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 Web Search: How to Organize the Web?
 Ranking Nodes on Graphs
 Hubs and Authorities
 PageRank
 How to Solve PageRank

 Personalized PageRank
 Link Prediction in Networks
 Estimating Scores for Missing Edges
 Case studies:
 Facebook: Supervised Random Walks for Link Prediction
 Twitter: The who to follow service at Twitter 



 How to organize the Web?
 First try: Human curated

Web directories
 Yahoo, DMOZ, LookSmart

 Second try: Web Search
 Information Retrieval attempts to 

find relevant docs in a small 
and trusted set
 Newspaper articles, Patents, etc.

 But: Web is huge, full of untrusted documents, 
random things, web spam, etc.

 So we need a good way to rank webpages!



2 challenges of web search:
 (1) Web contains many sources of information

Who to “trust”?

 Insight: Trustworthy pages may point to each other!

 (2) What is the “best” answer to query 
“newspaper”?

 No single right answer

 Insight: Pages that actually know about newspapers 
might all be pointing to many newspapers



 All web pages are not equally “important”

www.joe-schmoe.com vs. www.stanford.edu

 We already know:
There is large diversity 
in the web-graph 
node connectivity.

 So, let’s rank the pages 
using the web graph
link structure!

vs.

http://www.joe-schmoe.com/
http://www.stanford.edu/


 We will cover the following Link Analysis 
approaches to computing importance of 
nodes in a graph:
 Hubs and Authorities (HITS)

 Page Rank

 Topic-Specific (Personalized) Page Rank

Sidenote: Various notions of node centrality: Node 𝒖
 Degree centrality = degree of 𝑢

 Betweenness centrality = #shortest paths passing through 𝑢

 Closeness centrality = avg. length of shortest paths from 𝑢 to 
all other nodes of the network

 Eigenvector centrality = like PageRank





 Goal (back to the newspaper example):
 Don’t just find newspapers. Find “experts” – pages that 

link in a coordinated way to good newspapers

 Idea: Links as votes
 Page is more important if it has more links
 In-coming links? Out-going links?

 Hubs and Authorities
Each page has 2 scores:
 Quality as an expert (hub):
 Total sum of votes of pages pointed to

 Quality as a content (authority):
 Total sum of votes of experts

 Principle of repeated improvement

NYT: 10

Ebay: 3

Yahoo: 3

CNN: 8

WSJ: 9



Interesting pages fall into two classes:
1. Authorities are pages containing 

useful information
 Newspaper home pages

 Course home pages

 Home pages of auto manufacturers

2. Hubs are pages that link to authorities
 List of newspapers

 Course bulletin

 List of U.S. auto manufacturers

NYT: 10
Ebay: 3
Yahoo: 3
CNN: 8
WSJ: 9



Each page starts with hub score 1

Authorities collect their votes

(Note this is idealized example. In reality graph is not bipartite and 

each page has both the hub and authority score)



Hubs collect authority scores

(Note this is idealized example. In reality graph is not bipartite and 

each page has both the hub and authority score)



Authorities collect hub scores

(Note this is idealized example. In reality graph is not bipartite and 

each page has both the hub and authority score)



 A good hub links to many good authorities
 A good authority is linked from many good 

hubs
 Note a self-reinforcing recursive definition

 Model using two scores for each node:

 Hub score and Authority score

 Represented as vectors 𝒉 and 𝒂, where the i-th
element is the hub/authority score of the i-th node



 Each page 𝒊 has 2 scores:
 Authority score: 𝒂𝒊
 Hub score: 𝒉𝒊

HITS algorithm:

 Initialize: 𝑎𝑗
(0)

= 1/ n, hj
(0)

= 1/ n

 Then keep iterating until convergence:

 ∀𝒊: Authority: 𝑎𝑖
(𝑡+1)

= σ𝑗→𝑖 ℎ𝑗
(𝑡)

 ∀𝒊: Hub: ℎ𝑖
(𝑡+1)

= σ𝑖→𝑗 𝑎𝑗
(𝑡)

 ∀𝒊: Normalize:

σ𝑖 𝑎𝑖
𝑡+1

2
= 1, σ𝑗 ℎ𝑗

𝑡+1
2
= 1

[Kleinberg ‘98]
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Convergence criteria:



 Definition: Eigenvectors & Eigenvalues
 Let 𝑹 ⋅ 𝒙 = 𝝀 ⋅ 𝒙

for some scalar 𝝀, vector 𝒙, matrix 𝑹

 Then 𝒙 is an eigenvector, and 𝝀 is its eigenvalue

 The steady state (HITS has converged) is:

 𝑨𝑻 ⋅ 𝑨 ⋅ 𝒂 = 𝒄′ ⋅ 𝒂

 𝑨 ⋅ 𝑨𝑻 ⋅ 𝒉 = 𝒄′′ ⋅ 𝒉

 So, authority 𝒂 is eigenvector of 𝑨𝑻𝑨
(associated with the largest eigenvalue)
Similarly: hub 𝒉 is eigenvector of 𝑨𝑨𝑻

Note constants c’,c’’

don’t matter as we 

normalize them out

every step of HITS





 Still the same idea: Links as votes

 Page is more important if it has more links

 In-coming links? Out-going links?

