
Thanks to Jure Leskovec, Stanford and Panayiotis Tsaparas,
Univ. of Ioannina for slides

 Web Search: How to Organize the Web?
 Ranking Nodes on Graphs
 Hubs and Authorities
 PageRank
 How to Solve PageRank

 Personalized PageRank
 Link Prediction in Networks
 Estimating Scores for Missing Edges
 Case studies:
 Facebook: Supervised Random Walks for Link Prediction
 Twitter: The who to follow service at Twitter

 How to organize the Web?
 First try: Human curated

Web directories
 Yahoo, DMOZ, LookSmart

 Second try: Web Search
 Information Retrieval attempts to

find relevant docs in a small
and trusted set
 Newspaper articles, Patents, etc.

 But: Web is huge, full of untrusted documents,
random things, web spam, etc.

 So we need a good way to rank webpages!

2 challenges of web search:
 (1) Web contains many sources of information

Who to “trust”?

 Insight: Trustworthy pages may point to each other!

 (2) What is the “best” answer to query
“newspaper”?

 No single right answer

 Insight: Pages that actually know about newspapers
might all be pointing to many newspapers

 All web pages are not equally “important”

www.joe-schmoe.com vs. www.stanford.edu

 We already know:
There is large diversity
in the web-graph
node connectivity.

 So, let’s rank the pages
using the web graph
link structure!

vs.

http://www.joe-schmoe.com/
http://www.stanford.edu/

 We will cover the following Link Analysis
approaches to computing importance of
nodes in a graph:
 Hubs and Authorities (HITS)

 Page Rank

 Topic-Specific (Personalized) Page Rank

Sidenote: Various notions of node centrality: Node 𝒖
 Degree centrality = degree of 𝑢

 Betweenness centrality = #shortest paths passing through 𝑢

 Closeness centrality = avg. length of shortest paths from 𝑢 to
all other nodes of the network

 Eigenvector centrality = like PageRank

 Goal (back to the newspaper example):
 Don’t just find newspapers. Find “experts” – pages that

link in a coordinated way to good newspapers

 Idea: Links as votes
 Page is more important if it has more links
 In-coming links? Out-going links?

 Hubs and Authorities
Each page has 2 scores:
 Quality as an expert (hub):
 Total sum of votes of pages pointed to

 Quality as a content (authority):
 Total sum of votes of experts

 Principle of repeated improvement

NYT: 10

Ebay: 3

Yahoo: 3

CNN: 8

WSJ: 9

Interesting pages fall into two classes:
1. Authorities are pages containing

useful information
 Newspaper home pages

 Course home pages

 Home pages of auto manufacturers

2. Hubs are pages that link to authorities
 List of newspapers

 Course bulletin

 List of U.S. auto manufacturers

NYT: 10
Ebay: 3
Yahoo: 3
CNN: 8
WSJ: 9

Each page starts with hub score 1

Authorities collect their votes

(Note this is idealized example. In reality graph is not bipartite and

each page has both the hub and authority score)

Hubs collect authority scores

(Note this is idealized example. In reality graph is not bipartite and

each page has both the hub and authority score)

Authorities collect hub scores

(Note this is idealized example. In reality graph is not bipartite and

each page has both the hub and authority score)

 A good hub links to many good authorities
 A good authority is linked from many good

hubs
 Note a self-reinforcing recursive definition

 Model using two scores for each node:

 Hub score and Authority score

 Represented as vectors 𝒉 and 𝒂, where the i-th
element is the hub/authority score of the i-th node

 Each page 𝒊 has 2 scores:
 Authority score: 𝒂𝒊
 Hub score: 𝒉𝒊

HITS algorithm:

 Initialize: 𝑎𝑗
(0)

= 1/ n, hj
(0)

= 1/ n

 Then keep iterating until convergence:

 ∀𝒊: Authority: 𝑎𝑖
(𝑡+1)

= σ𝑗→𝑖 ℎ𝑗
(𝑡)

 ∀𝒊: Hub: ℎ𝑖
(𝑡+1)

= σ𝑖→𝑗 𝑎𝑗
(𝑡)

 ∀𝒊: Normalize:

σ𝑖 𝑎𝑖
𝑡+1

2
= 1, σ𝑗 ℎ𝑗

𝑡+1
2
= 1

[Kleinberg ‘98]

෍

𝑖

ℎ𝑖
𝑡
− ℎ𝑖

𝑡+1
2
< 𝜀

෍

𝑖

𝑎𝑖
𝑡
− 𝑎𝑖

𝑡+1
2
< 𝜀

Convergence criteria:

 Definition: Eigenvectors & Eigenvalues
 Let 𝑹 ⋅ 𝒙 = 𝝀 ⋅ 𝒙

for some scalar 𝝀, vector 𝒙, matrix 𝑹

 Then 𝒙 is an eigenvector, and 𝝀 is its eigenvalue

 The steady state (HITS has converged) is:

 𝑨𝑻 ⋅ 𝑨 ⋅ 𝒂 = 𝒄′ ⋅ 𝒂

 𝑨 ⋅ 𝑨𝑻 ⋅ 𝒉 = 𝒄′′ ⋅ 𝒉

 So, authority 𝒂 is eigenvector of 𝑨𝑻𝑨
(associated with the largest eigenvalue)
Similarly: hub 𝒉 is eigenvector of 𝑨𝑨𝑻

Note constants c’,c’’

don’t matter as we

normalize them out

every step of HITS

 Still the same idea: Links as votes

 Page is more important if it has more links

 In-coming links? Out-going links?

