utexas.edu/users/dml/Software/graclus.html

 Louvain:
 Based on Modularity optimization
 http://perso.uclouvain.be/vincent.blondel/research/louvain.html

 Clique percolation method:
 For finding overlapping clusters
 http://angel.elte.hu/cfinder/

http://glaros.dtc.umn.edu/gkhome/views/metis
http://www.cs.utexas.edu/users/dml/Software/graclus.html
http://perso.uclouvain.be/vincent.blondel/research/louvain.html
http://angel.elte.hu/cfinder/

 How should we think about large scale
organization of clusters in networks?

 Finding: Community Structure

 How community-like is a set of nodes?
 A good cluster S has

 Many edges internally

 Few edges pointing outside

 What’s a good metric:
Conductance

Small conductance corresponds to good clusters
(Note |S| < |V|/2)

S

S’







Ss

sd

SjSiEji
S

|},;),{(|
)(

 Define:
Network community profile (NCP) plot

Plot the score of best community of size k

Community size, log k

log Φ(k)

k=5 k=7

[WWW ‘08]

k=10

(Note |S| < |V|/2)

• Run the favorite clustering method
• Each dot represents a cluster
• For each size find “best” cluster

Cluster size, log k

C
lu

st
er

 s
co

re
,
lo

g
 Φ

(k
)

Spectral

Graclus

Metis

 Meshes, grids, dense random graphs:

d-dimensional meshes California road network

[WWW ‘08]

 Collaborations between scientists in networks
[Newman, 2005]

Community size, log k

C
o

n
d

u
ct

a
n

ce
,

lo
g

 Φ
(k

)

[WWW ‘08]

Dips in the conductance graph correspond to the
"good" clusters we can visually detect

Typical example: General Relativity collaborations
(n=4,158, m=13,422)

[Internet Mathematics ‘09]

[Internet Mathematics ‘09]

-- Rewired graph

-- Real graph

Φ
(k

),
 (s

co
re

)

k, (cluster size)

Better and
better clusters

Clusters get worse
and worse

Best cluster has
~100 nodes

LiveJournal

Spectral

Metis

[WWW ‘09]

Finding groups of objects such that the objects in a group
will be similar (or related) to one another and different
from (or unrelated to) the objects in other groups

Inter-cluster
distances are
maximized

Intra-cluster
distances are

minimized

103

104

How many clusters?

Four ClustersTwo Clusters

Six Clusters

 Some issues with community detection:

 Many different formalizations of clustering
objective functions

 Objectives are NP-hard to optimize exactly

 Methods can find clusters that are
systematically “biased”

 Questions:

 How well do algorithms optimize objectives?

 What clusters do different methods find?

 Single-criterion:
 Modularity: m-E(m)

 Edges cut: c
 Multi-criterion:
 Conductance: c/(2m+c)

 Expansion: c/n

 Density: 1-m/n2

 CutRatio: c/n(N-n)

 Normalized Cut: c/(2m+c) + c/2(M-m)+c

 Flake-ODF: frac. of nodes with more than ½ edges
pointing outside S

S

n: nodes in S
m: edges in S
c: edges pointing

outside S

[WWW ‘09]

Many algorithms to implicitly or explicitly
optimize objectives and extract communities:

 Heuristics:

 Girvan-Newman, Modularity optimization:
popular heuristics

 Metis: multi-resolution heuristic [Karypis-Kumar ‘98]

 Theoretical approximation algorithms:

 Spectral partitioning

[WWW ‘09]

500 node communities from Spectral:

500 node communities from Metis:

[WWW ‘09]

 Metis gives sets with better
conductance

 Spectral gives tighter and
more well-rounded sets

Conductance of bounding cut

Spectral

Disconnected Metis

Connected Metis

[WWW ‘09]

Diameter of the cluster

External / Internal conductance

L
o

w
er is g

o
o

d

Observations:
 All measures are

monotonic
 Modularity

 prefers large
clusters

 Ignores small
clusters

[WWW ‘09]

 All qualitatively
similar

 Observations:
 Conductance,

Expansion, Norm-
cut, Cut-ratio are
similar

 Flake-ODF prefers
larger clusters

 Density is bad
 Cut-ratio has high

variance

[WWW ‘09]