 Think of in-links as votes:
 www.stanford.edu (many in-links)

 www.edessacity.gr (few in-link)

 Are all in-links equal?

 Links from important pages count more

 Recursive question! 

http://www.stanford.edu/
http://www.edessacity.gr/


 A “vote” from an important 
page is worth more:

 Each link’s vote is proportional 
to the importance of its source 
page

 If page i with importance ri has 
di out-links, each link gets ri / di

votes

 Page j’s own importance rj is 
the sum of the votes on its in-
links

rj = ri/3 + rk/4

j

ki

rj/3

rj/3rj/3

ri/3 rk/4



 A page is important if it is 
pointed to by other important 
pages

 Define a “rank” rj for node j





ji
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j

r
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id
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ma
a/2

y/2
a/2

m

y/2

The web in 1839

“Flow” equations:

ry = ry /2 + ra /2

ra = ry /2 + rm

rm = ra /2

𝒅𝒊 … out-degree of node 𝒊

You might wonder: Let’s just use Gaussian elimination

to solve this system of linear equations. Bad idea!



 Stochastic adjacency matrix 𝑴
 Let page 𝒋 have 𝒅𝒋 out-links

 If 𝒋 → 𝒊, then  𝑴𝒊𝒋 =
𝟏

𝒅
𝒋

 𝑴 is a column stochastic matrix
 Columns sum to 1

 Rank vector 𝒓: An entry per page
 𝒓𝒊 is the importance score of page 𝒊

 σ𝒊 𝒓𝒊 = 𝟏

 The flow equations can be written 

𝒓 = 𝑴 ⋅ 𝒓 



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 Imagine a random web surfer:

 At any time 𝒕, surfer is on some page 𝑖

 At time 𝒕 + 𝟏, the surfer follows an 
out-link from 𝒊 uniformly at random

 Ends up on some page 𝒋 linked from 𝒊

 Process repeats indefinitely

 Let:
 𝒑(𝒕) … vector whose 𝑖th coordinate is the 

prob. that the surfer is at page 𝑖 at time 𝑡

 So, 𝒑(𝒕) is a probability distribution over pages





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 Where is the surfer at time t+1?

 Follows a link uniformly at random

𝒑 𝒕 + 𝟏 = 𝑴 ⋅ 𝒑(𝒕)

 Suppose the random walk reaches a state 
𝒑 𝒕 + 𝟏 = 𝑴 ⋅ 𝒑(𝒕) = 𝒑(𝒕)

then 𝒑(𝑡) is stationary distribution of a random walk

 Our original rank vector 𝒓 satisfies  𝒓 = 𝑴 ⋅ 𝒓

 So, 𝒓 is a stationary distribution for 
the random walk

)(M)1( tptp 

j

i1 i2 i3





Given a web graph with n nodes, where the 
nodes are pages and edges are hyperlinks
 Assign each node an initial page rank
 Repeat until convergence (i |ri

(t+1) – ri
(t)| < )

 Calculate the page rank of each node



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𝒅𝒊 …. out-degree of node 𝒊



 Power Iteration:

 Set 𝑟𝑗 ← 1/N

 1: 𝑟′𝑗 ← σ𝑖→𝑗
𝑟𝑖

𝑑𝑖

 2: 𝑟 ← 𝑟′

 If |𝑟 − 𝑟’| > 𝜀: goto 1

 Example:
ry 1/3 1/3 5/12 9/24 6/15

ra = 1/3 3/6 1/3 11/24 … 6/15

rm 1/3 1/6 3/12 1/6 3/15

y

a m

y a m

y ½ ½ 0

a ½ 0 1

m 0 ½ 0

Iteration 0, 1, 2, …

ry = ry /2 + ra /2

ra = ry /2 + rm

rm = ra /2



 Power Iteration:

 Set 𝑟𝑗 ← 1/N

 1: 𝑟′𝑗 ← σ𝑖→𝑗
𝑟𝑖

𝑑𝑖

 2: 𝑟 ← 𝑟′

 If |𝑟 − 𝑟’| > 𝜀: goto 1

 Example:
ry 1/3 1/3 5/12 9/24 6/15

ra = 1/3 3/6 1/3 11/24 … 6/15

rm 1/3 1/6 3/12 1/6 3/15

y

a m

y a m

y ½ ½ 0

a ½ 0 1

m 0 ½ 0

Iteration 0, 1, 2, …

ry = ry /2 + ra /2

ra = ry /2 + rm

rm = ra /2



 Does this converge?

 Does it converge to what we want?

