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Network Communities



Networks & Communities

We often think of networks “looking”
like this:

What lead to such a conceptual picture?



Networks: Flow of Information

How information flows through the network?
What structurally distinct roles do nodes play?
What roles do different links (short vs. long) play?

How people find out about new jobs?

Mark Granovetter, part of his PhD in 1960s

People find the information through personal contacts
But: Contacts were often acquaintances
rather than close friends
This is surprising: One would expect your friends to
help you out more than casual acquaintances
Why is it that acquaintances are most helpful?



Granovetter’s Explanation

Granovetter makes a connection between
social and structural role of an edge
First point: Structure

Structurally embedded edges are socially strong

Long-range edges spanning different parts of the
network are socially weak

Second point: Information

Long-range edges allow you to gather information
from different parts of the network and get a job

Structurally embedded edges are Weak o
heavily redundant in terms of A % :
N2

information access




Conceptual Picture of Networks

Granovetter’s theory leads to the following
conceptual picture of networks

/ Strong ties
/ Weak ties




Network Communities

Granovetter’s theory
suggest that networks
are composed of
tightly connected
sets of nodes

Network communities: @

Sets of nodes with lots of connections inside and
few to outside (the rest of the network)




Finding Network Communities

How to automatically
find such densely
connected groups of
nodes?

ldeally such automatically
detected clusters would
then correspond to real
groups

For example:



Social Network Data

Zachary’s Karate club network:
Observe social ties and rivalries in a university karate club
During his observation, conflicts led the group to split
Split could be explained by a minimum cut in the network



NCAA Football Network

Can we identify
node groups?
(communities,

modules, clusters)

Nodes: Teams
Edges: Games played



NCAA Football Network

/ NCAA conferences

Mid American

Big East

Atlantic Coast
SEC
Conference USA
Big 12

Western Athletic
Pacific 10
Mountain West
Big 10

Sun Belt

O e O0O00eOoeo

Independents

Nodes: Teams
Edges: Games played




Facebook Ego-network

Can we identify
| social communities?

p / Nodes: Users
VIREY Edges: Friendships



Facebook Ego-network
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Nodes: Users
Edges: Friendships
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Social communities



Protein-Protein Interactions
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Protein-Protein Interactions

‘{v‘.' ‘.;,; ¥ Nodes: Proteins
o Edges: Interactions



Community Detection

We will work 2d) networks




Method 1: Strength of Weak Ties

Edge betweenness: Number of M
shortest paths passing over the edge i

Intuition:

-’ ‘

Edge betweenness
in a real network

Edge strengths (call volume)
in a real network




[Girvan-Newman ‘02]

Method 1: Girvan-Newman

Divisive hierarchical clustering based on the
notion of edge betweenness:

Number of shortest paths passing through the edge
Girvan-Newman Algorithm:

Undirected unweighted networks

Repeat until no edges are left:
Calculate betweenness of edges
Remove edges with highest betweenness

Connected components are communities
Gives a hierarchical decomposition of the network



Girvan-Newman: Example

Need to re-compute
betweenness at
every step




Girvan-Newman: Example




Girvan-Newman: Results
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Girvan-Newman: Results

Zachary’s Karate club:
Hierarchical decomposition
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We need to resolve 2 questions




How to Compute Betweenness?

Want to compute Breadth first search
betweenness of starting from A:
paths starting at
node A




How to Compute Betweenness?

Count the number of shortest paths from
A to all other nodes of the network:

.3
U # shortest A-J paths =
# shortest A-G paths +
# shortest A-H paths

# shortest A-K paths
= # shortest A-l paths
+ # shortest A-J paths

# shortest A-l paths =
# shortest A-F paths +
# shortest A-G paths



How to Compute Betweenness?

Compute betweenness by working up the
tree: If there are multiple paths count them

fractionally ﬁ\
The algorithm:
.Add edge flows: | 1 @ 1\® 1

-- node flow =

1_‘"ZCh”d edges 1+1 paths to H
-- split the flow up 2 1 2 Split evenly

based on the parent

value
» Repeat the BFS 3 é g 1t0.5pathstoJ
Split 1:2

procedure for each

starting node U
Eﬁ ¢ 1pathtoK.
Split evenly



How to Compute Betweenness?

