### Link Analysis: PageRank and HITS

Thanks to Jure Leskovec, Stanford and Panayiotis Tsaparas, Univ. of Ioannina for slides



- Web Search: How to Organize the Web?
- Ranking Nodes on Graphs
  - Hubs and Authorities
  - PageRank
- How to Solve PageRank
- Personalized PageRank

### How to Organize the Web?

- How to organize the Web?
- First try: Human curated
   Web directories
  - Yahoo, DMOZ, LookSmart
- Second try: Web Search
  - Information Retrieval attempts to find relevant docs in a small and trusted set
    - Newspaper articles, Patents, etc.



| Arts                         | Business                          | Computers                       |
|------------------------------|-----------------------------------|---------------------------------|
| Movies, Television, Music    | Jobs, Real Estate, Investing      | Internet, Software, Hardware    |
| Games                        | Health                            | Home                            |
| Video Games, RPGs, Gambling  | Fitness, Medicine, Alternative    | Family, Consumers, Cooking      |
| <u>Kids and Teens</u>        | News                              | Recreation                      |
| Arts, School Time, Teen Life | Media, Newspapers, Weather        | Travel, Food, Outdoors, Humor   |
| Reference                    | Regional                          | Science                         |
| Maps, Education, Libraries   | US, Canada, UK, Europe            | Biology, Psychology, Physics    |
| Shopping                     | Society                           | Sports                          |
| Clothing, Food, Gifts        | People, Religion, Issues          | Baseball, Soccer, Basketball    |
| World                        |                                   |                                 |
|                              | , Français, Italiano, 日本語, Nederl | ands, Polski, Pyccauti, Svenska |

4,520,413 sites - 84,517 editors - over 590,000 categories

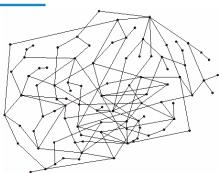
- But: Web is huge, full of untrusted documents, random things, web spam, etc.
- So we need a good way to rank webpages!

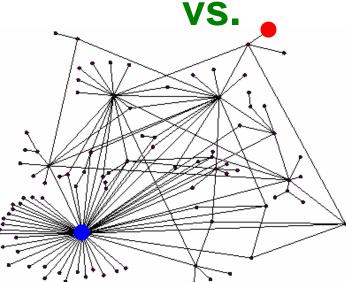
### Web Search: 2 Challenges

- 2 challenges of web search:
- (1) Web contains many sources of information Who to "trust"?
  - Insight: Trustworthy pages may point to each other!
- (2) What is the "best" answer to query "newspaper"?
  - No single right answer
  - Insight: Pages that actually know about newspapers might all be pointing to many newspapers

### Ranking Nodes on the Graph

- All web pages are not equally "important" www.joe-schmoe.com vs. www.stanford.edu
- We already know: There is large diversity in the web-graph node connectivity.
- So, let's rank the pages using the web graph link structure!





### **Link Analysis Algorithms**

- We will cover the following Link Analysis approaches to computing importance of nodes in a graph:
  - Hubs and Authorities (HITS)
  - Page Rank
  - Topic-Specific (Personalized) Page Rank

#### Sidenote: Various notions of node centrality: Node u

- Degree centrality = degree of u
- Betweenness centrality = #shortest paths passing through u
- Closeness centrality = avg. length of shortest paths from u to all other nodes of the network
- Eigenvector centrality = like PageRank

### **Hubs and Authorities**

### Link Analysis

Goal (back to the newspaper example):

 Don't just find newspapers. Find "experts" – pages that link in a coordinated way to good newspapers

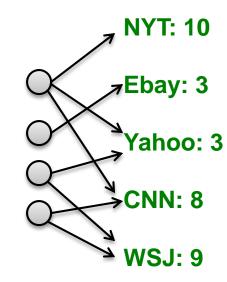
#### Idea: Links as votes

- Page is more important if it has more links
  - In-coming links? Out-going links?
- Hubs and Authorities

Each page has **2** scores:

- Quality as an expert (hub):
  - Total sum of votes of pages pointed to
- Quality as a content (authority):
  - Total sum of votes of experts

#### Principle of repeated improvement

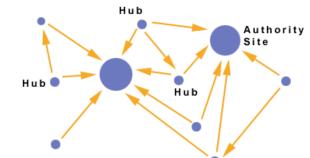


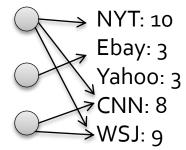


### **Hubs and Authorities**

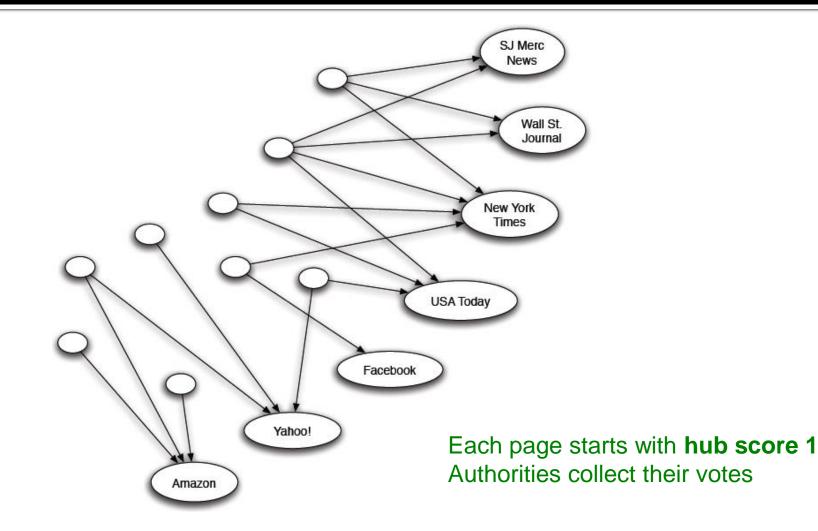
# Interesting pages fall into two classes: Authorities are pages containing useful information