 Are results reasonable?
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 The “Spider trap” problem:

 Example:

ra 1 0 1 0

rb 0 1 0 1
=

ba

Iteration:  0,        1,        2,        3…


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 The “Dead end” problem:

 Example:

ra 1 0 0 0

rb 0 1 0 0=

ba 



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Iteration:  0,        1,        2,        3…



2 problems:
 (1) Some pages are 

dead ends (have no out-links)

 Such pages cause 
importance to “leak out”

 (2) Spider traps
(all out-links are within the group)

 Eventually spider traps absorb all importance



 Power Iteration:

 Set 𝑟𝑗 =
1

𝑁

 𝑟𝑗 = σ𝑖→𝑗
𝑟𝑖

𝑑𝑖

 And iterate

 Example:
ry 1/3 2/6 3/12 5/24 0

ra = 1/3 1/6 2/12 3/24 … 0

rm 1/3 3/6 7/12 16/24 1

Iteration 0, 1, 2, …

y

a m

y a m

y ½ ½ 0

a ½ 0 0

m 0 ½ 1

ry = ry /2 + ra /2

ra = ry /2

rm = ra /2 + rm



 The Google solution for spider traps: At each 
time step, the random surfer has two options

 With prob. , follow a link at random

 With prob. 1-, jump to a random page

 Common values for  are in the range 0.8 to 0.9

 Surfer will teleport out of spider trap within a 
few time steps

y

a m

y

a m



 Power Iteration:

 Set 𝑟𝑗 =
1

𝑁

 𝑟𝑗 = σ𝑖→𝑗
𝑟𝑖

𝑑𝑖

 And iterate

 Example:
ry 1/3 2/6 3/12 5/24 0

ra = 1/3 1/6 2/12 3/24 … 0

rm 1/3 1/6 1/12 2/24 0

Iteration 0, 1, 2, …

y

a m

y a m

y ½ ½ 0

a ½ 0 0

m 0 ½ 0

ry = ry /2 + ra /2

ra = ry /2

rm = ra /2



 Teleports: Follow random teleport links with 
probability 1.0 from dead-ends

 Adjust matrix accordingly

y

a m

y a m

y ½ ½ ⅓

a ½ 0 ⅓

m 0 ½ ⅓

y a m

y ½ ½ 0

a ½ 0 0

m 0 ½ 0

y

a m



 Google’s solution: At each step, random 
surfer has two options:

 With probability ,  follow a link at random

 With probability 1-, jump to some random page

 PageRank equation [Brin-Page, ‘98]

𝑟𝑗 =෍

𝑖→𝑗

𝛽
𝑟𝑖
𝑑𝑖
+ (1 − 𝛽)

1

𝑛 di … out-degree 
of node i

The above formulation assumes that 𝑴 has no dead ends. We can 

either preprocess matrix 𝑴 (bad!) or explicitly follow random teleport 

links with probability 1.0 from dead-ends. See P. Berkhin, A Survey 

on PageRank Computing, Internet Mathematics, 2005.



 PageRank as a principal eigenvector
𝒓 = 𝑴 ⋅ 𝒓 or equivalently 𝒓𝒋 = 𝒊

𝒓
𝒊

𝒅
𝒊

 But we really want (**):

𝒓𝒋 = 𝜷σ𝒊
𝒓𝒊

𝒅𝒊
+ 𝟏 − 𝜷

𝟏

𝒏

 Let’s define:

𝑴’𝒊𝒋 = 𝜷𝑴𝒊𝒋 + (𝟏 − 𝜷)
𝟏

𝒏
 Now we get what we want:

𝒓 = 𝑴’ ⋅ 𝒓
 What is 𝟏 − ?
 In practice 0.15 (Jump approx. every 5-6 links)

di … out-degree 
of node i

Note: 𝑀 is a sparse 

matrix but 𝑴′ is dense 

(all entries ≠ 0). In 

practice we never 

“materialize” 𝑀 but 

rather we use the 

“sum” formulation (**)

Details!



 Input: Graph 𝑮 and parameter 𝜷
 Directed graph 𝑮 with spider traps and dead ends
 Parameter 𝛽

 Output: PageRank vector 𝒓

 Set: 𝑟𝑗
0

=
1

𝑁
, 𝑡 = 1

 do:

 ∀𝑗: 𝒓′𝒋
(𝒕)

= σ𝒊→𝒋𝜷
𝒓𝒊
(𝒕−𝟏)

𝒅𝒊

𝒓′𝒋
(𝒕)

= 𝟎 if in-deg. of 𝒋 is 0

 Now re-insert the leaked PageRank:

∀𝒋: 𝒓𝒋
𝒕
= 𝒓′𝒋

𝒕
+

𝟏−𝑺

𝑵

 𝒕 = 𝒕 + 𝟏

 while σ𝑗 𝑟𝑗
(𝑡)

− 𝑟𝑗
(𝑡−1)

> 𝜀

where: 𝑆 = σ𝑗 𝑟′𝑗
(𝑡)



http://upload.wikimedia.org/wikipedia/commons/f/fb/PageRanks-Example.svg


 PageRank and HITS are two solutions to the 
same problem:

 What is the value of an in-link from u to v?