Compute betweenness by working up the
tree: If there are multiple paths count them

fractionally A

2 o 4 2
The algorithm:
-Add edge flows: 1 1 @ 1\® 1
-- node flow = 1 1 9 1 1
1+ child edges 1+1 paths to H
-- split the flow up &E’JD 2 @ 1 @ 2 gplit evenly

based on the parent ;

value
» Repeat the BFS 3 é 1+0.5 paths to J
Split 1:2

procedure for each

starting node U
b ¢ 1pathtoK.
Split evenly

o



We need to resolve 2 questions




Network Communities

Communities: sets of
tightly connected nodes
Define: Modularity Q

A measure of how well

a network is partitioned
Into communities

Given a partitioning of the
network into groups s € §:

Q o« Y. 5[ (#edges within group s) —
(expected # edges within group s) ]

Need a null model!



Null Model: Configuration Model

Given real G on n nodes and m edges,
construct rewired network G’

Same degree distribution but
5 . ) Q1
random connections
. : . o \,0\—
Consider G' as a multigraph
The expected number of edges between nodes
. . , ki _ kik;
i and j of degrees k; and k; equals to: k; o =
The expected number of edges in (multigraph) G’:
= ZlENZ]ENl;:l ; ZinZ‘ENk (Z]EN )= Note

=12m 2m=m zku=2m
4m



Modularity

Modularity of partitioning S of graph G:

Q oc > o[ (#edges within group s) —
(expected # edges within group s) |

kik;
Q(G, S) =$Zses ZieS ZjEs (Al] R ])

2Zm

A; = Lifio],

. . 1<O<
Normalizing cost.: -1<Q<1 0 else

Modularity values take range [-1,1]

It is positive if the number of edges within
groups exceeds the expected number

0.3-0.7<Q means significant community structure



Modularity: Number of clusters

Modularity is useful for selecting the
number of clusters: Q modtaiy

Why not optimize Modularity directly?



Modularity Optimization



Method 2: Modularity Optimization

Let’s split the graph into 2 communities!
Want to directly optimize modularity!

" kik;
mSaX Q(G,S) = %ZSESZL'ES Zjes (Aij - ])

2m

Community membership vector s:

s;=1if nodeiis in community 1 sispt1l _1.ifs=s
-1 if node i is in community -1 2 0 else

Q(G,s) = iZiEN 2.jeN (Aij I;l:,l]) (sis+1)

2
kik;
_ZUEN( Zm)SiSj




Modularity Matrix

Note: each row/col of B

Define: sums to 0: 2, A;j = ki
5 = ke 3yl = K
kik;

Modularity matrix: B;; = A;; —
Membership: s = {—1,+1}

1 kik
Then: Q(G,s) = RZiENZ]-EN (Al-]- » ]) SiSj

2m

m
1

— azl,jEN Bl]SlS]
1 . 1 T
azlsl\ZjlfijS]J ES Bs

Task: Find se{-1,+1}" that maximizes Q(G,s)



Quick Review of Linear Algebra

Symmetric matrix A
That is positive semi-definite:
A=U-U"

Then solutions 4, x to equation A-x =41 x:

Eigenvectors x; ordered by the magnitude of their
corresponding eigenvalues A; (A < A, ... < 4,))

x; are orthonormal (orthogonal and unit length)

x; form a coordinate system (basis)

If A is positive-semidefinite: A; = 0 (and they always exist)
Eigen Decomposition theorem: Can rewrite matrix
A in terms of its eigenvectors and eigenvalues: A =

T
iXi A X




Modularity Optimization

1

Rewrite: Q(G,s) = ESTBS in terms of its
elgenvectors and eigenvalues:
n n
=% inﬁixiTS—Es XA x; 5—2(5 X; )%
Li=1 : =1

So, if there would be no other constraintson s
then to maximize Q, we make s = x,,