 Think of in-links as votes:
 www.stanford.edu (many in-links)

 www.edessacity.gr (few in-link)

 Are all in-links equal?

 Links from important pages count more

 Recursive question!

http://www.stanford.edu/
http://www.edessacity.gr/

 A “vote” from an important
page is worth more:

 Each link’s vote is proportional
to the importance of its source
page

 If page i with importance ri has
di out-links, each link gets ri / di

votes

 Page j’s own importance rj is
the sum of the votes on its in-
links

rj = ri/3 + rk/4

j

ki

rj/3

rj/3rj/3

ri/3 rk/4

 A page is important if it is
pointed to by other important
pages

 Define a “rank” rj for node j





ji

i
j

r
r

id

y

ma
a/2

y/2
a/2

m

y/2

The web in 1839

“Flow” equations:

ry = ry /2 + ra /2

ra = ry /2 + rm

rm = ra /2

𝒅𝒊 … out-degree of node 𝒊

You might wonder: Let’s just use Gaussian elimination

to solve this system of linear equations. Bad idea!

 Stochastic adjacency matrix 𝑴
 Let page 𝒋 have 𝒅𝒋 out-links

 If 𝒋 → 𝒊, then 𝑴𝒊𝒋 =
𝟏

𝒅
𝒋

 𝑴 is a column stochastic matrix
 Columns sum to 1

 Rank vector 𝒓: An entry per page
 𝒓𝒊 is the importance score of page 𝒊

 σ𝒊 𝒓𝒊 = 𝟏

 The flow equations can be written

𝒓 = 𝑴 ⋅ 𝒓 



ji

i
j

r
r

id

i

j

M

1/3

 Imagine a random web surfer:

 At any time 𝒕, surfer is on some page 𝑖

 At time 𝒕 + 𝟏, the surfer follows an
out-link from 𝒊 uniformly at random

 Ends up on some page 𝒋 linked from 𝒊

 Process repeats indefinitely

 Let:
 𝒑(𝒕) … vector whose 𝑖th coordinate is the

prob. that the surfer is at page 𝑖 at time 𝑡

 So, 𝒑(𝒕) is a probability distribution over pages





ji

i
j

r
r

(i)dout

j

i1 i2 i3

 Where is the surfer at time t+1?

 Follows a link uniformly at random

𝒑 𝒕 + 𝟏 = 𝑴 ⋅ 𝒑(𝒕)

 Suppose the random walk reaches a state
𝒑 𝒕 + 𝟏 = 𝑴 ⋅ 𝒑(𝒕) = 𝒑(𝒕)

then 𝒑(𝑡) is stationary distribution of a random walk

 Our original rank vector 𝒓 satisfies 𝒓 = 𝑴 ⋅ 𝒓

 So, 𝒓 is a stationary distribution for
the random walk

)(M)1(tptp 

j

i1 i2 i3

Given a web graph with n nodes, where the
nodes are pages and edges are hyperlinks
 Assign each node an initial page rank
 Repeat until convergence (i |ri

(t+1) – ri
(t)| < )

 Calculate the page rank of each node







ji

t

it

j

r
r

i

)(
)1(

d

𝒅𝒊 …. out-degree of node 𝒊

 Power Iteration:

 Set 𝑟𝑗 ← 1/N

 1: 𝑟′𝑗 ← σ𝑖→𝑗
𝑟𝑖

𝑑𝑖

 2: 𝑟 ← 𝑟′

 If |𝑟 − 𝑟’| > 𝜀: goto 1

 Example:
ry 1/3 1/3 5/12 9/24 6/15

ra = 1/3 3/6 1/3 11/24 … 6/15

rm 1/3 1/6 3/12 1/6 3/15

y

a m

y a m

y ½ ½ 0

a ½ 0 1

m 0 ½ 0

Iteration 0, 1, 2, …

ry = ry /2 + ra /2

ra = ry /2 + rm

rm = ra /2

 Power Iteration:

 Set 𝑟𝑗 ← 1/N

 1: 𝑟′𝑗 ← σ𝑖→𝑗
𝑟𝑖

𝑑𝑖

 2: 𝑟 ← 𝑟′

 If |𝑟 − 𝑟’| > 𝜀: goto 1

 Example:
ry 1/3 1/3 5/12 9/24 6/15

ra = 1/3 3/6 1/3 11/24 … 6/15

rm 1/3 1/6 3/12 1/6 3/15

y

a m

y a m

y ½ ½ 0

a ½ 0 1

m 0 ½ 0

Iteration 0, 1, 2, …

ry = ry /2 + ra /2

ra = ry /2 + rm

rm = ra /2

 Does this converge?