 In the PageRank model, the value of the link 
depends on the links into u

 In the HITS model, it depends on the value of the 
other links out of u

 The destinies of PageRank and HITS 
post-1998 were very different





A BH1 1

D
1 1

E

F

G

1 11

I J1

1 1

a.k.a.: Relevance, Closeness, ‘Similarity’…

[Tong-Faloutsos, ‘06]



 Given: 
Conferences-to-authors
graph

 Goal:
Proximity on graphs

 Q: What is most related 
conference to ICDM?

ICDM

KDD

SDM

Philip S. Yu

IJCAI

NIPS

AAAI M. Jordan

Ning Zhong

R. Ramakrishnan

…

…

… …

Conference Author



…

Sea Sun Sky Wave{ } { }Cat Forest Grass Tiger

{?, ?, ?,}

?

[Tong et al. ‘08]



Test Image

Sea Sun Sky Wave Cat Forest Tiger Grass

Image

Keyword

Region

[Tong et al. ‘08]



Test Image

Sea Sun Sky Wave Cat Forest Tiger Grass

Image

Keyword

Region

{Grass, Forest, Cat, Tiger}

[Tong et al. ‘08]



 Shortest path is not good:

 No influence for degree-1 nodes (E, F, G)!
 Multi-faceted relationships



 Network Flow is not good:

 Does not punish long paths



A BH1 1

D
1 1

E

F

G

1 11

I J1

1 1

• Multiple Connections

• Quality of connection

•Direct & In-direct 

connections

•Length, Degree, 

Weight…

…

[Tong-Faloutsos, ‘06]
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 Goal: Evaluate pages not just by popularity 
but by how close they are to the topic

 Teleporting can go to:

 Any page with equal probability

 (we used this so far)

 A topic-specific set of “relevant” pages

 Topic-specific (personalized) PageRank

𝑴’𝒊𝒋 = 𝜷𝑴𝒊𝒋 + (𝟏 − 𝜷)/|𝑺| if 𝒊 ∈ 𝑺

= 𝜷𝑴𝒊𝒋 otherwise

 Random Walk with Restart: S is a single element

(S ...teleport set)



 Graphs and web search:

 Ranks nodes by “importance”

 Personalized PageRank:

 Ranks proximity of nodes 
to the teleport nodes 𝑺

 Proximity on graphs:

 Q: What is most related 
conference to ICDM?

 Random Walks with Restarts

 Teleport back to the starting node:
S = { single node }

ICDM

KDD

SDM

Philip S. Yu

IJCAI

NIPS

AAAI M. Jordan

Ning Zhong

R. Ramakrishnan

…

…

… …

Conference Author



Node 4

Node 1

Node 2

Node 3

Node 4

Node 5

Node 6

Node 7

Node 8

Node 9

Node 10

Node 11

Node 12
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0.22
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12
0.13

0.10

0.13

0.13

0.05

0.05

0.08

0.04

0.02

0.04

0.03

Ranking vector 

More red, more relevant

Nearby nodes, higher scores

4r



ICDM

KDD

SDM

ECML

PKDD

PAKDD

CIKM

DMKD

SIGMOD

ICML

ICDE

0.009

0.011

0.008
0.007

0.005

0.005

0.005

0.004
0.004

0.004



A: Personalized 
PageRank with 
teleport set S={KDD, 
ICDM}

Q: Which conferences
are closest to KDD & 
ICDM? 

I

K

Graph of CS conferences



Thanks to Jure Leskovec, Stanford and Panayiotis Tsaparas, 
Univ. of Ioannina for slides



 Link Prediction in Networks
 Estimating Scores for Missing Edges
 Classification Approach (Omitted)

 Case studies:
 Facebook: Supervised Random Walks for Link 

Prediction
 Twitter: The who to follow service at Twitter 



 Recommending new friends in online social networks
 Predicting the participation of actors in events
 Suggesting interactions between the members of a 

company/organization that are external to the hierarchical 
structure of the organization itself

 Predicting connections between members of 
communities/organizations who have not been directly 
observed together

 Suggesting collaborations between researchers based on co-
authorship

 Overcoming the data-sparsity problem in recommender 
systems using collaborative filtering



 The link prediction task:

 Given 𝐺[𝑡0, 𝑡0
′ ] a graph on edges up

to time 𝑡0
′ , output a ranked list L

of links (not in 𝐺[𝑡0, 𝑡0
′ ]) that are 

predicted to appear in 𝐺[𝑡1, 𝑡1
′ ]

 Evaluation:

 n = |Enew|: # new edges that appear during 
the test period [𝑡1, 𝑡1

′ ]

 Take top n elements of L and count correct edges

[LibenNowell-Kleinberg ‘03]

𝐺[𝑡0, 𝑡0
′ ]

𝐺[𝑡1, 𝑡1
′ ]



