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 (1) New problem: Outbreak detection
 (2) Develop an approximation algorithm

 It is a submodular opt. problem!

 (3) Speed-up greedy hill-climbing

 Valid for optimizing general submodular functions
(i.e., also works for influence maximization)

 (4) Prove a new “data dependent” bound 
on the solution quality

 Valid for optimizing any submodular function
(i.e., also works for influence maximization)
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 Given a real city water 
distribution network

 And data on how 
contaminants spread 
in the network

 Detect the 
contaminant as quickly 
as possible

 Problem posed by the 
US Environmental 
Protection Agency
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Blogs

Posts

Time 
ordered 

hyperlinks

Information 
cascade

Which blogs should one read to 
detect cascades as effectively

as possible?
3/20/2017
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Detect all
stories but late.

Want to read things 
before others do.

Detect blue & yellow
soon but miss red.



 Both of these two are an instance of the 
same underlying problem!

 Given a dynamic process spreading over 
a network we want to select a set of nodes 
to detect the process effectively

 Many other applications:
 Epidemics
 Influence propagation
 Network security
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 Utility of placing sensors:

 Water flow dynamics, demands of households, …

 For each subset S  V compute utility f(S)
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S2

S3

S4
S1

S2

S3

S4

S1

High sensing quality f(S) = 0.9 Low sensing quality f(S)=0.01

High impact 
outbreak

Medium 
impact
outbreak

Low impact
outbreak

Sensor reduces
impact through
early detection!

S1

Contamination

Set V of all 
network junctions



Given:
 Graph 𝐺(𝑉, 𝐸)
 Data on how outbreaks spread over the 𝑮:
 For each outbreak 𝑖 we know the time 𝑇(𝑖, 𝑢)

when outbreak 𝑖 contaminates node 𝑢
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Water distribution network

(physical pipes and junctions)

Simulator of water consumption&flow
(built by Mech. Eng. people)

We simulate the contamination spread for 

every possible location.



Given:
 Graph 𝐺(𝑉, 𝐸)
 Data on how outbreaks spread over the 𝑮:
 For each outbreak 𝑖 we know the time 𝑇(𝑖, 𝑢)

when outbreak 𝑖 contaminates node 𝑢
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The network of 

the blogosphere

Traces of the information flow
Collect lots of blogs posts and trace 

hyperlinks to obtain data about information 

flow from a given blog.

a

b
c

a b

c



Given:
 Graph 𝐺(𝑉, 𝐸)
 Data on how outbreaks spread over the 𝑮:
 For each outbreak 𝑖 we know the time 𝑇(𝑖, 𝑢)

when outbreak 𝑖 contaminates node 𝑢

 Goal: Select a subset of nodes S that 
maximizes the expected reward:

subject to: cost(S) < B
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Expected reward for 

detecting outbreak i

max
𝑆⊆𝑉

𝑓 𝑆 =  

𝑖

𝑃 𝑖 𝑓𝑖 𝑆



 Reward
 (1) Minimize time to detection

 (2) Maximize number of detected propagations

 (3) Minimize number of infected people
 Cost (context dependent):
 Reading big blogs is more time consuming

 Placing a sensor in a remote location is expensive

11

outbreak i

Monitoring blue node saves more 

people than monitoring the green node

f(S)
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 Objective functions:
 1) Time to detection (DT)
 How long does it take to detect a contamination?
 Penalty for detecting at time 𝒕: 𝜋𝑖(𝑡) = min{𝑡, 𝑇𝑚𝑎𝑥}

 2) Detection likelihood (DL)
 How many contaminations do we detect?
 Penalty for detecting at time 𝒕: 𝜋𝑖(𝑡) = 0, 𝜋𝑖(∞) = 1
 Note, this is binary outcome: we either detect or not

 3) Population affected (PA)
 How many people drank contaminated water?
 Penalty for detecting at time 𝒕: 𝜋𝑖(𝑡) = {# of infected 

nodes in outbreak 𝑖 by time 𝑡}.
 Observation:

In all cases detecting sooner does not hurt!
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𝒇𝒊 𝑺 is penalty reduction:
𝑓𝑖 𝑆 = 𝜋𝑖 ∅ − 𝜋𝑖(𝑆)



 Observation: Diminishing returns
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S1

S2

Placement S={s1, s2}

S’

New sensor:

Adding s’ helps a lot

S2

S4

S1

S3

Placement S’={s1, s2, s3, s4}

s’

Adding s’ helps 
very little



 Claim: For all 𝑨 ⊆ 𝑩 ⊆ 𝑽 and sensors 𝒔 ∈ 𝑽\𝑩
𝒇 𝑨 ∪ 𝒔 − 𝒇 𝑨 ≥ 𝒇 𝑩 ∪ 𝒔 − 𝒇 𝑩

 Proof: All our objectives are submodular

 Fix cascade/outbreak 𝒊

 Show 𝒇𝒊 𝑨 = 𝝅𝒊 ∞ − 𝝅𝒊(𝑻(𝑨, 𝒊)) is submodular

 Consider 𝑨 ⊆ 𝑩 ⊆ 𝑽 and sensor 𝒔 ∈ 𝑽\𝑩

 When does node 𝒔 detect cascade 𝒊?