 Does it converge to what we want?

 Are results reasonable?







ji

t

it

j

r
r

i

)(
)1(

d Mrr or

equivalently

 The “Spider trap” problem:

 Example:

ra 1 0 1 0

rb 0 1 0 1
=

ba

Iteration: 0, 1, 2, 3…







ji

t

it

j

r
r

i

)(
)1(

d

 The “Dead end” problem:

 Example:

ra 1 0 0 0

rb 0 1 0 0=

ba 





ji

t

it

j

r
r

i

)(
)1(

d

Iteration: 0, 1, 2, 3…

2 problems:
 (1) Some pages are

dead ends (have no out-links)

 Such pages cause
importance to “leak out”

 (2) Spider traps
(all out-links are within the group)

 Eventually spider traps absorb all importance

 Power Iteration:

 Set 𝑟𝑗 =
1

𝑁

 𝑟𝑗 = σ𝑖→𝑗
𝑟𝑖

𝑑𝑖

 And iterate

 Example:
ry 1/3 2/6 3/12 5/24 0

ra = 1/3 1/6 2/12 3/24 … 0

rm 1/3 3/6 7/12 16/24 1

Iteration 0, 1, 2, …

y

a m

y a m

y ½ ½ 0

a ½ 0 0

m 0 ½ 1

ry = ry /2 + ra /2

ra = ry /2

rm = ra /2 + rm

 The Google solution for spider traps: At each
time step, the random surfer has two options

 With prob. , follow a link at random

 With prob. 1-, jump to a random page

 Common values for  are in the range 0.8 to 0.9

 Surfer will teleport out of spider trap within a
few time steps

y

a m

y

a m

 Power Iteration:

 Set 𝑟𝑗 =
1

𝑁

 𝑟𝑗 = σ𝑖→𝑗
𝑟𝑖

𝑑𝑖

 And iterate

 Example:
ry 1/3 2/6 3/12 5/24 0

ra = 1/3 1/6 2/12 3/24 … 0

rm 1/3 1/6 1/12 2/24 0

Iteration 0, 1, 2, …

y

a m

y a m

y ½ ½ 0

a ½ 0 0

m 0 ½ 0

ry = ry /2 + ra /2

ra = ry /2

rm = ra /2

 Teleports: Follow random teleport links with
probability 1.0 from dead-ends

 Adjust matrix accordingly

y

a m

y a m

y ½ ½ ⅓

a ½ 0 ⅓

m 0 ½ ⅓

y a m

y ½ ½ 0

a ½ 0 0

m 0 ½ 0

y

a m

 Google’s solution: At each step, random
surfer has two options:

 With probability , follow a link at random

 With probability 1-, jump to some random page

 PageRank equation [Brin-Page, ‘98]

𝑟𝑗 =෍

𝑖→𝑗

𝛽
𝑟𝑖
𝑑𝑖
+ (1 − 𝛽)

1

𝑛 di … out-degree
of node i

The above formulation assumes that 𝑴 has no dead ends. We can

either preprocess matrix 𝑴 (bad!) or explicitly follow random teleport

links with probability 1.0 from dead-ends. See P. Berkhin, A Survey

on PageRank Computing, Internet Mathematics, 2005.

 PageRank as a principal eigenvector
𝒓 = 𝑴 ⋅ 𝒓 or equivalently 𝒓𝒋 = 𝒊

𝒓
𝒊

𝒅
𝒊

 But we really want (**):

𝒓𝒋 = 𝜷σ𝒊
𝒓𝒊

𝒅𝒊
+ 𝟏 − 𝜷

𝟏

𝒏

 Let’s define:

𝑴’𝒊𝒋 = 𝜷𝑴𝒊𝒋 + (𝟏 − 𝜷)
𝟏

𝒏
 Now we get what we want:

𝒓 = 𝑴’ ⋅ 𝒓
 What is 𝟏 − ?
 In practice 0.15 (Jump approx. every 5-6 links)

di … out-degree
of node i

Note: 𝑀 is a sparse

matrix but 𝑴′ is dense

(all entries ≠ 0). In

practice we never

“materialize” 𝑀 but

rather we use the

“sum” formulation (**)

Details!

 Input: Graph 𝑮 and parameter 𝜷
 Directed graph 𝑮 with spider traps and dead ends
 Parameter 𝛽

 Output: PageRank vector 𝒓

 Set: 𝑟𝑗
0

=
1

𝑁
, 𝑡 = 1

 do:

 ∀𝑗: 𝒓′𝒋
(𝒕)

= σ𝒊→𝒋𝜷
𝒓𝒊
(𝒕−𝟏)

𝒅𝒊

𝒓′𝒋
(𝒕)

= 𝟎 if in-deg. of 𝒋 is 0

 Now re-insert the leaked PageRank:

∀𝒋: 𝒓𝒋
𝒕
= 𝒓′𝒋

𝒕
+

𝟏−𝑺

𝑵

 𝒕 = 𝒕 + 𝟏

 while σ𝑗 𝑟𝑗
(𝑡)

− 𝑟𝑗
(𝑡−1)

> 𝜀

where: 𝑆 = σ𝑗 𝑟′𝑗
(𝑡)

http://upload.wikimedia.org/wikipedia/commons/f/fb/PageRanks-Example.svg

 PageRank and HITS are two solutions to the
same problem:

 What is the value of an in-link from u to v?