- Newspaper home pages
- Course home pages
- Home pages of auto manufacturers
- 2. Hubs are pages that link to authorities
  - List of newspapers
  - Course bulletin
  - List of U.S. auto manufacturers





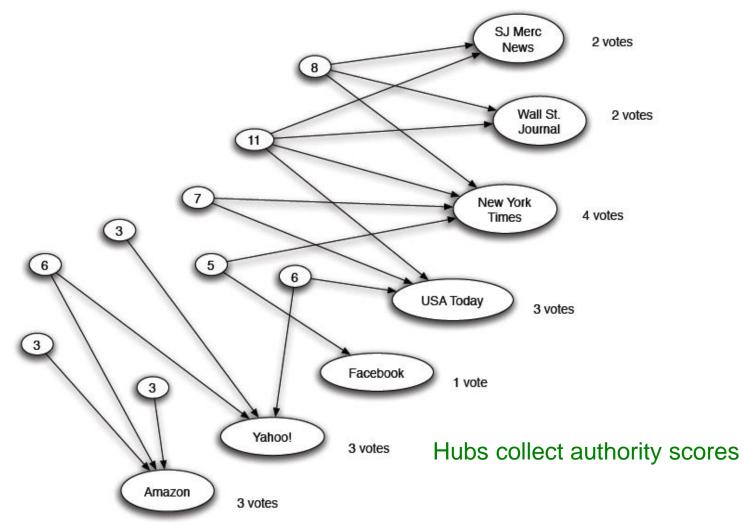
### **Counting in-links: Authority**



(Note this is idealized example. In reality graph is not bipartite and each page has both the hub and authority score)

Jure Leskovec, Stanford CS224W: Social and Information Network Analysis, http://cs224w.stanford.edu

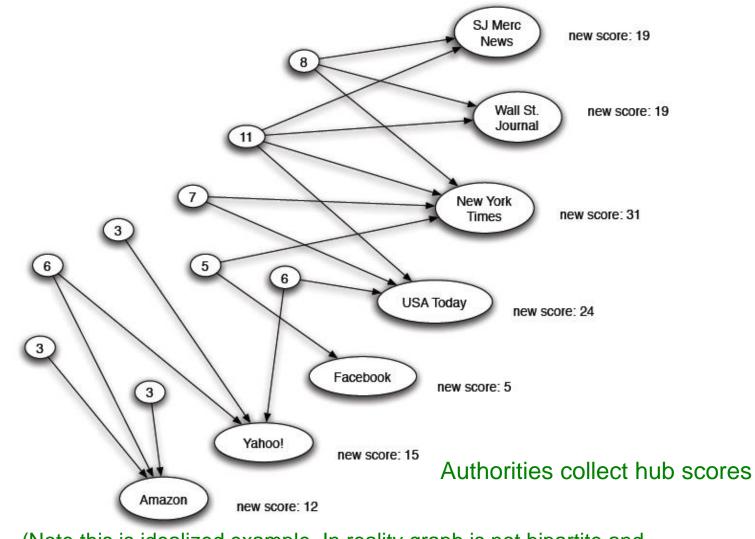
### **Expert Quality: Hub**



(Note this is idealized example. In reality graph is not bipartite and each page has both the hub and authority score)

Jure Leskovec, Stanford CS224W: Social and Information Network Analysis, http://cs224w.stanford.edu

### Reweighting



(Note this is idealized example. In reality graph is not bipartite and each page has both the hub and authority score)

### **Mutually Recursive Definition**

- A good hub links to many good authorities
- A good authority is linked from many good hubs
  - Note a self-reinforcing recursive definition
- Model using two scores for each node:
  - Hub score and Authority score
  - Represented as vectors *h* and *a*, where the *i*-th element is the hub/authority score of the *i*-th node

### **Hubs and Authorities**

**Convergence criteria:** Each page *i* has 2 scores:  $\sum_{i} \left( h_i^{(t)} - h_i^{(t+1)} \right)^2 < \varepsilon$ Authority score: a<sub>i</sub>  $\sum \left(a_i^{(t)}-a_i^{(t+1)}\right)^2 < \varepsilon$ Hub score: h<sub>i</sub> **HITS algorithm:** • Initialize:  $a_i^{(0)} = 1/\sqrt{n}$ ,  $h_i^{(0)} = 1/\sqrt{n}$ Then keep iterating until convergence: •  $\forall i$ : Authority:  $a_i^{(t+1)} = \sum_{i \to i} h_i^{(t)}$ •  $\forall \mathbf{i}$ : Hub:  $h_i^{(t+1)} = \sum_{i \to i} a_i^{(t)}$ ∀*i*: Normalize:  $\sum_{i} \left( a_{i}^{(t+1)} \right)^{2} = 1, \sum_{i} \left( h_{i}^{(t+1)} \right)^{2} = 1$ 