 Predict links in a evolving collaboration 
network

 Core: Because network data is very sparse
 Consider only nodes with degree of at least 3
 Because we don't know enough about these nodes to 

make good inferences

[LibenNowell-Kleinberg ‘03]



 Methodology:

 For each pair of nodes (x,y) compute score c(x,y)

 For example, c(x,y) could be the # of 
common neighbors of x and y

 Sort pairs (x,y) by the decreasing score c(x,y)

 Note: Only consider/predict edges where 
both endpoints are in the core (deg. ≥ 3)

 Predict top n pairs as new links

 See which of these links actually
appear in 𝐺[𝑡1, 𝑡1

′ ]

X



 Different scoring functions  𝒄(𝒙, 𝒚) =
 Graph distance: (negated) Shortest path length
 Common neighbors: |Γ 𝑥 ∩ Γ(𝑦)|
 Jaccard’s coefficient: Γ 𝑥 ∩ Γ 𝑦 /|Γ 𝑥 ∪ Γ(𝑦)|

 Adamic/Adar: σ𝑧∈Γ 𝑥 ∩Γ(𝑦) 1/log |Γ(𝑧)|

 Preferential attachment: |Γ 𝑥 | ⋅ |Γ(𝑦)|

 PageRank: 𝑟𝑥(𝑦) + 𝑟𝑦(𝑥)
 𝑟𝑥 𝑦 … stationary distribution score of y under the random walk:
 with prob. 0.15, jump to x
 with prob. 0.85, go to random neighbor of current node

 Then, for a particular choice of c(·)
 For every pair of nodes (x,y) compute c(x,y)
 Sort pairs (x,y) by the decreasing score c(x,y)
 Predict top n pairs as new links

[LibenNowell-Kleinberg ‘03]

Γ(x) … neighbors 

of node x



Thanks to Jure Leskovec, Stanford and Panayiotis Tsaparas, 
Univ. of Ioannina for slides



 How to assign the score c(x, y) for each pair 
(x, y)?

 Some form of similarity between x and y

 Some form of node proximity between x and y

 Methods

 Neighborhood-based (shared neighbors)

 Network proximity based (paths between x and y)

 Other



Neighborhood-based



Let Γ(x) be the set of neighbors of x in Gold

 Methods

 Common Neighbors Overlap

 Jaccard

 Adamic/Adar

 Preferential Attachment



 Common neighbors

 A: adjacency matrix, Ax,y
2: #paths of length 2

 Jaccard coefficient

 The probability that both x and y have a feature for a 
randomly selected feature that either x or y has

Intuition: The larger the overlap of the neighbors 
of two nodes, the more likely the nodes to be 
linked in the future 



 Adamic/Adar

 Assigns large weights to common neighbors z of x and y
which themselves have few neighbors (weight rare features 
more heavily)

 Preferential attachment

 Based on the premise that the probability that a new edge 
has node x as its endpoint is proportional to |Γ(x)|, i.e., 
nodes like to form ties with ‘popular’ nodes



Network proximity based



Intuition: The “closer” two nodes are in the 
network, the more likely are to be linked in the 
future 

 Methods
 based on shortest path length between x and y

 based on all paths between x and y
 Katzβ measure (unweighted, weighted)

 Random walk-based
 hitting time

 commute time

 Rooted PageRank

 SimRank



For x, y ∈ V×V−Eold, 

score(x, y) = (negated) length of shortest
path between x and y

If there are more than n pairs of nodes tied for 
the shortest path length, order them at random



 Katzβ measure

 Sum over all paths of length l

 0<β<1: a parameter of the predictor, exponentially
damped to count short paths more heavily



 Katzβ measure

 Unweighted version: pathx,y(1) = 1, if x and y have
collaborated, 0 otherwise

 Weighted version: pathx,y(1) = #times x and y have
collaborated



Consider a random walk on Gold that starts at x and 
iteratively moves to a neighbor of x chosen uniformly 
at random from Γ(x)
 Hitting Hx,y (from x to y): the expected number of steps it 

takes for the random walk starting at x to reach y
score(x, y) = − Hx,y

 Commute Time Cx,y (from x to y): the expected number of 
steps to travel from x to y and from y to x

score(x, y) = − (Hx,y + Hy,x)

Not symmetric, can be shown



 The hitting time and commute time measures 
are sensitive to parts of the graph far away from 
x and y  periodically reset the walk

 Random walk on Gold that starts at x and has a 
probability α of returning to x at each step

 Rooted PageRank
 Starts from x

 with probability (1 – a) moves to a random neighbor 

 with probability a returns to x

score(x, y) = stationary probability of y in a 
rooted PageRank



Intuition: Two objects are similar, if they are
related to similar objects

 Two objects x and y are similar, if they are
related to objects a and b respectively and a and
b are themselves similar

 Expresses the average similarity between 
neighbors of x and neighbors of y

score(x, y) = similarity(x, y)



Other Methods



 Low-rank Approximations
 Unseen bigrams
 High-level Clustering



Intuition: represent the adjacency matrix M with a 
lower rank matrix Mk

 Method

 Apply SVD (singular value decomposition)