 In the PageRank model, the value of the link
depends on the links into u

 In the HITS model, it depends on the value of the
other links out of u

 The destinies of PageRank and HITS
post-1998 were very different

A BH1 1

D
1 1

E

F

G

1 11

I J1

1 1

a.k.a.: Relevance, Closeness, ‘Similarity’…

[Tong-Faloutsos, ‘06]

 Given:
Conferences-to-authors
graph

 Goal:
Proximity on graphs

 Q: What is most related
conference to ICDM?

ICDM

KDD

SDM

Philip S. Yu

IJCAI

NIPS

AAAI M. Jordan

Ning Zhong

R. Ramakrishnan

…

…

… …

Conference Author

…

Sea Sun Sky Wave{ } { }Cat Forest Grass Tiger

{?, ?, ?,}

?

[Tong et al. ‘08]

Test Image

Sea Sun Sky Wave Cat Forest Tiger Grass

Image

Keyword

Region

[Tong et al. ‘08]

Test Image

Sea Sun Sky Wave Cat Forest Tiger Grass

Image

Keyword

Region

{Grass, Forest, Cat, Tiger}

[Tong et al. ‘08]

 Shortest path is not good:

 No influence for degree-1 nodes (E, F, G)!
 Multi-faceted relationships

 Network Flow is not good:

 Does not punish long paths

A BH1 1

D
1 1

E

F

G

1 11

I J1

1 1

• Multiple Connections

• Quality of connection

•Direct & In-direct

connections

•Length, Degree,

Weight…

…

[Tong-Faloutsos, ‘06]

1

4

3

2

5
6

7

9
10

8

11

12

 Goal: Evaluate pages not just by popularity
but by how close they are to the topic

 Teleporting can go to:

 Any page with equal probability

 (we used this so far)

 A topic-specific set of “relevant” pages

 Topic-specific (personalized) PageRank

𝑴’𝒊𝒋 = 𝜷𝑴𝒊𝒋 + (𝟏 − 𝜷)/|𝑺| if 𝒊 ∈ 𝑺

= 𝜷𝑴𝒊𝒋 otherwise

 Random Walk with Restart: S is a single element

(S ...teleport set)

 Graphs and web search:

 Ranks nodes by “importance”

 Personalized PageRank:

 Ranks proximity of nodes
to the teleport nodes 𝑺

 Proximity on graphs:

 Q: What is most related
conference to ICDM?

 Random Walks with Restarts

 Teleport back to the starting node:
S = { single node }

ICDM

KDD

SDM

Philip S. Yu

IJCAI

NIPS

AAAI M. Jordan

Ning Zhong

R. Ramakrishnan

…

…

… …

Conference Author

Node 4

Node 1

Node 2

Node 3

Node 4

Node 5

Node 6

Node 7

Node 8

Node 9

Node 10

Node 11

Node 12

0.13

0.10

0.13

0.22

0.13

0.05

0.05

0.08

0.04

0.03

0.04

0.02

1

4

3

2

5
6

7

9
10

8
11

12
0.13

0.10

0.13

0.13

0.05

0.05

0.08

0.04

0.02

0.04

0.03

Ranking vector

More red, more relevant

Nearby nodes, higher scores

4r

ICDM

KDD

SDM

ECML

PKDD

PAKDD

CIKM

DMKD

SIGMOD

ICML

ICDE

0.009

0.011

0.008
0.007

0.005

0.005

0.005

0.004
0.004

0.004

A: Personalized
PageRank with
teleport set S={KDD,
ICDM}

Q: Which conferences
are closest to KDD &
ICDM?

I

K

Graph of CS conferences

Thanks to Jure Leskovec, Stanford and Panayiotis Tsaparas,
Univ. of Ioannina for slides

 Link Prediction in Networks
 Estimating Scores for Missing Edges
 Classification Approach (Omitted)

 Case studies:
 Facebook: Supervised Random Walks for Link

Prediction
 Twitter: The who to follow service at Twitter

 Recommending new friends in online social networks
 Predicting the participation of actors in events
 Suggesting interactions between the members of a

company/organization that are external to the hierarchical
structure of the organization itself

 Predicting connections between members of
communities/organizations who have not been directly
observed together

 Suggesting collaborations between researchers based on co-
authorship

 Overcoming the data-sparsity problem in recommender
systems using collaborative filtering

 The link prediction task:

 Given 𝐺[𝑡0, 𝑡0
′] a graph on edges up

to time 𝑡0
′ , output a ranked list L

of links (not in 𝐺[𝑡0, 𝑡0
′]) that are

predicted to appear in 𝐺[𝑡1, 𝑡1
′]

 Evaluation:

 n = |Enew|: # new edges that appear during
the test period [𝑡1, 𝑡1

′]

