Outbreak Detection in Networks

Thanks to Jure Leskovec, Stanford and Panayiotis Tsaparas, Univ. of Ioannina for slides

Plan for Today

- (1) New problem: Outbreak detection
- (2) Develop an approximation algorithm
 - It is a submodular opt. problem!
- (3) Speed-up greedy hill-climbing
 - Valid for optimizing general submodular functions (i.e., also works for influence maximization)
- (4) Prove a new "data dependent" bound on the solution quality
 - Valid for optimizing any submodular function (i.e., also works for influence maximization)

Detecting Contamination Outbreaks

- Given a real city water distribution network
- And data on how contaminants spread in the network
- Detect the contaminant as quickly as possible
- Problem posed by the US Environmental Protection Agency

Detecting Information Outbreaks

Which blogs should one read to detect cascades as effectively as possible?

Detecting Information Outbreaks

General Problem

- Both of these two are an instance of the same underlying problem!
- Given a dynamic process spreading over a network we want to select a set of nodes to detect the process effectively

Many other applications:

- Epidemics
- Influence propagation
- Network security

Water Network: Utility

Utility of placing sensors:

Water flow dynamics, demands of households, ...
 For each subset S
 <u>V compute utility f(S)</u>

3/20/2017

Jure Leskovec, Stanford CS224W: Social and Information Network Analysis, http://cs224w.stanford.edu

Problem Setting: Contamination

Given:

- Graph G(V, E)
- Data on how outbreaks spread over the G:
 - For each outbreak i we know the time T(i, u) when outbreak i contaminates node u

Water distribution network (physical pipes and junctions)

Simulator of water consumption&flow

(built by Mech. Eng. people) We simulate the contamination spread for every possible location.

Jure Leskovec, Stanford CS224W: Social and Information Network Analysis, http://cs224w.stanford.edu

Problem Setting: Blogosphere

Given:

- Graph G(V, E)
- Data on how outbreaks spread over the G:
 - For each outbreak i we know the time T(i, u) when outbreak i contaminates node u

The network of the blogosphere

Traces of the information flow Collect lots of blogs posts and trace hyperlinks to obtain data about information flow from a given blog.

Problem Setting

Given:

- Graph G(V, E)
- Data on how outbreaks spread over the G:
 - For each outbreak i we know the time T(i, u) when outbreak i contaminates node u
- Goal: Select a subset of nodes S that maximizes the expected reward:

$$\max_{S \subseteq V} f(S) = \sum_{i} \underbrace{P(i) f_i(S)}_{\text{Expected reward for detecting outbreak } i}$$

subject to: $cost(S) < B$

Two Parts to the Problem

Reward

- (1) Minimize time to detection
- (2) Maximize number of detected propagations
- (3) Minimize number of infected people
- Cost (context dependent):
 - Reading big blogs is more time consuming
 - Placing a sensor in a remote location is expensive

Objective functions are Submodular

Objective functions:

 $f_i(S)$ is penalty reduction: $f_i(S) = \pi_i(\emptyset) - \pi_i(S)$

1) Time to detection (DT)

- How long does it take to detect a contamination?
- Penalty for detecting at time $t: \pi_i(t) = \min\{t, T_{max}\}$
- 2) Detection likelihood (DL)
 - How many contaminations do we detect?
 - Penalty for detecting at time $t: \pi_i(t) = 0, \pi_i(\infty) = 1$
 - Note, this is binary outcome: we either detect or not
- 3) Population affected (PA)
 - How many people drank contaminated water?
 - Penalty for detecting at time $t: \pi_i(t) = \{\text{# of infected nodes in outbreak } i \text{ by time } t\}.$

Observation: In all cases detecting sooner does not hurt!