Jure Leskovec, Stanford CS224W: Social and Information Network Analysis, http://cs224w.stanford.edu

### **Hubs and Authorities**

Definition: Eigenvectors & Eigenvalues

Let 
$$\mathbf{R} \cdot \mathbf{x} = \boldsymbol{\lambda} \cdot \mathbf{x}$$

for some scalar  $\lambda$ , vector x, matrix R

- Then x is an eigenvector, and  $\lambda$  is its eigenvalue
- The steady state (HITS has converged) is:

• 
$$A^T \cdot A \cdot a = c' \cdot a$$

$$\bullet A \cdot A^T \cdot h = c^{\prime\prime} \cdot h$$

Note constants *c',c"* don't matter as we normalize them out every step of HITS

 So, authority a is eigenvector of A<sup>T</sup>A (associated with the largest eigenvalue)
 Similarly: hub h is eigenvector of AA<sup>T</sup>

## PageRank

### Links as Votes

#### Still the same idea: Links as votes

Page is more important if it has more links

In-coming links? Out-going links?

#### Think of in-links as votes:

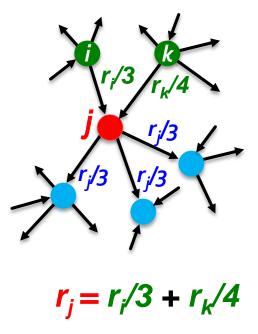
- www.stanford.edu has 23,400 in-links
- www.joe-schmoe.com has 1 in-link

#### Are all in-links equal?

- Links from important pages count more
- Recursive question!

### PageRank: The "Flow" Model

- A "vote" from an important page is worth more:
  - Each link's vote is proportional to the **importance** of its source page
  - If page *i* with importance *r<sub>i</sub>* has
     *d<sub>i</sub>* out-links, each link gets *r<sub>i</sub>* / *d<sub>i</sub>* votes
  - Page j's own importance r<sub>j</sub> is the sum of the votes on its inlinks



### PageRank: The "Flow" Model

- A page is important if it is pointed to by other important pages
- Define a "rank" r<sub>j</sub> for node j

$$r_j = \sum_{i \to j} \frac{r_i}{d_i}$$

 $d_i$  ... out-degree of node i

"Flow" equations: r = r /2 + r /2

y/2

m

a/2

$$r_{y} = r_{y}/2 + r_{a}/2$$
$$r_{a} = r_{y}/2 + r_{m}$$
$$r_{m} = r_{a}/2$$

The web in 1839

v/2

You might wonder: Let's just use Gaussian elimination to solve this system of linear equations. Bad idea!

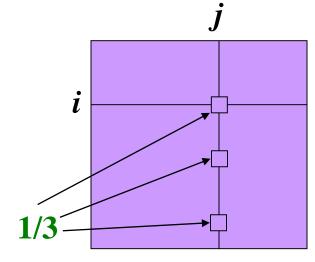
m

2/10/2017

### **PageRank: Matrix Formulation**

### Stochastic adjacency matrix M

- Let page j have d<sub>i</sub> out-links
- If  $j \rightarrow i$ , then  $M_{ij} = \frac{1}{d}$ .
  - *M* is a column stochastic matrix
    Columns sum to 1



М

 $r_j = \sum_{i=1}^{j} \frac{r_i}{\mathbf{d}_i}$ 

Rank vector r: An entry per page

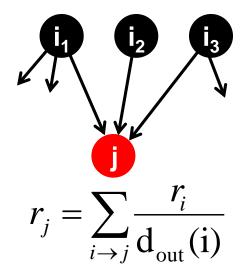
*r<sub>i</sub>* is the importance score of page *i* 

•  $\sum_{i} r_{i} = 1$ • The flow equations can be written  $r = M \cdot r$ 

### **Random Walk Interpretation**

#### Imagine a random web surfer:

- At any time t, surfer is on some page i
- At time t + 1, the surfer follows an out-link from i uniformly at random
- Ends up on some page j linked from i
- Process repeats indefinitely
- Let:
  - **p**(t) ... vector whose i<sup>th</sup> coordinate is the prob. that the surfer is at page i at time t
  - So, p(t) is a probability distribution over pages



### **The Stationary Distribution**

#### Where is the surfer at time t+1?

- Follows a link uniformly at random  $p(t+1) = M \cdot p(t)$  $p(t+1) = M \cdot p(t)$
- Suppose the random walk reaches a state  $p(t + 1) = M \cdot p(t) = p(t)$ then p(t) is stationary distribution of a random walk
- Our original rank vector r satisfies  $r = M \cdot r$ 
  - So, r is a stationary distribution for the random walk

Given a web graph with *n* nodes, where the nodes are pages and edges are hyperlinks