 Take top n elements of L and count correct edges

[LibenNowell-Kleinberg ‘03]

𝐺[𝑡0, 𝑡0
′]

𝐺[𝑡1, 𝑡1
′]

 Predict links in a evolving collaboration
network

 Core: Because network data is very sparse
 Consider only nodes with degree of at least 3
 Because we don't know enough about these nodes to

make good inferences

[LibenNowell-Kleinberg ‘03]

 Methodology:

 For each pair of nodes (x,y) compute score c(x,y)

 For example, c(x,y) could be the # of
common neighbors of x and y

 Sort pairs (x,y) by the decreasing score c(x,y)

 Note: Only consider/predict edges where
both endpoints are in the core (deg. ≥ 3)

 Predict top n pairs as new links

 See which of these links actually
appear in 𝐺[𝑡1, 𝑡1

′]

X

 Different scoring functions 𝒄(𝒙, 𝒚) =
 Graph distance: (negated) Shortest path length
 Common neighbors: |Γ 𝑥 ∩ Γ(𝑦)|
 Jaccard’s coefficient: Γ 𝑥 ∩ Γ 𝑦 /|Γ 𝑥 ∪ Γ(𝑦)|

 Adamic/Adar: σ𝑧∈Γ 𝑥 ∩Γ(𝑦) 1/log |Γ(𝑧)|

 Preferential attachment: |Γ 𝑥 | ⋅ |Γ(𝑦)|

 PageRank: 𝑟𝑥(𝑦) + 𝑟𝑦(𝑥)
 𝑟𝑥 𝑦 … stationary distribution score of y under the random walk:
 with prob. 0.15, jump to x
 with prob. 0.85, go to random neighbor of current node

 Then, for a particular choice of c(·)
 For every pair of nodes (x,y) compute c(x,y)
 Sort pairs (x,y) by the decreasing score c(x,y)
 Predict top n pairs as new links

[LibenNowell-Kleinberg ‘03]

Γ(x) … neighbors

of node x

Thanks to Jure Leskovec, Stanford and Panayiotis Tsaparas,
Univ. of Ioannina for slides

 How to assign the score c(x, y) for each pair
(x, y)?

 Some form of similarity between x and y

 Some form of node proximity between x and y

 Methods

 Neighborhood-based (shared neighbors)

 Network proximity based (paths between x and y)

 Other

Neighborhood-based

Let Γ(x) be the set of neighbors of x in Gold

 Methods

 Common Neighbors Overlap

 Jaccard

 Adamic/Adar

 Preferential Attachment

 Common neighbors

 A: adjacency matrix, Ax,y
2: #paths of length 2

 Jaccard coefficient

 The probability that both x and y have a feature for a
randomly selected feature that either x or y has

Intuition: The larger the overlap of the neighbors
of two nodes, the more likely the nodes to be
linked in the future

 Adamic/Adar

 Assigns large weights to common neighbors z of x and y
which themselves have few neighbors (weight rare features
more heavily)

 Preferential attachment

 Based on the premise that the probability that a new edge
has node x as its endpoint is proportional to |Γ(x)|, i.e.,
nodes like to form ties with ‘popular’ nodes

Network proximity based

Intuition: The “closer” two nodes are in the
network, the more likely are to be linked in the
future

 Methods
 based on shortest path length between x and y

 based on all paths between x and y
 Katzβ measure (unweighted, weighted)

 Random walk-based
 hitting time

 commute time

 Rooted PageRank

 SimRank

For x, y ∈ V×V−Eold,

score(x, y) = (negated) length of shortest
path between x and y

If there are more than n pairs of nodes tied for
the shortest path length, order them at random

 Katzβ measure

 Sum over all paths of length l

 0<β<1: a parameter of the predictor, exponentially
damped to count short paths more heavily

 Katzβ measure

 Unweighted version: pathx,y(1) = 1, if x and y have
collaborated, 0 otherwise

 Weighted version: pathx,y(1) = #times x and y have
collaborated

Consider a random walk on Gold that starts at x and
iteratively moves to a neighbor of x chosen uniformly
at random from Γ(x)
 Hitting Hx,y (from x to y): the expected number of steps it

takes for the random walk starting at x to reach y
score(x, y) = − Hx,y

 Commute Time Cx,y (from x to y): the expected number of
steps to travel from x to y and from y to x

score(x, y) = − (Hx,y + Hy,x)

Not symmetric, can be shown

 The hitting time and commute time measures
are sensitive to parts of the graph far away from
x and y  periodically reset the walk

 Random walk on Gold that starts at x and has a
probability α of returning to x at each step

 Rooted PageRank
 Starts from x

 with probability (1 – a) moves to a random neighbor

 with probability a returns to x

score(x, y) = stationary probability of y in a
rooted PageRank

Intuition: Two objects are similar, if they are
related to similar objects

 Two objects x and y are similar, if they are
related to objects a and b respectively and a and
b are themselves similar

 Expresses the average similarity between
neighbors of x and neighbors of y

score(x, y) = similarity(x, y)