Structure of the Problem

Observation: Diminishing returns

Objective functions are Submodular

- Claim: For all $A \subseteq B \subseteq V$ and sensors $s \in V \setminus B$ $f(A \cup \{s\}) - f(A) \ge f(B \cup \{s\}) - f(B)$
- Proof: All our objectives are submodular
 - Fix cascade/outbreak i
 - Show $f_i(A) = \pi_i(\infty) \pi_i(T(A, i))$ is submodular
 - Consider $A \subseteq B \subseteq V$ and sensor $s \in V \setminus B$
 - When does node s detect cascade i?
 - We analyze 3 cases based on when *s* detects outbreak *i*
 - (1) $T(s, i) \ge T(A, i)$: *s* detects late, nobody benefits: $f_i(A \cup \{s\}) = f_i(A)$, also $f_i(B \cup \{s\}) = f_i(B)$ and so $f_i(A \cup \{s\}) - f_i(A) = 0 = f_i(B \cup \{s\}) - f_i(B)$

Objective functions are Submodular

Remember $A \subseteq B$

Proof (contd.):

- (2) $T(B, i) \le T(s, i) < T(A, i)$: *s* detects after **B** but before **A** *s* detects sooner than any node in *A* but after all in *B*. So *s* only helps improve the solution *A* (but not *B*) $f_i(A \cup \{s\}) - f_i(A) \ge 0 = f_i(B \cup \{s\}) - f_i(B)$
- (3) T(s, i) < T(B, i): *s* detects early $f_i(A \cup \{s\}) - f_i(A) = [\pi_i(\infty) - \pi_i(T(s, i))] - f_i(A) \ge$ $[\pi_i(\infty) - \pi_i(T(s, i))] - f_i(B) = f_i(B \cup \{s\}) - f_i(B)$

• Ineqaulity is due to non-decreasingness of $f_i(\cdot)$, i.e., $f_i(A) \le f_i(B)$

Background: Submodular functions

Add sensor with highest marginal gain

What do we know about optimizing submodular functions?

- A hill-climbing (i.e., greedy) is near optimal: $(1 \frac{1}{e}) \cdot OPT$
- **But:**
 - (1) This only works for unit cost
 case! (each sensor costs the same)
 - For us each sensor s has cost c(s)
 - (2) Hill-climbing algorithm is slow
 - At each iteration we need to re-evaluate marginal gains of all nodes
 - Runtime $O(|V| \cdot K)$ for placing K sensors

CELF: Algorithm for optimizing submodular functions under cost constraints

Towards a New Algorithm

- Consider the following algorithm to solve the outbreak detection problem: Hill-climbing that ignores cost
 - Ignore sensor cost
 - Repeatedly select sensor with highest marginal gain
 - Do this until the budget is exhausted
- Q: How well does this work?
- A: It can fail arbitrarily badly! ③
 - Next we come up with an example where Hillclimbing solution is arbitrarily away from OPT

Problem 1: Ignoring Cost

Bad example when we ignore cost:

- n sensors, budget B
- s_1 : reward r, cost B
- $s_2 \dots s_n$: reward $r \varepsilon$, cost 1
- Hill-climbing always prefers more expensive sensor s_1 with reward r (and exhausts the budget).
 It never selects cheaper sensors with reward $r - \varepsilon$ It never selects cheaper sensors with reward $r - \varepsilon$

→ For variable cost it can fail arbitrarily badly!

Idea: What if we optimize benefit-cost ratio?

$$s_i = \arg \max_{s \in V} \frac{f(A_{i-1} \cup \{s\}) - f(A_{i-1})}{c(s)}$$

Greedily pick sensor s_i that maximizes benefit to cost ratio.

Problem 2: Benefit-Cost

- Benefit-cost ratio can also fail arbitrarily badly!
- Consider: budget B:
 - 2 sensors s₁ and s₂:
 - Costs: $c(s_1) = \varepsilon$, $c(s_2) = B$
 - Only 1 cascade: $f(s_1) = 2\varepsilon$, $f(s_2) = B$
 - Then benefit-cost ratio is:
 - $B/c(s_1) = 2$ and $B/c(s_2) = 1$
 - So, we first select s_1 and then can not afford s_2
 - → We get reward 2ε instead of B! Now send $\varepsilon \rightarrow 0$ and we get **arbitrarily bad solution**!