Why? Because 4,, > 4,,_4 = - [XZ
Remember s has fixed length! S
Assigns all weight in the sum to A,, (largest eigenvalue)
All other sTx; terms are zero because of orthonormality



Finding the vector s

Let’s consider only the first term in the

summation (because 4,, is the largest):

max Q(G,s) = X, (s"x)*A; = (s"xp)%Ay
S

Let’s maximize: 2?:1 Sj * Xnj Wheres;e{-1,+1}
To do this, we set:

(11 if Xnj = 0 (j—th coordinate of x,, = 0)
%= 1—1 if xn; <0 (j—th coordinate of x,, < 0)

Continue the bisection hierarchically



Summary: Modularity Optimization

Fast Modularity Optimization Algorithm:
Find leading eigenvector x,, of modularity matrix B
Divide the nodes by the signhs of the elements of x,,

Repeat hierarchically until:

If a proposed split does not cause modularity to increase,
declare community indivisible and do not split it

If all communities are indivisible, stop
How to find x,,? Power method!

Start with random v(9, repeat :

When converged (vt = v(t*?)), set x = vlt/



Summary: Modularity

Girvan-Newman:
Based on the “strength of weak ties”

Remove edge of highest betweenness
Modularity:

Overall quality of the partitioning of a graph

Use to determine the number of communities
Fast modularity optimization:

Transform the modularity optimization to a
eigenvalue problem



Community Detection:
Graph Cuts & Spectral
Clustering



Graph Partitioning
Graph Cuts
Spectral Clustering



Graph Partitioning

Undirected graph G(V, E):

Bi-partitioning task:

Divide vertices into two disjoint groups A, B

A (5 ) B
o) (o'

Questions:
How can we define a “good” partition of G?
How can we efficiently identify such a partition?



Graph Partitioning

What makes a good partition?

Maximize the number of within-group
connections

Minimize the number of between-group
connections




Graph Cuts

Express partitioning objectives as a function
of the “edge cut” of the partition

Cut: Set of edges with only one vertex in a
sroup: cut(A,B) = Zwl.j

icA,jeB

A B
# Cut(A,B) = 2



Graph Cut Criterion

Criterion: Minimum-cut

Minimize weight of connections between groups
arg min, g Cut(A,B)
Degenerate case:

“Optimal” cut
/ Minimum cut

Problem:
Only considers external cluster connections
Does not consider internal cluster connectivity



Graph Bisection

Since the minimum cut does not always yield
good results we need extra constraints to
make the problem meaningful

Graph Bisection

Partition the graph into two equal sets of nodes
Kernighan-Lin algorithm
Start with random equal partitions

Swap nodes to improve some quality metric (e.g.,
cut, modularity, etc)



Ratio Cut

Criterion: Ratio-cut
Normalize cut by the size of the groups

Cut(UV-U) _Cut(UV-U)

Ratio-cut=
|U| V-U|



Normalized Cut

Criterion: Normalized-cut
Connectivity between groups relative to the
density of each group

Cut(UV-U) | Cut(UV-U)

Normalized-cut=
Vol(U) Vol(V—-U)

vol(U): total weight of the edges with at least
one endpointin U: vol(U) = Yy di

Why use these criteria?

Produce more balanced partitions

50



An Example

Red is Min-Cut
1 1 9
Ratio-Cut(Red) == + = ==
1 8 8
: 2 2 18
Ratio-Cut(Green) ==+ - = —
5 4 20
1 1 28
Normalized-Cut(Red) == + — = — o .
1 27 7 Minimizing Normalized-
_ 5 5 14 cut is even better for
Normalized-Cut(Green) = 1z + o= 28 Green due to density



Another Example

Which of the three cuts has the best
(min, normalized, ratio) cut?



[Shi-Malik]

Graph Cut Criteria

Criterion: Conductance [Shi-Malik, "97]

Connectivity between groups relative to the
density of each group
cut (A, B)

¢(AaB) - .
min( vol(A4),vol (B))
vol(A): total weight of the edges with at least
one endpoint in A: vol(A) = }.;ca ki

Why use this criterion?
Produces more balanced partitions
How do we efficiently find a good partition?