Other Methods

 Low-rank Approximations
 Unseen bigrams
 High-level Clustering

Intuition: represent the adjacency matrix M with a
lower rank matrix Mk

 Method

 Apply SVD (singular value decomposition)

 Obtain the rank-k matrix that best approximates M

 r: rank of matrix A

 σ1≥ σ2≥ … ≥σr : singular values (square roots of eig-vals AAT, ATA)

 : left singular vectors (eig-vectors of AAT)

 : right singular vectors (eig-vectors of ATA)





 






































r

2

1

r

2

1

r21
T

v

v

v

σ

σ

σ

uuuVΣUA















[n×r] [r×r] [r×n]

r21 u,,u,u





r21 v,,v,v





T

rrr

T

222

T

111 vuσvuσvuσA







 rk ,,...2,1,vuσvuσvuσA T

kkk

T

222

T

111k 





 Unseen bigrams: Predict pairs of words that co-occur in a test
corpus, but not in the corresponding training corpus

 Not just score(x, y) but score(z, y) for nodes z that are similar
to x --- Sx

(δ): the δ nodes most related to x

 Compute score(x, y) for all edges in Eold

 Delete the (1-p) fraction of the edges whose
score is the lowest, for some parameter p

 Re-compute score(x, y) for all pairs in the
subgraph

 Each link predictor p outputs a ranked list Lp

of pairs in V×V−Eold in decreasing order of
confidence

 focus on Core network, (d > 3)

E∗new = Enew ∩ (Core × Core) = |E∗new|

 Evaluation method: Size of intersection of

 the first n edge predictions from Lp that are in Core
× Core, and

 the actual set E∗new

How many of the (relevant) top-n predictions are correct (precision?)

 Random Predictor: Randomly select pairs of
authors who did not collaborate in the
training interval

 Probability that a random prediction is correct:

In the datasets, from 0.15% (cond-mat) to 0.48% (astro-ph)

 Improvement over random predictor
 average ratio over the five
datasets of the given predictor's
performance versus a baseline
predictor's performance.
 the error bars indicate the
minimum and maximum of this
ratio over the five datasets.
 the parameters for the starred
predictors are: (1) for weighted
Katz, β= 0.005; (2) for Katz
clustering, β1 = 0.001; ρ = 0.15; β2
= 0.1; (3) for low-rank inner
product, rank = 256; (4) for rooted
Pagerank, α = 0.15; (5) for unseen
bigrams, unweighted, common
neighbors with δ = 8; and (6) for
SimRank, C (γ) = 0.8.

 Improvement over #common neighbors

 Improvement over graph distance predictor

[LibenNowell-Kleinberg ’ 03]

Performance score: Fraction
of new edges that are guessed
correctly.

correct
predictions

How similar are the
predictions made by the
different methods?
common predictions

 Improve performance. Even the best (Katz
clustering on gr-qc) correct on only about 16%
of its prediction

 Improve efficiency on very large networks
(approximation of distances)

 Treat more recent links (e.g., collaborations)
as more important

 Additional information (paper titles, author
institutions, etc) latently present in the graph

 Can we learn to predict new friends?

 Facebook’s People You May Know

 Let’s look at the FB data:

 92% of new friendships on
FB are friend-of-a-friend

 More mutual friends helps

[WSDM ‘11]

w

v

u

z

 Goal: Recommend a list of possible friends
 Supervised machine learning setting:

 Labeled training examples:

 For every user 𝑠 have a list of others she
will create links to {𝑑1 … 𝑑𝑘} in the future
 Use FB network from May 2012 and {𝑑1 … 𝑑𝑘}

are the new friendships you created since then

 These are the “positive” training examples

 Use all other users as “negative” example

 Task:

 For a given node 𝑠, score nodes {𝑑1 … 𝑑𝑘}
higher than any other node in the network

“positive” nodes
“negative” nodes

s

Green nodes

are the nodes

to which s

creates links in

the future

s

 How to combine node/edge features and
the network structure?
 Estimate strength of each friendship (𝑢, 𝑣) using:
 Profile of user 𝑢, profile of user 𝑣

 Interaction history of users 𝑢 and 𝑣

 This creates a weighted graph

 Do Personalized PageRank from 𝒔
and measure the “proximity” (the
visiting prob.) of any other
node 𝑤 from 𝑠

 Sort nodes 𝑤 by decreasing
“proximity”

“positive” nodes
“negative” nodes

s

 Let 𝑠 be the starting node
 Let 𝒇𝜷(𝒖, 𝒗) be a function that

assigns strength 𝒂𝒖𝒗 to edge 𝒖, 𝒗
𝑎𝑢𝑣 = 𝑓𝛽 𝑢, 𝑣 = exp −σ𝑖 𝛽𝑖 ⋅ x𝑢𝑣 𝑖
 𝒙𝒖𝒗 is a feature vector of (𝒖, 𝒗)

 Features of node 𝑢

 Features of node 𝑣

 Features of edge (𝑢, 𝑣)

 Note: 𝜷 is the weight vector we will later estimate!

 Do Random Walk with Restarts from 𝑠 where
transitions are according to edge strengths 𝑎𝑢𝑣

[WSDM ’11]

“positive” nodes
“negative” nodes

s

 How to estimate edge strengths?