 Obtain the rank-k matrix that best approximates M



 r: rank of matrix A

 σ1≥ σ2≥ … ≥σr : singular values (square roots of eig-vals AAT, ATA)

 : left singular vectors (eig-vectors of AAT)

 : right singular vectors (eig-vectors of ATA)
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 Unseen bigrams: Predict pairs of words that co-occur in a test 
corpus, but not in the corresponding training corpus

 Not just score(x, y) but score(z, y) for nodes z that are similar 
to x --- Sx

(δ): the δ nodes most related to x



 Compute score(x, y) for all edges in Eold

 Delete the (1-p) fraction of the edges whose 
score is the lowest, for some parameter p

 Re-compute score(x, y) for all pairs in the 
subgraph





 Each link predictor p outputs a ranked list Lp

of pairs in V×V−Eold in decreasing order of 
confidence

 focus on Core network, (d > 3)

E∗new =  Enew ∩ (Core × Core)  = |E∗new|

 Evaluation method: Size of intersection of

 the first n edge predictions from Lp that are in Core 
× Core, and 

 the actual set E∗new

How many of the (relevant) top-n predictions are correct (precision?)



 Random Predictor: Randomly select pairs of 
authors who did not collaborate in the 
training interval

 Probability that a random prediction is correct:

In the datasets, from 0.15% (cond-mat) to 0.48% (astro-ph)



 Improvement over random predictor
 average ratio over the five 
datasets of the given predictor's 
performance versus a baseline 
predictor's performance. 
 the error bars indicate the 
minimum and maximum of this 
ratio over the five datasets. 
 the parameters for the starred 
predictors are: (1) for weighted 
Katz,  β= 0.005; (2) for Katz 
clustering, β1 = 0.001;  ρ = 0.15; β2 
= 0.1; (3) for low-rank inner 
product, rank = 256; (4) for rooted 
Pagerank, α = 0.15; (5) for unseen 
bigrams, unweighted, common 
neighbors with δ = 8; and (6) for 
SimRank, C ( γ) = 0.8.



 Improvement over #common neighbors



 Improvement over graph distance predictor



[LibenNowell-Kleinberg ’ 03]

Performance score: Fraction
of new edges that are guessed 
correctly.







# correct 
predictions

How similar are the 
predictions made by the 
different methods?
# common predictions



 Improve performance. Even the best (Katz 
clustering on gr-qc) correct on only about 16% 
of its prediction

 Improve efficiency on very large networks 
(approximation of distances)

 Treat more recent links (e.g., collaborations) 
as more important

 Additional information (paper titles, author 
institutions, etc) latently  present in the graph





 Can we learn to predict new friends?

 Facebook’s People You May Know

 Let’s look at the FB data: 

 92% of new friendships on 
FB are friend-of-a-friend

 More mutual friends helps

[WSDM ‘11]
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 Goal: Recommend a list of possible friends
 Supervised machine learning setting:

 Labeled training examples: 

 For every user 𝑠 have a list of others she 
will create links to {𝑑1 … 𝑑𝑘} in the future
 Use FB network from May 2012 and {𝑑1 … 𝑑𝑘}

are the new friendships you created since then

 These are the “positive” training examples

 Use all other users as “negative” example

 Task:

 For a given node 𝑠, score nodes {𝑑1 … 𝑑𝑘}
higher than any other node in the network

“positive” nodes
“negative” nodes

s

Green nodes 

are the nodes 

to which s

creates links in 

the future



s

 How to combine node/edge features and
the network structure?
 Estimate strength of each friendship (𝑢, 𝑣) using:
 Profile of user 𝑢, profile of user 𝑣

 Interaction history of users 𝑢 and 𝑣

 This creates a weighted graph

 Do Personalized PageRank from 𝒔
and measure the “proximity” (the 
visiting prob.) of any other 
node 𝑤 from 𝑠

 Sort nodes 𝑤 by decreasing 
“proximity”

“positive” nodes
“negative” nodes

s



 Let 𝑠 be the starting node
 Let 𝒇𝜷(𝒖, 𝒗) be a function that 

assigns strength 𝒂𝒖𝒗 to edge 𝒖, 𝒗
𝑎𝑢𝑣 = 𝑓𝛽 𝑢, 𝑣 = exp −σ𝑖 𝛽𝑖 ⋅ x𝑢𝑣 𝑖
 𝒙𝒖𝒗 is a feature vector of (𝒖, 𝒗)

 Features of node 𝑢

 Features of node 𝑣

 Features of edge (𝑢, 𝑣)

 Note: 𝜷 is the weight vector we will later estimate!

 Do Random Walk with Restarts from 𝑠 where 
transitions are according to edge strengths 𝑎𝑢𝑣

[WSDM ’11]

“positive” nodes
“negative” nodes

s



 How to estimate edge strengths?

 How to set parameters β of  fβ(u,v)?