This algorithm incentivizes choosing nodes with very low cost, even when slightly more expensive ones can lead to much better global results.

Solution: CELF Algorithm

CELF (Cost-Effective Lazy Forward-selection)

- A two pass greedy algorithm:
 - Set (solution) S': Use benefit-cost greedy
 - Set (solution) S'': Use unit-cost greedy
- Final solution: S = arg max(f(S'), f(S''))
- How far is CELF from (unknown) optimal solution?
- Theorem: CELF is near optimal [Krause&Guestrin, '05]
 - CELF achieves $\frac{1}{2}(1-1/e)$ factor approximation!

This is surprising: We have two clearly suboptimal solutions, but taking the best of them always gives us a near-optimal solution.

Speeding-up Hill-Climbing: Lazy Evaluations

Background: Submodular functions

Add sensor with highest marginal gain

What do we know about optimizing submodular functions?

- A hill-climbing (i.e., greedy) is near optimal $(1 \frac{1}{e}) \cdot OPT$ But:
- (2) Hill-climbing algorithm is slow!
 - At each iteration we need to reevaluate marginal gains of all nodes
 - Runtime O(|V| · K) for placing K sensors

Speeding up Hill-Climbing

- In round i + 1: So far we picked $S_i = \{s_1, \dots, s_i\}$
 - Now pick $\mathbf{s}_{i+1} = \arg \max_{u} f(S_i \cup \{u\}) f(S_i)$

• This is our old friend – greedy hill-climbing algorithm. It maximizes the "marginal benefit" $\delta_i(u) = f(S_i \cup \{u\}) - f(S_i)$

By submodularity property:

 $f(S_i \cup \{u\}) - f(S_i) \ge f(S_j \cup \{u\}) - f(S_j) \text{ for } i < j$

• Observation: By submodularity: For every u $\delta_i(u) \ge \delta_j(u)$ for i < j since $S_i \subseteq S_j$ $\delta_i(u) \ge \delta_j(u)$ Marginal benefits $\delta_i(u)$ only shrink! u(as i grows) Activating node u in step i helps

more than activating it at step i (j>i)

Lazy Hill Climbing

Idea:

- Use δ_i as upper-bound on δ_j (j > i)
 Lazy hill-climbing:
 - Keep an ordered list of marginal benefits δ_i from previous iteration
 - Re-evaluate δ_i only for top node
 - Re-sort and prune

$f(S \cup \{u\}) - f(S) \geq f(T \cup \{u\}) - f(T)$

 $S \subseteq T$

Lazy Hill Climbing

Idea:

- Use δ_i as upper-bound on δ_j (j > i)
 Lazy hill-climbing:
 - Keep an ordered list of marginal benefits δ_i from previous iteration
 - Re-evaluate δ_i only for top node
 - Re-sort and prune

$f(S \cup \{u\}) - f(S) \geq f(T \cup \{u\}) - f(T)$

 $S \subseteq T$

Lazy Hill Climbing

Idea:

- Use δ_i as upper-bound on δ_j (j > i)
 Lazy hill-climbing:
 - Keep an ordered list of marginal benefits δ_i from previous iteration
 - Re-evaluate δ_i only for top node
 - Re-sort and prune

Marginal gain

$f(S \cup \{u\}) - f(S) \geq f(T \cup \{u\}) - f(T)$

 $S \subset T$

CELF: Scalability

CELF (using Lazy evaluation) runs 700 times faster than greedy hillclimbing algorithm

Data Dependent Bound on the Solution Quality

- Back to the solution quality!
- The (1-1/e) bound for submodular functions is the worst case bound (worst over all possible inputs)
- Data dependent bound:
 - Value of the bound depends on the input data
 - On "easy" data, hill climbing may do better than 63%

Can we say something about the solution quality when we know the input data?