 How to set parameters β of fβ(u,v)?

 Idea: Set 𝛽 such that it (correctly)
predicts the known future links

s

Network

s

Set edge

strengths

auv = fβ(u,v)

Random Walk with

Restarts on the

weighted graph.

Each node w has a

PageRank proximity pw

Sort nodes w by the

decreasing PageRank

score pw

Recommend top k

nodes with the highest

proximity pw to node s

 𝒂𝒖𝒗 …. Strength of edge (𝒖, 𝒗)
 Random walk transition matrix:

 PageRank transition matrix:

 Where with prob. 𝛼 we jump back to node 𝑠

 Compute PageRank vector: 𝑝 = 𝑝𝑇 𝑄

 Rank nodes 𝑤 by decreasing 𝑝𝑤

[WSDM ’11]

“positive” nodes
“negative” nodes

s

 Positive examples
𝑫 = {𝒅𝟏, … , 𝒅𝒌}

 Negative examples
𝑳 = {𝒐𝒕𝒉𝒆𝒓 𝒏𝒐𝒅𝒆𝒔}

 What do we want?

 Note:
 Exact solution to this problem may not exist

 So we make the constraints “soft” (i.e., optional)

[WSDM ’11]

“positive” nodes
“negative” nodes

s

We prefer small

weights 𝛽 to prevent

overfitting

Every positive example has to have

higher PageRank score than every

negative example

 Want to minimize:

 Loss: ℎ(𝑥) = 0 if 𝑥 < 0, or 𝑥2 else

[WSDM ’11]

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

pl=pdpl < pd pl > pd

L
o

ss

Penalty for

violating the

constraint

that 𝑝𝑑 > 𝑝𝑙

 How to minimize F?

 Both pl and pd depend on β

 Given β assign edge weights 𝑎𝑢𝑣 = 𝑓𝛽(𝑢, 𝑣)

 Using 𝑄 = [𝑎𝑢𝑣] compute PageRank scores 𝑝𝛽

 Rank nodes by the decreasing score

 Goal: Want to find β such that pl < pd

[WSDM ’11]

v3

v1
v2

s

 How to minimize 𝑭(𝜷) ?

 Idea:

 Start with some random 𝛽(0)

 Evaluate the derivative of 𝐹(𝛽) and
do a small step in the opposite direction

𝛽(𝑡+1) = 𝛽(𝑡) − 𝜂
𝜕𝐹 𝛽(𝑡)

𝜕𝛽

 Repeat until convergence

[WSDM ’11]

s

𝛽(0)

𝑭(𝜷)
𝛽(50)

𝛽(100)

 What’s the derivative
𝜕𝐹 𝛽(𝑡)

𝜕𝛽
?

 We know:

that is
 So:

[WSDM ’11]

Easy!

Details!

 We just got:
 Few details:
 Computing 𝜕𝑄𝑗𝑢/𝜕𝛽 is easy. Remember:

 We want
𝜕𝑝𝑗

𝜕𝛽
but it appears on both

sides of the equation. Notice the
whole thing looks like a PageRank
equation: 𝑥 = 𝑄 ⋅ 𝑥 + 𝑧

 As with PageRank we can use the
power-iteration to solve it:

 Start with a random
𝜕𝑝

𝜕𝛽

(0)

 Then iterate:
𝜕𝑝

𝜕𝛽

(𝑡+1)
= 𝑄 ⋅

𝜕𝑝

𝜕𝛽

(𝑡)
+

𝜕𝑄𝑗𝑢

𝜕𝛽
⋅ 𝑝

[WSDM ’11]

𝑎𝑢𝑣 = 𝑓𝛽 𝑢, 𝑣

= exp −෍

𝑖

𝛽𝑖 ⋅ x𝑢𝑣 𝑖

Details!

 To optimize 𝑭(𝜷), use gradient descent:

 Pick a random starting point 𝛽(0)

 Using current 𝛽(𝑡) compute edge strenghts and
the transition matrix 𝑄

 Compute PageRank scores 𝑝

 Compute the gradient with

respect to weight vector 𝛽(𝑡)

 Update 𝛽(𝑡+1)

Iteration, (t)

L
o
s
s
,

h
(·

)

Details!

 Facebook Iceland network
 174,000 nodes (55% of population)

 Avg. degree 168

 Avg. person added 26 friends/month
 For every node s:
 Positive examples:
 𝐷 = { new friendships 𝑠 created in Nov ‘09 }

 Negative examples:
 𝐿 = { other nodes 𝑠 did not create new links to }

 Limit to friends of friends:
 On avg. there are 20,000 FoFs (maximum is 2 million)!

[WSDM ’11]

s

 Node and Edge features for learning:

 Node: Age, Gender, Degree

 Edge: Age of an edge, Communication, Profile
visits, Co-tagged photos

 Evaluation:

 Precision at top 20

 We produce a list of 20 candidates
 By taking top 20 nodes 𝑥 with highest PageRank score 𝑝𝑥

 Measure to what fraction of these nodes
𝑠 actually links to

 Facebook: Predict future friends

 Adamic-Adar already works great

 Supervised Random Walks (SRW) gives slight
improvement

 2.3x improvement over previous FB-PYMK
(People You May Know)

2.3x

 Arxiv Hep-Ph collaboration network:

 Poor performance of unsupervised methods

 SRW gives a boost of 25%!