 Idea: Set 𝛽 such that it (correctly) 
predicts the known future links

s

Network

s

Set edge 

strengths

auv = fβ(u,v)

Random Walk with 

Restarts on the 

weighted graph.

Each node w has a 

PageRank proximity pw

Sort nodes w by the 

decreasing PageRank 

score pw

Recommend top k

nodes with the highest 

proximity pw to node s



 𝒂𝒖𝒗 …. Strength of edge (𝒖, 𝒗)
 Random walk transition matrix:

 PageRank transition matrix:

 Where with prob. 𝛼 we jump back to node 𝑠

 Compute PageRank vector: 𝑝 = 𝑝𝑇 𝑄

 Rank nodes 𝑤 by decreasing 𝑝𝑤

[WSDM ’11]

“positive” nodes
“negative” nodes

s



 Positive examples 
𝑫 = {𝒅𝟏, … , 𝒅𝒌}

 Negative examples 
𝑳 = {𝒐𝒕𝒉𝒆𝒓 𝒏𝒐𝒅𝒆𝒔}

 What do we want?

 Note:
 Exact solution to this problem may not exist

 So we make the constraints “soft” (i.e., optional) 

[WSDM ’11]

“positive” nodes
“negative” nodes

s

We prefer small 

weights 𝛽 to prevent

overfitting

Every positive example has to have 

higher PageRank score than every 

negative example



 Want to minimize:

 Loss: ℎ(𝑥) = 0 if 𝑥 < 0, or 𝑥2 else

[WSDM ’11]
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 How to minimize F?

 Both pl and pd depend on β

 Given β assign edge weights 𝑎𝑢𝑣 = 𝑓𝛽(𝑢, 𝑣)

 Using 𝑄 = [𝑎𝑢𝑣] compute PageRank scores 𝑝𝛽

 Rank nodes by the decreasing score

 Goal: Want to find β such that  pl < pd

[WSDM ’11]
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 How to minimize 𝑭(𝜷) ?

 Idea: 

 Start with some random 𝛽(0)

 Evaluate the derivative of 𝐹(𝛽) and 
do a small step in the opposite direction

𝛽(𝑡+1) = 𝛽(𝑡) − 𝜂
𝜕𝐹 𝛽(𝑡)

𝜕𝛽

 Repeat until convergence

[WSDM ’11]

s

𝛽(0)

𝑭(𝜷)
𝛽(50)

𝛽(100)



 What’s the derivative 
𝜕𝐹 𝛽(𝑡)

𝜕𝛽
?

 We know:

that is
 So:

[WSDM ’11]

Easy!

Details!



 We just got:
 Few details:
 Computing 𝜕𝑄𝑗𝑢/𝜕𝛽 is easy. Remember:

 We want 
𝜕𝑝𝑗

𝜕𝛽
but it appears on both 

sides of the equation. Notice the 
whole thing looks like a PageRank 
equation: 𝑥 = 𝑄 ⋅ 𝑥 + 𝑧

 As with PageRank we can use the 
power-iteration to solve it:

 Start with a random  
𝜕𝑝

𝜕𝛽

(0)

 Then iterate:  
𝜕𝑝

𝜕𝛽

(𝑡+1)
= 𝑄 ⋅

𝜕𝑝

𝜕𝛽

(𝑡)
+

𝜕𝑄𝑗𝑢

𝜕𝛽
⋅ 𝑝

[WSDM ’11]

𝑎𝑢𝑣 = 𝑓𝛽 𝑢, 𝑣

= exp −෍

𝑖

𝛽𝑖 ⋅ x𝑢𝑣 𝑖

Details!



 To optimize 𝑭(𝜷), use gradient descent:

 Pick a random starting point 𝛽(0)

 Using current 𝛽(𝑡) compute edge strenghts and 
the transition matrix 𝑄

 Compute PageRank scores 𝑝

 Compute the gradient with 

respect to weight vector 𝛽(𝑡)

 Update 𝛽(𝑡+1)

Iteration, (t)

L
o
s
s
, 

h
(·

)

Details!



 Facebook Iceland network 
 174,000 nodes (55% of population)

 Avg. degree 168

 Avg. person added 26 friends/month
 For every node s:
 Positive examples:
 𝐷 = { new friendships 𝑠 created in Nov ‘09 }

 Negative examples:
 𝐿 = { other nodes 𝑠 did not create new links to }

 Limit to friends of friends:
 On avg. there are 20,000 FoFs (maximum is 2 million)!

[WSDM ’11]

s



 Node and Edge features for learning:

 Node: Age, Gender, Degree

 Edge: Age of an edge, Communication, Profile 
visits, Co-tagged photos

 Evaluation:

 Precision at top 20

 We produce a list of 20 candidates
 By taking top 20 nodes 𝑥 with highest PageRank score 𝑝𝑥

 Measure to what fraction of these nodes 
𝑠 actually links to



 Facebook: Predict future friends

 Adamic-Adar already works great

 Supervised Random Walks (SRW) gives slight 
improvement



 2.3x improvement over previous FB-PYMK 
(People You May Know)

2.3x



 Arxiv Hep-Ph collaboration network:

 Poor performance of unsupervised methods

 SRW gives a boost of 25%!