Problem: Computing optimal cut is NP-hard



Graph Cuts

Ratio-cut and normalized-cut can be
reformulated in matrix format and solved
using spectral clustering



Spectral Clustering for
Graph Partitioning



Spectral Clustering Algorithms

Three basic stages:
1) Pre-processing

Construct a matrix representation of the graph
2) Decomposition
Compute eigenvalues and eigenvectors of the matrix

Map each point to a lower-dimensional representation
based on one or more eigenvectors

3) Grouping

Assign points to two or more clusters, based on the new
representation

But first, let’s define the problem



Spectral Graph Partitioning

A: adjacency matrix of undirected G
A;j=1 if (i,j) is an edge, else 0
X is a vector in ‘R" with components (x4, ..., X,,)

Think of it as a label/value of each node of G
What is the meaning of A- X?

Ay .o A X M
. . n

| V= A= QX

a, ... a, ||x ¥y, j=1 (i ))eE

Entry y; is a sum of labels Xx; of neighbors of |



Spectral Graph Theory

all e o o a‘l

n

=) A-x=A1-x

A X X

anl *e nn n n

Spectral Graph Theory:

Analyze the “spectrum” of matrix representing G

Spectrum: Eigenvectors x; of a graph, ordered by the
magnitude (strength) of their corresponding

eigenvalues 4;: A = {219/12,,,,,/1”} A<A <. <A

Note: We sort 4; in ascending (not descending) order!

Spectral clustering: use the eigenvectors of A or
graphs derived by it (mostly graph Laplacian)



Matrix Representations

Adjacency matrix (A):
Nx N matrix
A=[a;], a;=1 if edge between node I and |

Important properties:
Symmetric matrix
Eigenvectors are real and orthogonal




Matrix Representations

Degree matrix (D):
Nx N diagonal matrix
D=[d;], d;;= degree of node I




Matrix Representations

Laplacian matrix (L):

Nx N symmetric matrix

1
2 1
3 1
4 | o
5 1
6 | o

|L=D - A

Laplacian matrix L important properties:
Eigenvalues are non-negative real numbers
Eigenvectors are real and orthogonal



Example: Eigenvalues & Eigenvectors

Eigenvalue | 0 1 3 3 A }
Eigenvector | 1 T 5 =1 =11 1
L2 4727 1/ 0
1 —1 -5 1 1 |
Ly =2 4] -2]-1/ 0
1| —1 1 3 11




Spectral Clustering Algorithms

Three basic stages:
1) Pre-processing

Construct a matrix representation of the graph
2) Decomposition
Compute eigenvalues and eigenvectors of the matrix

Map each point to a lower-dimensional representation
based on one or more eigenvectors

3) Grouping

Assign points to two or more clusters, based on the new
representation



Spectral Partitioning Algorithm

1) Pre-processing:

Build Laplacian >
matrix L of the @

graph

2)

Decomposition: < e

Find eigenvalues A
and eigenvectors X
of the matrix L

&~ &~ S &~ S S

(6) 1) o o o o

o | w W) w o | w
o

) o o <) o <)
N N BN N (N

vl [w Jw e |0
o | o | o | o | © | o

0.3
0.6

0.3
-0.3
-0.3

-0.6

Map vertices to
corresponding
components of A,

| »n £ w N | =



Spectral Partitioning

3) Grouping:

Sort components of reduced 1-dimensional vector

|dentify clusters by splitting the sorted vector in two
How to choose a splitting point?

Naive approaches:

S

Split at 0 or median value

More expensive approaches:

Attempt to minimize normalized cut in 1-dimension
(sweep over ordering of nodes induced by the eigenvector)

0.3

0.6

0.3

-0.3

-0.3

aolu |APIWIN|H

-0.6

—

Cluster B: Negative points

Split at O:
Cluster A: Positive points

1

0.3

4

-0.3

2

0.6

5

-0.3

3

0.3

6

-0.6




Example: Spectral Partitioning

Value of x,

03r

0.2

o
—

-0.1r
—-0.2f
-0.3

-04
0

/rf‘M

A

é ‘IID 1|5 2|0
Rank in x,



Example: Spectral Partitioning

Value of x,

- | | | | | | |
"0 5 10 15 20 25 30 35 40

Rank in x,



Example: Spectral Partitioning

5 5 10 15 20v2;ﬂg 3 40
Components of X,



k-Way Spectral Clustering

How do we partition a graph into K clusters?