- Assign each node an initial page rank
- Repeat until convergence (Σ<sub>i</sub> | r<sub>i</sub><sup>(t+1)</sup> r<sub>i</sub><sup>(t)</sup> | < ε)</p>
  - Calculate the page rank of each node

$$r_j^{(t+1)} = \sum_{i \to j} \frac{r_i^{(t)}}{\mathbf{d}_i}$$

#### $d_i$ .... out-degree of node i

#### Power Iteration:

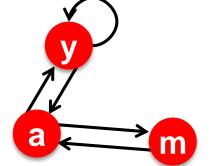
• Set 
$$r_j \leftarrow 1/N$$
  
• 1:  $r'_j \leftarrow \sum_{i \to j} \frac{r_i}{d_i}$ 

• If 
$$|r - r'| > \varepsilon$$
: goto **1**

#### Example:

$$\begin{bmatrix} r_y \\ r_a \\ r_m \end{bmatrix} = \frac{1/3}{1/3}$$

Iteration 0, 1, 2, ...



|   | У   | а   | m |
|---|-----|-----|---|
| у | 1⁄2 | 1⁄2 | 0 |
| a | 1⁄2 | 0   | 1 |
| m | 0   | 1⁄2 | 0 |

 $r_{y} = r_{y}/2 + r_{a}/2$  $r_{a} = r_{y}/2 + r_{m}$  $r_{m} = r_{a}/2$ 

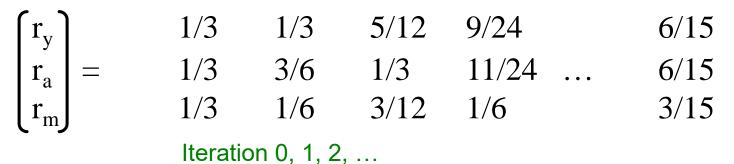


• Set 
$$r_j \leftarrow 1/N$$
  
• 1.  $r' \leftarrow \Sigma$ 

**1:** 
$$r'_j \leftarrow \sum_{i \to j} \frac{r_i}{d_i}$$

• If 
$$|r - r'| > \varepsilon$$
: goto **1**

#### Example:

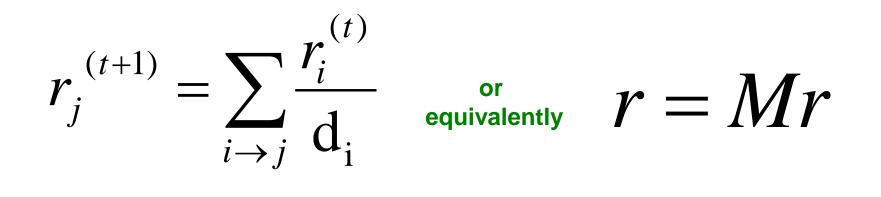


|   | У   | a   | m |
|---|-----|-----|---|
| у | 1⁄2 | 1⁄2 | 0 |
| a | 1⁄2 | 0   | 1 |
| m | 0   | 1⁄2 | 0 |

 $r_{y} = r_{y}/2 + r_{a}/2$  $r_{a} = r_{y}/2 + r_{m}$  $r_{m} = r_{a}/2$ 

a

### **PageRank: Three Questions**



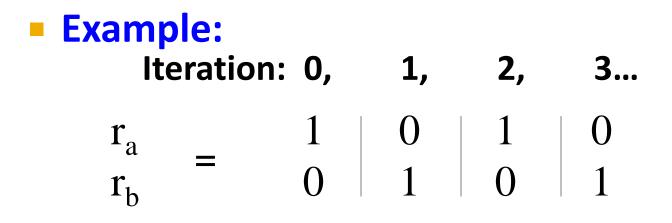
#### Does this converge?

- Does it converge to what we want?
- Are results reasonable?

### Does this converge?

#### The "Spider trap" problem:

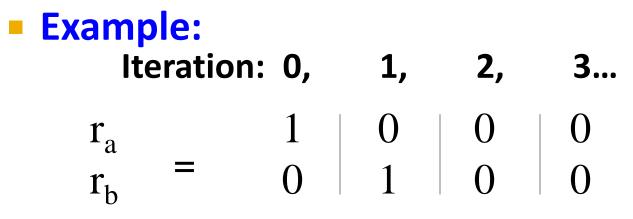




### Does it converge to what we want?

#### The "Dead end" problem:

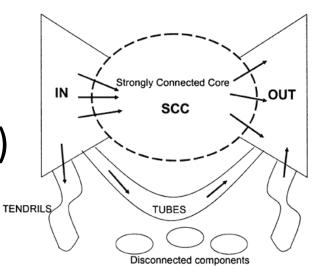




### **RageRank: Problems**

#### 2 problems:

- (1) Some pages are dead ends (have no out-links)
  - Such pages cause importance to "leak out"



#### (2) Spider traps

(all out-links are within the group)

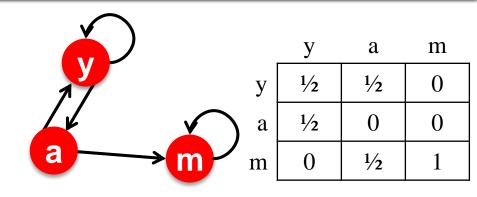
Eventually spider traps absorb all importance

### **Problem: Spider Traps**

Power Iteration:

• Set 
$$r_j = \frac{1}{N}$$
  
•  $r_j = \sum_{i \to j} \frac{r_i}{d_i}$ 

And iterate

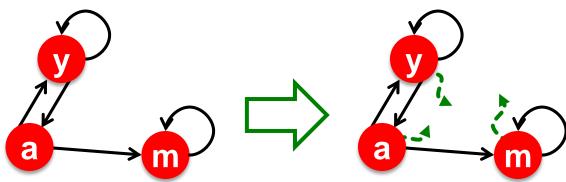


 $r_{y} = r_{y}/2 + r_{a}/2$  $r_{a} = r_{y}/2$  $r_{m} = r_{a}/2 + r_{m}$ 

#### Example:

### **Solution: Random Teleports**

- The Google solution for spider traps: At each time step, the random surfer has two options
  - With prob.  $\beta$ , follow a link at random
  - With prob. **1**- $\beta$ , jump to a random page
  - Common values for  $\beta$  are in the range 0.8 to 0.9
- Surfer will teleport out of spider trap within a few time steps

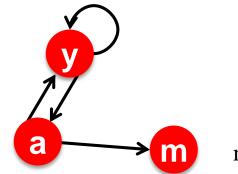


### **Problem: Dead Ends**

Power Iteration:

• Set 
$$r_j = \frac{1}{N}$$
  
•  $r_j = \sum_{i \to j} \frac{r_i}{d_i}$ 

And iterate



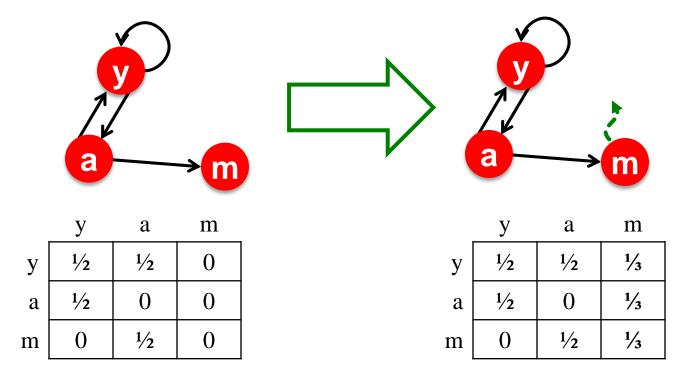
|   | У   | а   | m |
|---|-----|-----|---|
| у | 1⁄2 | 1⁄2 | 0 |
| a | 1⁄2 | 0   | 0 |
| m | 0   | 1⁄2 | 0 |

 $r_{y} = r_{y}/2 + r_{a}/2$  $r_{a} = r_{y}/2$  $r_{m} = r_{a}/2$ 

#### Example:

### **Solution: Always Teleport**

- Teleports: Follow random teleport links with probability 1.0 from dead-ends
  - Adjust matrix accordingly



### **Final PageRank Equation**

Google's solution: At each step, random surfer has two options:

- With probability  $\beta$ , follow a link at random
- With probability  $1-\beta$ , jump to some random page

**PageRank equation** [Brin-Page, '98]

$$r_{j} = \sum_{i \to j} \beta \frac{r_{i}}{d_{i}} + (1 - \beta) \frac{1}{n}$$

The above formulation assumes that *M* has no dead ends. We can either preprocess matrix *M* (bad!) or explicitly follow random teleport links with probability 1.0 from dead-ends. See P. Berkhin, A Survey on PageRank Computing, Internet Mathematics, 2005.

of node i

### **PageRank & Eigenvectors**

PageRank as a principal eigenvector

 $r = M \cdot r$  or equivalently  $r_j = \sum_i \frac{r_i}{d_i}$ 

But we really want (\*\*):

$$r_j = \beta \sum_i \frac{r_i}{d_i} + (1 - \beta) \frac{1}{n}$$

d<sub>i</sub> ... out-degree of node i

**Details!** 

Let's define:

$$M'_{ij} = \beta M_{ij} + (1 - \beta) \frac{1}{n}$$

Now we get what we want:

 $r = M' \cdot r$ 

• What is  $1 - \beta$ ?

matrix but M' is dense (all entries  $\neq$  0). In practice we never "materialize" M but rather we use the "sum" formulation (\*\*)

**Note:** *M* is a sparse

In practice 0.15 (Jump approx. every 5-6 links)

# The PageRank Algorithm

#### Input: Graph G and parameter β

- Directed graph G with spider traps and dead ends
- Parameter  $\beta$
- Output: PageRank vector r

• Set: 
$$r_j^{(0)} = \frac{1}{N}, t = 1$$

ן י

**do:** 

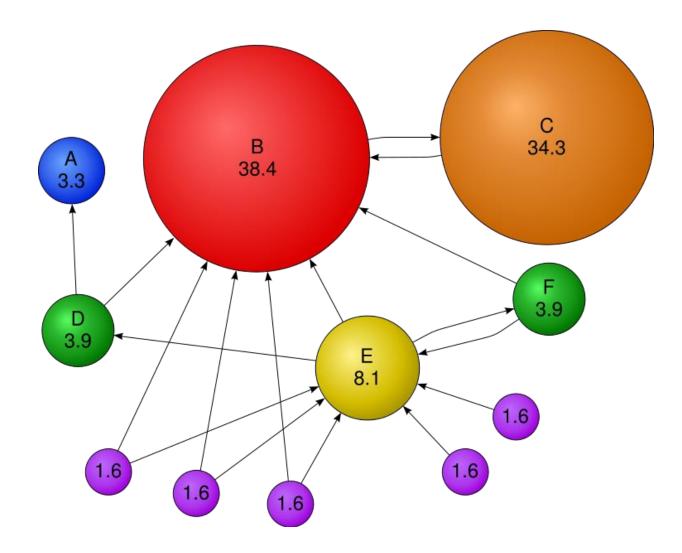
$$\forall j: r'_j^{(t)} = \sum_{i \to j} \beta \frac{r_i^{(t-1)}}{d_i}$$
$$r'_j^{(t)} = \mathbf{0} \text{ if in-deg. of } \mathbf{j} \text{ is } \mathbf{0}$$