 We analyze 3 cases based on when 𝒔 detects outbreak i

 (1) 𝑻 𝒔, 𝒊 ≥ 𝑻(𝑨, 𝒊): 𝒔 detects late, nobody benefits:
𝑓𝑖 𝐴 ∪ 𝑠 = 𝑓𝑖 𝐴 , also 𝑓𝑖 𝐵 ∪ 𝑠 = 𝑓𝑖 𝐵 and so
𝑓𝑖 𝐴 ∪ 𝑠 − 𝑓𝑖 𝐴 = 0 = 𝑓𝑖 𝐵 ∪ 𝑠 − 𝑓𝑖 𝐵
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 Proof (contd.): 
 (2)𝑻 𝑩, 𝒊 ≤ 𝑻 𝒔, 𝒊 < 𝑻 𝑨, 𝒊 : 𝒔 detects after B but before A

𝒔 detects sooner than any node in 𝑨 but after all in 𝑩. 
So 𝒔 only helps improve the solution 𝑨 (but not 𝑩)
𝑓𝑖 𝐴 ∪ 𝑠 − 𝑓𝑖 𝐴 ≥ 0 = 𝑓𝑖 𝐵 ∪ 𝑠 − 𝑓𝑖 𝐵

 (3) 𝑻 𝒔, 𝒊 < 𝑻(𝑩, 𝒊): 𝒔 detects early

𝑓𝑖 𝐴 ∪ 𝑠 − 𝑓𝑖 𝐴 = 𝜋𝑖 ∞ − 𝜋𝑖 𝑇 𝑠, 𝑖 − 𝑓𝑖(𝐴) ≥

𝜋𝑖 ∞ − 𝜋𝑖 𝑇 𝑠, 𝑖 − 𝑓𝑖(𝐵) = 𝑓𝑖 𝐵 ∪ 𝑠 − 𝑓𝑖 𝐵

 Ineqaulity is due to non-decreasingness of 𝑓𝑖(⋅), i.e., 𝑓𝑖 𝐴 ≤ 𝑓𝑖(𝐵)

 So, 𝒇𝒊(⋅) is submodular!

 So, 𝒇(⋅) is also submodular
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𝑓 𝑆 =  

𝑖

𝑃 𝑖 𝑓𝑖 𝑆

Remember 𝑨 ⊆ 𝑩



 What do we know about 
optimizing submodular
functions?
 A hill-climbing (i.e., greedy) is near 

optimal: (𝟏 −
𝟏

𝒆
) ⋅ 𝑶𝑷𝑻

 But: 
 (1) This only works for unit cost 

case! (each sensor costs the same)
 For us each sensor 𝒔 has cost 𝒄(𝒔)

 (2) Hill-climbing algorithm is slow
 At each iteration we need to re-evaluate 

marginal gains of all nodes

 Runtime 𝑶(|𝑽| · 𝑲) for placing 𝑲 sensors
Jure Leskovec, Stanford CS224W: Social and Information Network Analysis, http://cs224w.stanford.edu Part 2-16

a

b

c

a
b

c

d

d

reward

e

e

Hill-climbing

Add sensor with 
highest marginal gain

3/20/2017
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 Consider the following algorithm to solve
the outbreak detection problem:
Hill-climbing that ignores cost

 Ignore sensor cost 

 Repeatedly select sensor with highest marginal gain

 Do this until the budget is exhausted

 Q: How well does this work?
 A: It can fail arbitrarily badly! 

 Next we come up with an example where Hill-
climbing solution is arbitrarily away from OPT
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 Bad example when we ignore cost:

 𝒏 sensors,  budget 𝑩

 𝒔𝟏: reward 𝒓, cost 𝑩

 𝒔𝟐 …𝒔𝒏: reward 𝒓 − 𝜺, cost 𝟏

 Hill-climbing always prefers more expensive sensor 
𝒔𝟏 with reward 𝒓 (and exhausts the budget).
It never selects cheaper sensors with reward 𝒓 − 𝜺
→ For variable cost it can fail arbitrarily badly!