Two basic approaches:

Recursive bi-partitioning [Hagen et al., "92]

Recursively apply bi-partitioning algorithm in a
hierarchical divisive manner

Disadvantages: Inefficient, unstable
Cluster multiple eigenvectors [Shi-IVlalik, "00]
Build a reduced space from multiple eigenvectors

Commonly used in recent papers
A preferable approach...



Recursive Bi-partitioning




Cluster Multiple Eigenvectors

Use several of the eigenvectors to partition the
graph

If we use m eigenvectors, and set a threshold for
each, we can get a partition into 2™ groups, each
group consisting of the nodes that are above or
below threshold for each of the eigenvectors, in
a particular pattern.



Eigenvalue | 0 1 3 3 A -
Eigenvector | 1 T T 5 11 =11 -1
L2 4y =2 11 0
1 1 1 31 —1 1
1 —1 | =5 | =1 1 |
=270 4)-27-11 0
1| —1 1 3 11

If we use both the 2"¢ and 3" eigenvectors:
* nodes 2 and 3 (positive in both)

* nodes 5and 6 (negative in 2"Y, positive in 37)

* nodesiand g4 alone

Note that while each eigenvector tries to produce a minimum-sized cut,
successive eigenvectors have to satisfy more and more constraints => the cuts
progressively worse.



Why use multiple eigenvectors?

Approximates the optimal cut [Shi-Malik, '00]

Can be used to approximate optimal k-way normalized
cut

Emphasizes cohesive clusters

Increases the unevenness in the distribution of the data

Associations between similar points are amplified,
associations between dissimilar points are attenuated
The data begins to “approximate a clustering”
Well-separated space
Transforms data to a new “embedded space”,
consisting of k orthogonal basis vectors
Multiple eigenvectors prevent instability due to
information loss



Many Other Partitioning Methods

Heuristic but works really well in practice
http://glaros.dtc.umn.edu/gkhome/views/metis

Based on kernel k-means
http://www.cs.utexas.edu/users/dml/Software/graclus.html

Based on Modularity optimization
http://perso.uclouvain.be/vincent.blondel/research/louvain.html

For finding overlapping clusters
http://angel.elte.hu/cfinder/



http://glaros.dtc.umn.edu/gkhome/views/metis
http://www.cs.utexas.edu/users/dml/Software/graclus.html
http://perso.uclouvain.be/vincent.blondel/research/louvain.html
http://angel.elte.hu/cfinder/

How to Profile Network
Communities?



Network and Communities

How should we think about large scale
organization of clusters in networks?

Finding: Community Structure




Community Score

How community-like is a set of nodes?
A good cluster S has S
Many edges internally
Few edges pointing outside
What’s a good metric:
Conductance

_{@, j)eEieS, jeS}
¢(S)_ st

Small conductance corresponds to good clusters
(Note |S| < |V]|/2)




[WWW ‘08]

Network Community Profile Plot

(Note |S]| < |[V]|/2)
Define:

Network community profile (NCP) plot

Plot the score of best community of size k

®(k) = _min_ o(S)

Community size, log k



How to (Really) Compute NCP?

dblp-lars

* Run the favorite clustering method
* Each dot represents a cluster
* For each size find “"best” cluster

Cluster score, log ©(k)

Spectral x
Graclus +

H O
@.@@1 L L | L L | L L | L L | Metls L

1@ 1aa 1884 180 180 le+BE

Cluster size, log k




NCP Plot: Meshes

Meshes, grids, dense random graphs:

0 L L L AL L L L
10° & _ T
%’*’ Random graph, 1/d=0 =
O AN -
8 -1 ?d*'*'w
g 107 &= %,_:\\pube, 1/d=33 —
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- — : T, Sy, . —
g — \"'o‘,,% %“‘“‘"i |
S 1072 = —
& = Grid i
- 1/d=50 °
- hain, 1/d=1. -
10-3 | | || | | Iﬁ: al| || | | | || | ||
102 10" 10* 10° 104 10°  10°