Now re-insert the leaked PageRank:

$$\forall j: r_{j}^{(t)} = r'_{j}^{(t)} + \frac{1-S}{N} \quad \text{where: } S = \sum_{j} r'_{j}^{(t)}$$
  
•  $t = t + 1$   
while  $\sum_{j} |r_{j}^{(t)} - r_{j}^{(t-1)}| > \varepsilon$ 

2/10/2017

### Example



## PageRank and HITS

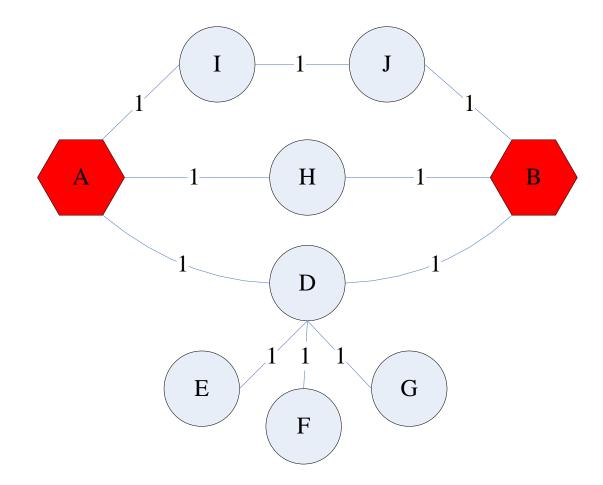
- PageRank and HITS are two solutions to the same problem:
  - What is the value of an in-link from u to v?
  - In the PageRank model, the value of the link depends on the links into u
  - In the HITS model, it depends on the value of the other links out of u

# The destinies of PageRank and HITS post-1998 were very different

## Personalized PageRank, Random Walk with Restarts

[Tong-Faloutsos, 'o6]

## **Proximity on Graphs**



### a.k.a.: Relevance, Closeness, 'Similarity'...

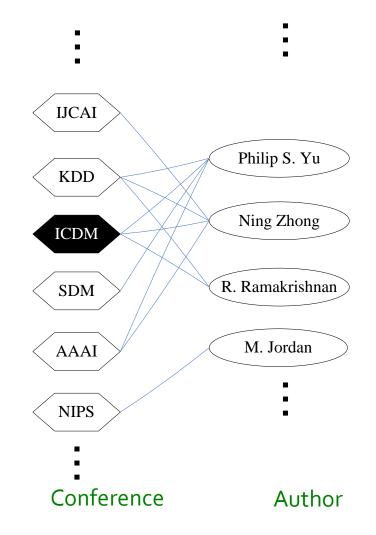
## **Example Application: Graph Search**

### Given:

Conferences-to-authors graph

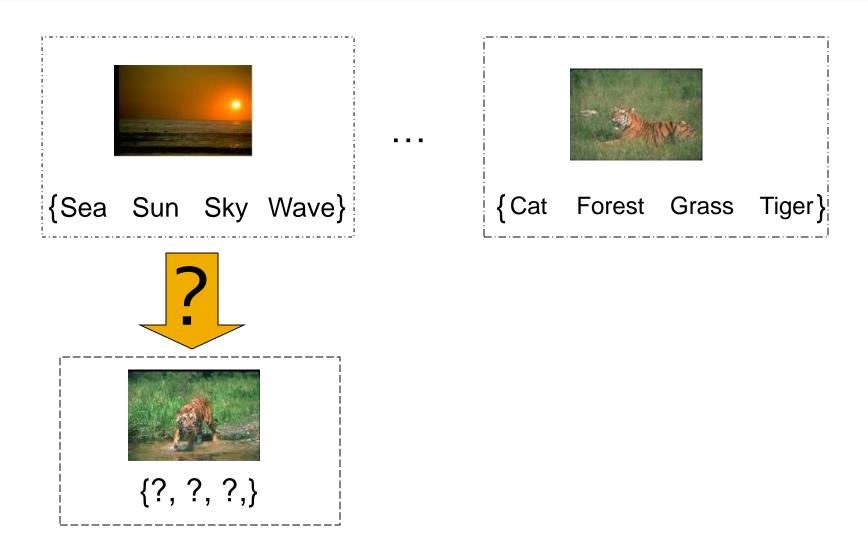
### Goal: Proximity on graphs

Q: What is most related conference to ICDM?