 Idea: What if we optimize benefit-cost ratio?
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𝑠𝑖 = argmax
𝑠∈𝑉

𝑓 𝐴𝑖−1 ∪ {𝑠} − 𝑓(𝐴𝑖−1)

𝒄 𝒔

Greedily pick sensor

𝒔𝒊 that maximizes 

benefit to cost ratio.



 Benefit-cost ratio can also fail arbitrarily badly!
 Consider: budget 𝑩: 

 2 sensors 𝒔𝟏 and 𝒔𝟐:

 Costs: 𝒄(𝒔𝟏) = 𝜺, 𝒄(𝒔𝟐) = 𝑩

 Only 1 cascade: 𝒇(𝒔𝟏) = 𝟐𝜺,  𝒇(𝒔𝟐) = 𝑩

 Then benefit-cost ratio is:

 𝑩/𝒄(𝒔𝟏) = 𝟐 and  𝑩/𝒄(𝒔𝟐) = 𝟏

 So, we first select 𝒔𝟏 and then can not afford 𝒔𝟐

→We get reward 𝟐𝜺 instead of 𝑩! Now send 𝜺 → 𝟎
and we get arbitrarily bad solution!
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This algorithm incentivizes choosing nodes with very low cost, even when slightly 

more expensive ones can lead to much better global results.



 CELF (Cost-Effective Lazy Forward-selection)
A two pass greedy algorithm:
 Set (solution) 𝑺′: Use benefit-cost greedy

 Set (solution) 𝑺′′: Use unit-cost greedy

 Final solution: 𝑺 = 𝒂𝒓𝒈𝒎𝒂𝒙(𝒇(𝑺′), 𝒇(𝑺′′))

 How far is CELF from (unknown) optimal 
solution?

 Theorem: CELF is near optimal [Krause&Guestrin, ‘05]

 CELF achieves ½(1-1/e) factor approximation!
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This is surprising: We have two clearly suboptimal solutions, but taking the best of 

them always gives us a near-optimal solution.
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 What do we know about 
optimizing submodular
functions?

 A hill-climbing (i.e., greedy) is near 

optimal (1 −
1

𝑒
) ⋅ 𝑂𝑃𝑇

 But: 

 (2) Hill-climbing algorithm is slow!

 At each iteration we need to re-
evaluate marginal gains of all nodes

 Runtime 𝑂(|𝑉| · 𝐾) for placing 𝐾
sensors
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d

reward

e

e

Hill-climbing

Add sensor with 
highest marginal gain

3/21/2017



 In round 𝒊 + 𝟏: So far we picked 𝑆𝑖 = {𝑠1, … , 𝑠𝑖}
 Now pick 𝐬𝒊+𝟏 = 𝐚𝐫𝐠𝐦𝐚𝐱

𝒖
𝒇(𝑺𝒊 ∪ {𝒖}) − 𝒇(𝑺𝒊)

 This is our old friend – greedy hill-climbing algorithm. 
It maximizes the “marginal benefit” 

𝜹𝒊 𝒖 = 𝒇(𝑺𝒊 ∪ {𝒖}) − 𝒇(𝑺𝒊)

 By submodularity property:
𝑓 𝑆𝑖 ∪ 𝑢 − 𝑓 𝑆𝑖 ≥ 𝑓 𝑆𝑗 ∪ 𝑢 − 𝑓 𝑆𝑗 for 𝑖 < 𝑗

 Observation: By submodularity:
For every 𝒖
𝛿𝑖(𝑢) ≥ 𝛿𝑗(𝑢) for 𝑖 < 𝑗 since 𝑆𝑖 𝑆𝑗

Marginal benefits i(u) only shrink!
(as i grows)

3/20/2017 Jure Leskovec, Stanford CS224W: Social and Information Network Analysis, http://cs224w.stanford.edu 24

u

i(u)  j(u)

Activating node u in step i helps 

more than activating it at step j (j>i)



 Idea: 

 Use i as upper-bound on j (j > i)

 Lazy hill-climbing:

 Keep an ordered list of marginal 
benefits i from previous iteration

 Re-evaluate i only for top node

 Re-sort and prune
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a

b

c

d

Marginal gain

e

f(S  {u}) – f(S)   ≥  f(T  {u}) – f(T) S  T

S1={a}



 Idea: 

 Use i as upper-bound on j (j > i)

 Lazy hill-climbing:

 Keep an ordered list of marginal 
benefits i from previous iteration

 Re-evaluate i only for top node

 Re-sort and prune
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a

d

b

c

e

Marginal gain

f(S  {u}) – f(S)   ≥  f(T  {u}) – f(T) S  T

S1={a}



 Idea: 

 Use i as upper-bound on j (j > i)

 Lazy hill-climbing:

 Keep an ordered list of marginal 
benefits i from previous iteration

 Re-evaluate i only for top node

 Re-sort and prune
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a

c

d

b

e

Marginal gain

f(S  {u}) – f(S)   ≥  f(T  {u}) – f(T) S  T

S1={a}

S2={a,b}



 CELF (using Lazy 
evaluation) runs 
700 times faster 
than greedy hill-
climbing algorithm
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 Back to the solution quality!