Data Dependent Bound

- Suppose S is some solution to f(S) s.t. $|S| \le k$
 - f(S) is monotone & submodular
- Let $OPT = \{t_1, \dots, t_k\}$ be the OPT solution
- For each u let $\delta(u) = f(S \cup \{u\}) f(S)$
- Order $\delta(u)$ so that $\delta(1) \ge \delta(2) \ge ...$
- Then: $f(OPT) \le f(S) + \sum_{i=1}^{k} \delta(i)$

Note:

- This is a data dependent bound ($\delta(u)$ depends on input data)
- Bound holds for any algorithm
 - Makes no assumption about how S was computed
- For some inputs it can be very "loose" (worse than 63%)

Data Dependent Bound

Claim:

- For each u let $\delta(u) = f(S \cup \{u\}) f(S)$
- Order $\delta(u)$ so that $\delta(1) \ge \delta(2) \ge ...$
- Then: $f(OPT) \le f(S) + \sum_{i=1}^{k} \delta(i)$

Proof:

• $f(OPT) \le f(OPT \cup S) = f(S) + \sum_{i=1}^{k} [f(S \cup S) = f(S)] + \sum_{i=1}^{k} [f(S \cup S)] = f(S) + \sum_{i=1}^{k} [f(S)] = f(S) + \sum_{i=1}^{k} [f(S)$

(we proved this last time)

Instead of taking $t_i \in OPT$ (of benefit $\delta(t_i)$), we take the best possible element ($\delta(i)$)

Case Study: Water distribution network & blogs

Case Study: Water Network

Real metropolitan area water network

- V = 21,000 nodes
- E = 25,000 pipes

 Use a cluster of 50 machines for a month
 Simulate 3.6 million epidemic scenarios (random locations, random days, random time of the day)

Bounds on the Optimal Solution

Jure Leskovec, Stanford CS224W: Social and Information Network Analysis, http://cs224w.stanford.edu

[w/ Ostfeld et al., J. of Water Resource Planning]

Water: Heuristic Placement

Placement heuristics perform much worse

Author	Score
CELF	26
Sandia	21
U Exter	20
Bentley systems	19
Technion (1)	14
Bordeaux	12
U Cyprus	11
U Guelph	7
U Michigan	4
Michigan Tech U	3
Malcolm	2
Proteo	2
Technion (2)	1

Battle of Water Sensor Networks competition

Water: Placement visualization

Different objective functions give different sensor placements

Detection likelihood

Population affected

Water: Scalability

CELF is **10** times faster than greedy hill-climbing!

= I have 10 minutes. Which blogs should I read to be most up to date?

= Who are the most influential bloggers?

Detecting information outbreaks

Case study 2: Cascades in blogs

- Crawled 45,000 blogs for 1 year
- Obtained 10 million posts
- And identified 350,000 cascades
- Cost of a blog is the number of posts it has

Blogs: Solution Quality

Online bound turns out to be much tighter!

Based on the plot below: 87% instead of 32.5%

Jure Leskovec, Stanford CS224W: Social and Information Network Analysis, http://cs224w.stanford.edu

Blogs: Heuristic Selection

Heuristics perform much worse! One really needs to perform the optimization

Blogs: Cost of a Blog

CELF has 2 sub-algorithms. Which wins?

Unit cost:

 CELF picks large popular blogs

Cost-benefit:

 Cost proportional to the number of posts

We can do much better when considering costs

Blogs: Cost of a Blog

- Problem: Then CELF picks lots of small blogs that participate in few cascades
- We pick best solution that interpolates between the costs
- We can get good solutions with few blogs and few posts

Blogs: Generalization to Future

- We want to generalize well to future (unknown) cascades
- Limiting selection to bigger blogs improves generalization!

Blogs: Scalability

 CELF runs 700 times faster than simple hillclimbing algorithm