Semantic differences between “interested in” and “similar to”



 WtF (“Who to Follow"): the Twitter user 
recommendation service

 help existing and new users to discover 
connections to sustain and grow 

 used for search relevance, content discovery, 
promoted products, etc. 

 Twitter Data: 

 200 million users

 400 million tweets every day (as of early 2013)

 http://www.internetlivestats.com/twitter-statistics/



 Graph

 Node: user 

 (Directed) Edge: follows

 Graph Statistics (Aug’12)

 Over 20 billion edges

 Power law of in- and out-degrees

 Over 1000 with more than 1 million followers 

 25 users with more than 10 million followers

http://blog.ouseful.info/2011/07/07/visualising-twitter-friend-connections-
using-gephi-an-example-using-wireduk-friends-network/



 Circle of Trust

 Based on an egocentric random walk (similar to 
personalized (rooted) PageRank)

 Computed in an online fashion (from scratch 
each time) given a set of parameters

 # of random walk steps

 reset probability

 pruning settings to discard low probability vertices

 parameters to control sampling of outgoing edges 
at vertices with large out-degrees



 Directed edge

 Asymmetric nature of the follow relationship

 Friendships in other social networks such as Facebook or 
LinkedIn are symmetric/reciprocal

 Similar to the user-item recommendations 
problem where the “item” is also a user



 SALSA (Stochastic Approach for 
Link-Structure Analysis)

 a variation of HITS
 HITS

 Intuition:
 Good hubs point to good authorities

 Good auth. are pointed by good hubs

 Recurs. comput. of hub score

 Recurs. comput. of auth. score

hubs authorities


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ji ha
:



 Random walks to rank hubs and authorities

 Two different random walks (Markov chains): a 
chain of hubs and a chain of authorities

 Each walk traverses nodes only in one side by 
traversing two links in each step hah, aha

hubs authorities

Transition matrices of each chain: H and A
W: the adjacency of the directed graph
Wr: divide each entry by the sum of its row
Wc: divide each entry by the sum of its column

H = WrWc
T

A = Wc
T Wr



 Reduces to the problem of HITS with tightly 
knit communities

 TKC effect

 Better for single-topic communities
 More efficient implementation



 The HITS algorithm favors the most dense 
community of hubs and authorities

 Tightly Knit Community (TKC) effect



 The HITS algorithm favors the most dense 
community of hubs and authorities

 Tightly Knit Community (TKC) effect
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 The HITS algorithm favors the most dense 
community of hubs and authorities

 Tightly Knit Community (TKC) effect

3

3

3

3

3



 The HITS algorithm favors the most dense 
community of hubs and authorities

 Tightly Knit Community (TKC) effect

32

32

32

3∙2

3∙2

3∙2



 The HITS algorithm favors the most dense 
community of hubs and authorities

 Tightly Knit Community (TKC) effect

33

33

33

32 ∙ 2

32 ∙ 2



 The HITS algorithm favors the most dense 
community of hubs and authorities

 Tightly Knit Community (TKC) effect

34

34

34

32 ∙ 22

32 ∙ 22

32 ∙ 22



 The HITS algorithm favors the most dense 
community of hubs and authorities

 Tightly Knit Community (TKC) effect

32n

32n

32n

3n ∙ 2n

3n ∙ 2n

3n ∙ 2n

after n iterations



 The HITS algorithm favors the most dense 
community of hubs and authorities

 Tightly Knit Community (TKC) effect

1

1

1

0

0

0

after normalization
with the max 
element as n → ∞



 Hubs:

 500 top-ranked nodes from a 
user's circle of trust

 user similarity (based on 
homophily, also useful)

 Authorities:

 users that the hubs follow

 “interested in” user 
recommendations



 SALSA’s recursive nature 

 Two users are similar if they follow the same (or 
similar) users (LHS)

 A user u is likely to follow those who are followed 
by users that are similar to u (RHS)

 The random walk ensures fair distribution of 
scores in both directions

 Similar users are selected from the circle of 
trust of a user (via personalized PageRank)



 Approaches

 Offline experiments on retrospective data

 Online A/B testing on live traffic

 Various parameters may interfere:

 How the results are rendered

 Platform (mobile, etc.)

 New vs old users



 Add metadata to vertices (e.g., user profile 
information) and edges (e.g., edge weights, 
timestamp, etc.)

 Consider interaction graphs (e.g., graphs 
defined in terms of retweets, favorites, 
replies, etc.)



 Two phase algorithm

 1st - Candidate generation: produce  a list of 
promising recommendations for each user, using 
any algorithm 

 2nd - Rescoring: apply a machine-learned model to 
the candidates, binary classification problem 
(logistic regression)

 Evaluation

 1st Phase: recall + diversity

 2nd Phase: precision + maintain diversity