 The (1-1/e) bound for submodular functions 
is the worst case bound (worst over all 
possible inputs)

 Data dependent bound:

 Value of the bound depends on the input data

 On “easy” data, hill climbing may do better than 63%

 Can we say something about the solution
quality when we know the input data?
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 Suppose 𝑺 is some solution to 𝒇(𝑺) s.t. 𝑺 ≤ 𝒌

 𝒇(𝑺) is monotone & submodular

 Let 𝑶𝑷𝑻 = {𝒕𝟏, … , 𝒕𝒌} be the OPT solution
 For each  𝒖 let 𝜹 𝒖 = 𝒇 𝑺 ∪ 𝒖 − 𝒇 𝑺
 Order 𝜹 𝒖 so that 𝜹(𝟏)  𝜹(𝟐)  …

 Then: 𝒇 𝑶𝑷𝑻 ≤ 𝒇 𝑺 +  𝒊=𝟏
𝒌 𝜹 𝒊

 Note:

 This is a data dependent bound ((𝑢) depends on input data)

 Bound holds for any algorithm
 Makes no assumption about how 𝑺 was computed

 For some inputs it can be very “loose” (worse than 63%)
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 Claim:
 For each 𝑢 let  𝜹(𝒖) = 𝒇(𝑺 ∪ {𝒖}) − 𝒇(𝑺)

 Order 𝜹 𝒖 so that 𝜹(𝟏)  𝜹(𝟐)  …

 Then: 𝒇 𝑶𝑷𝑻 ≤ 𝒇 𝑺 +  𝒊=𝟏
𝒌 𝜹(𝒊)

 Proof:

 𝑓 𝑂𝑃𝑇 ≤ 𝑓 𝑂𝑃𝑇 ∪ 𝑆 = 𝑓 𝑆 +  𝑖=1
𝑘  𝑓(𝑆 ∪
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Instead of taking tiOPT (of benefit 𝛿(𝑡𝑖)),
we take the best possible element (𝛿(𝑖))

(we proved this 

last time)
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 Real metropolitan area 
water network 
 V = 21,000 nodes

 E = 25,000 pipes

 Use a cluster of 50 machines for a month
 Simulate 3.6 million epidemic scenarios

(random locations, random days, random 
time of the day)
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Data-dependent bound is much tighter 
(gives more accurate estimate of alg. performance)

35
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 Placement heuristics perform 
much worse
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Author Score

CELF 26

Sandia 21

U Exter 20

Bentley systems 19

Technion (1) 14

Bordeaux 12

U Cyprus 11

U Guelph 7

U Michigan 4

Michigan Tech U 3

Malcolm 2

Proteo 2

Technion (2) 1

Battle of Water Sensor 
Networks competition

[w/ Ostfeld et al., J. of Water Resource Planning]



 Different objective functions give different 
sensor placements

37

Population affected Detection likelihood
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 CELF is 10 times faster than greedy 
hill-climbing!
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= I have 10 minutes. Which 
blogs should I read to be 
most up to date? 

= Who are the most 
influential bloggers?

39

?
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Detect all
stories but late.

Want to read things 
before others do.

Detect blue & yellow
soon but miss red.



 Crawled 45,000 blogs for 1 year
 Obtained 10 million posts
 And identified 350,000 cascades
 Cost of a blog is the number of posts it has

42



 Online bound turns out to be much tighter!

 Based on the plot below: 87% instead of 32.5%

Old bound

Our bound

CELF
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vs.



 Heuristics perform much worse!
 One really needs to perform the optimization
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 CELF has 2 sub-algorithms. Which wins?
 Unit cost:

 CELF picks large 
popular blogs

 Cost-benefit:

 Cost proportional
to the number of 
posts

 We can do much 
better when considering costs
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 Problem: Then CELF 
picks lots of small 
blogs that participate 
in few cascades

 We pick best solution 
that interpolates 
between the costs

 We can get good 
solutions with few 
blogs and few posts
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Each curve represents a set of 

solutions S with the same final 

reward f(S)

Score f(S)=0.4

f(S)=0.3

f(S)=0.2



 We want to generalize well to future (unknown) 
cascades

 Limiting selection to bigger blogs improves 
generalization!
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 CELF runs 700
times faster than 
simple hill-
climbing 
algorithm
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[Leskovec et al., KDD ’07]