K (number of nodes in the cluster)

d-dimensional meshes

[WWW ‘08]
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NCP plot: Network Science

Collaborations between scientists in networks
[Newman, 2005]

1: [ |III||I| [ IIIIIII| =
X = -
o B -
()]
2 01 _
O = -
C B 1
B B 1
S L -
A S B I
) - B C D1:
0.001 BN L nulC+E
1 10 100

Community size, log k
Dips in the conductance graph correspond to the
"good" clusters we can visually detect



[Internet Mathematics ‘og]

Large Networks: Very Different

Typical example: General Relativity collaborations
(n=4,158, m=13,422)

1 [ T TTTIN [ TTTTIN [ T TTTT | ||III§
0.1 & —
- V) f .
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0.01 & Blue _
0001 [ | IIIIII| | Itﬁﬁ}j [ | |IIIII| L L

1 10 100 1000 10000




[Internet Mathematics ‘og]

More NCP Plots of Networks
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NCP: LiveJournal (n=5m, m=42m)
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NCP: Live Journal
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Communities:
Issues and Questions




What i1s Cluster Analysis?

Finding groups of objects such that the objects in a group
will be similar (or related) to one another and different
from (or unrelated to) the objects in other groups

Inter-cluster
Intra-cluster distances are
distances are maximized
minimized
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Clusters Can Be Ambiguous

Two Clusters

Six Clusters

Four Clusters
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Communities: Issues and Questions

Many different formalizations of clustering
objective functions

Objectives are NP-hard to optimize exactly

Methods can find clusters that are
systematically “biased”

How well do algorithms optimize objectives?
What clusters do different methods find?
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Many Different Objective Functions

Modularity: m-E(m)
Edges cut: C

N: nodesinS
Conductance: ¢/(2m+c) nodesin

m: edgesinS
Expansion: ¢/n C: edges pointing
Density: 1-m/n? outside S

CutRatio: ¢/n(N-n)
Normalized Cut: ¢/(2m+c) + ¢/2(M-m)+c

Flake-ODF: frac. of nodes with more than %2 edges
pointing outside S



Many Classes of Algorithms

Many algorithms to implicitly or explicitly
optimize objectives and extract communities:

4

popular heuristics
multi-resolution heuristic [Karypis-Kumar ‘98]



Properties of Clusters (1)

500 node communities from Spectral:
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Properties of Clusters (2)

Diameter of the cluster
188 L T y T v v L | ¥ 4 L k L L |

Conductance of bounding cut

RMS avg pathlength in cluster

conductance of bounding cut

DisconneCted Metis : ! 10 I ‘ IllEl@ I I IIEI)@@‘ 11‘@I@@@‘ IIQ‘QI]E)@@ Ille+@6
0.001 T -1'%- - l-é%- -1-@'@@@- -152']%-@ o oo External / Internal conductance
Metis gives sets with better ¢ g .
conductance R 3 o
g =
G 1 4 (_2
Spectral gives tighter and =
more well-rounded sets 8

k {number of nodes in the cluster>



Single-criterion Objectives

k (number of hodes in the cluster)

I".,’In::J*::'il.JIarity,r - Modularity Ratio

All measures are
monotonic

prefers large
clusters

lgnores small
clusters

| Edgescut o



Multi-criterion Objectives

-
o

S S A A i S
= B .
© 100 1 = Observations:
S Conductance,
o ! - Expansion, Norm-
© 107" F | E cut, Cut-ratio are
S : ] similar
2 5 l Flake-ODF prefers
c 10" -
2 : N E larger clusters
: v oUR . T
s i ) Density is bad
O 10 Lol el ol il ol Cut-ratio has high

10 10" 10° 10° 10*  10°  yariance
kK (number of nodes in the cluster)

Conductance Internal Density = Normalized Cut Avg ODF ~
Expansion ¥ CutRatio e Maximum ODF Flake ODF  +