Semantic differences between “interested in” and “similar to”

 WtF (“Who to Follow"): the Twitter user
recommendation service

 help existing and new users to discover
connections to sustain and grow

 used for search relevance, content discovery,
promoted products, etc.

 Twitter Data:

 200 million users

 400 million tweets every day (as of early 2013)

 http://www.internetlivestats.com/twitter-statistics/

 Graph

 Node: user

 (Directed) Edge: follows

 Graph Statistics (Aug’12)

 Over 20 billion edges

 Power law of in- and out-degrees

 Over 1000 with more than 1 million followers

 25 users with more than 10 million followers

http://blog.ouseful.info/2011/07/07/visualising-twitter-friend-connections-
using-gephi-an-example-using-wireduk-friends-network/

 Circle of Trust

 Based on an egocentric random walk (similar to
personalized (rooted) PageRank)

 Computed in an online fashion (from scratch
each time) given a set of parameters

 # of random walk steps

 reset probability

 pruning settings to discard low probability vertices

 parameters to control sampling of outgoing edges
at vertices with large out-degrees

 Directed edge

 Asymmetric nature of the follow relationship

 Friendships in other social networks such as Facebook or
LinkedIn are symmetric/reciprocal

 Similar to the user-item recommendations
problem where the “item” is also a user

 SALSA (Stochastic Approach for
Link-Structure Analysis)

 a variation of HITS
 HITS

 Intuition:
 Good hubs point to good authorities

 Good auth. are pointed by good hubs

 Recurs. comput. of hub score

 Recurs. comput. of auth. score

hubs authorities





jij

ji ah
:





ijj

ji ha
:

 Random walks to rank hubs and authorities

 Two different random walks (Markov chains): a
chain of hubs and a chain of authorities

 Each walk traverses nodes only in one side by
traversing two links in each step hah, aha

hubs authorities

Transition matrices of each chain: H and A
W: the adjacency of the directed graph
Wr: divide each entry by the sum of its row
Wc: divide each entry by the sum of its column

H = WrWc
T

A = Wc
T Wr

 Reduces to the problem of HITS with tightly
knit communities

 TKC effect

 Better for single-topic communities
 More efficient implementation

 The HITS algorithm favors the most dense
community of hubs and authorities

 Tightly Knit Community (TKC) effect

 The HITS algorithm favors the most dense
community of hubs and authorities

 Tightly Knit Community (TKC) effect

1

1

1

1

1

1

 The HITS algorithm favors the most dense
community of hubs and authorities

 Tightly Knit Community (TKC) effect

3

3

3

3

3

 The HITS algorithm favors the most dense
community of hubs and authorities

 Tightly Knit Community (TKC) effect

32

32

32

3∙2

3∙2

3∙2

 The HITS algorithm favors the most dense
community of hubs and authorities

 Tightly Knit Community (TKC) effect

33

33

33

32 ∙ 2

32 ∙ 2

 The HITS algorithm favors the most dense
community of hubs and authorities

 Tightly Knit Community (TKC) effect

34

34

34

32 ∙ 22

32 ∙ 22

32 ∙ 22

 The HITS algorithm favors the most dense
community of hubs and authorities

 Tightly Knit Community (TKC) effect

32n

32n

32n

3n ∙ 2n

3n ∙ 2n

3n ∙ 2n

after n iterations

 The HITS algorithm favors the most dense
community of hubs and authorities

 Tightly Knit Community (TKC) effect

1

1

1

0

0

0

after normalization
with the max
element as n → ∞

 Hubs:

 500 top-ranked nodes from a
user's circle of trust

 user similarity (based on
homophily, also useful)

 Authorities:

 users that the hubs follow

 “interested in” user
recommendations

 SALSA’s recursive nature

 Two users are similar if they follow the same (or
similar) users (LHS)

 A user u is likely to follow those who are followed
by users that are similar to u (RHS)

 The random walk ensures fair distribution of
scores in both directions

 Similar users are selected from the circle of
trust of a user (via personalized PageRank)

 Approaches

 Offline experiments on retrospective data

 Online A/B testing on live traffic

 Various parameters may interfere:

 How the results are rendered

 Platform (mobile, etc.)

 New vs old users

 Add metadata to vertices (e.g., user profile
information) and edges (e.g., edge weights,
timestamp, etc.)

 Consider interaction graphs (e.g., graphs
defined in terms of retweets, favorites,
replies, etc.)

 Two phase algorithm

 1st - Candidate generation: produce a list of
promising recommendations for each user, using
any algorithm

 2nd - Rescoring: apply a machine-learned model to
the candidates, binary classification problem
(logistic regression)

 Evaluation

 1st Phase: recall + diversity

 2nd Phase: precision + maintain diversity