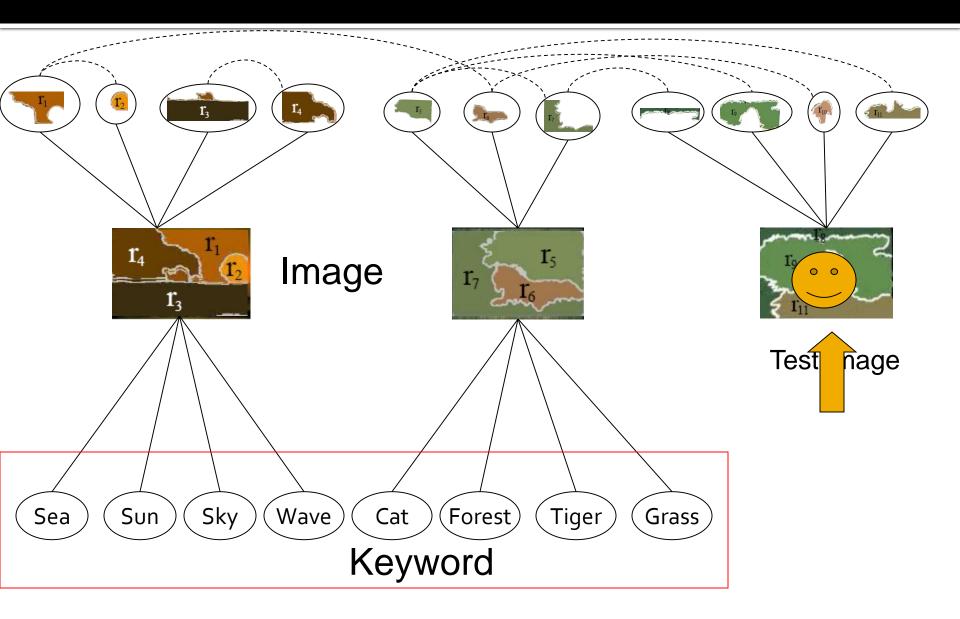


[Tong et al. '08]

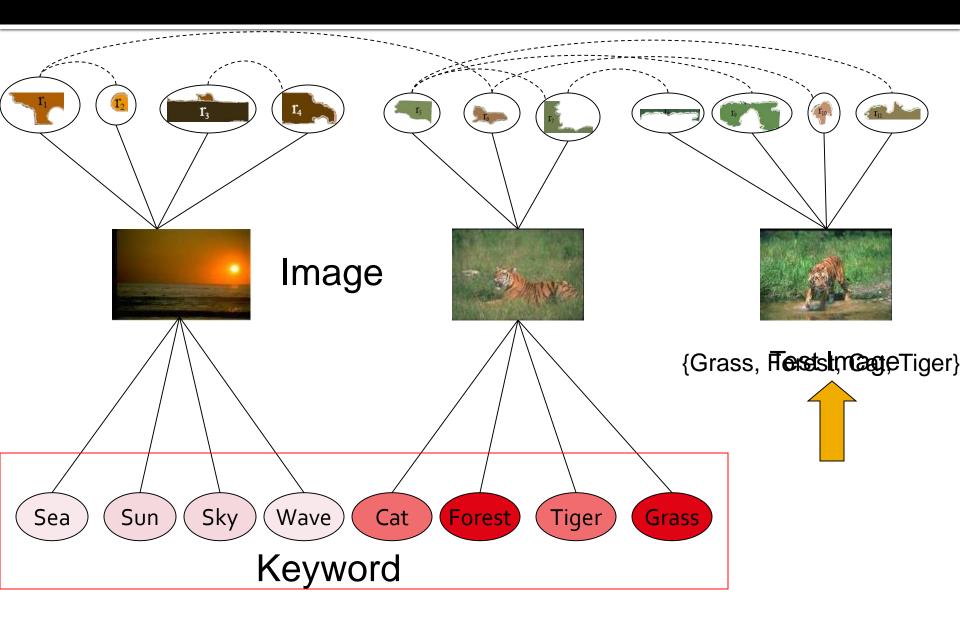
## **Automatic Image Captioning**



[Tong et al. '08]

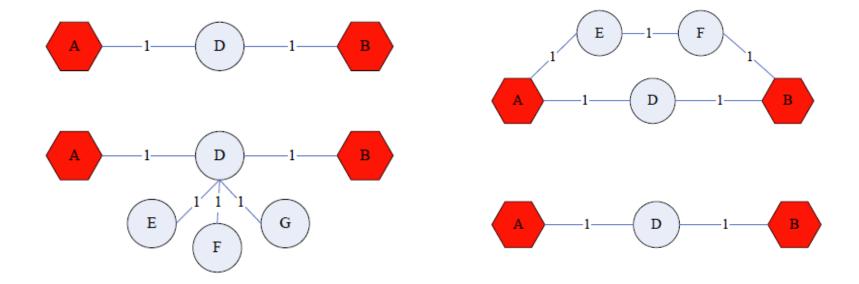


[Tong et al. '08]



## Good proximity measure?

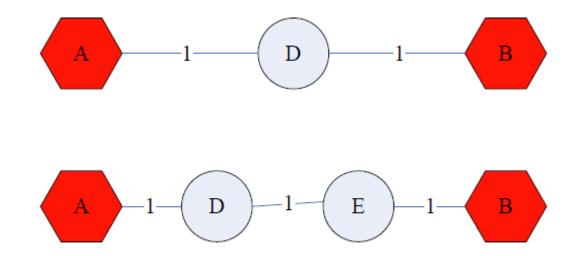
### Shortest path is not good:



# No influence for degree-1 nodes (E, F, G)! Multi-faceted relationships

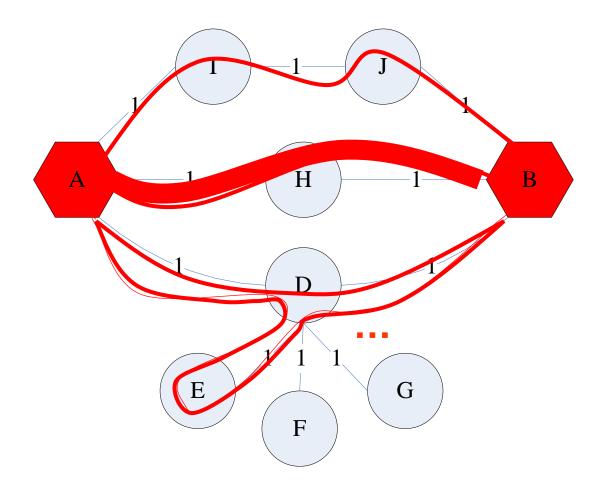
### **Good proximity measure?**

Network Flow is not good:



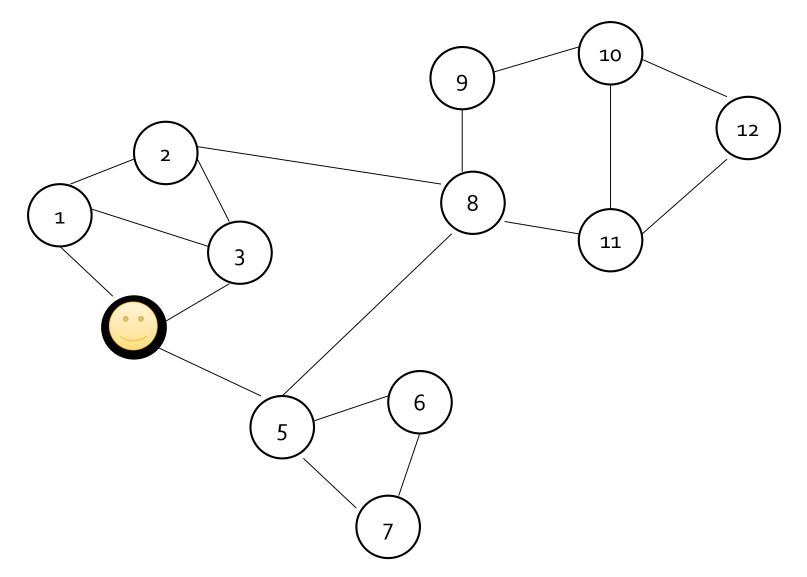
### Does not punish long paths

#### [Tong-Faloutsos, '06] What is good notion of proximity?



- Multiple Connections
- Quality of connection
  - Direct & In-direct
  - connections
  - Length, Degree,
  - Weight...

### **Random Walk with Restarts**



## Personalized PageRank

- Goal: Evaluate pages not just by popularity but by how close they are to the topic
- Teleporting can go to:
  - Any page with equal probability
    - (we used this so far)
  - A topic-specific set of "relevant" pages
    - Topic-specific (personalized) PageRank (S ...teleport set)

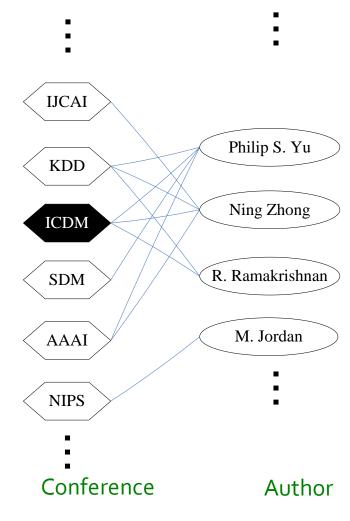
$$M'_{ij} = \beta M_{ij} + (1 - \beta)/|S| \text{ if } i \in S$$
$$= \beta M_{ij} \text{ otherwise}$$

Random Walk with Restart: S is a single element

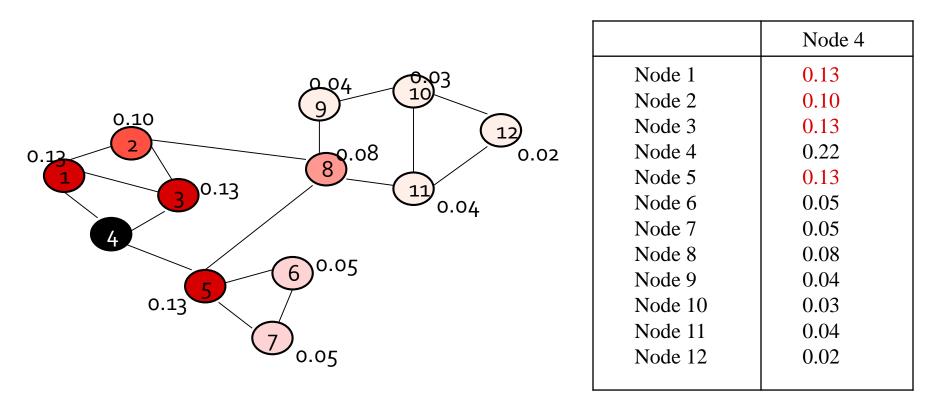
## **PageRank: Applications**

### Graphs and web search:

- Ranks nodes by "importance"
- Personalized PageRank:
  - Ranks proximity of nodes to the teleport nodes S
- Proximity on graphs:
  - Q: What is most related conference to ICDM?
  - Random Walks with Restarts
    - Teleport back to the starting node:
       S = { single node }



### **Random Walk with Restarts**

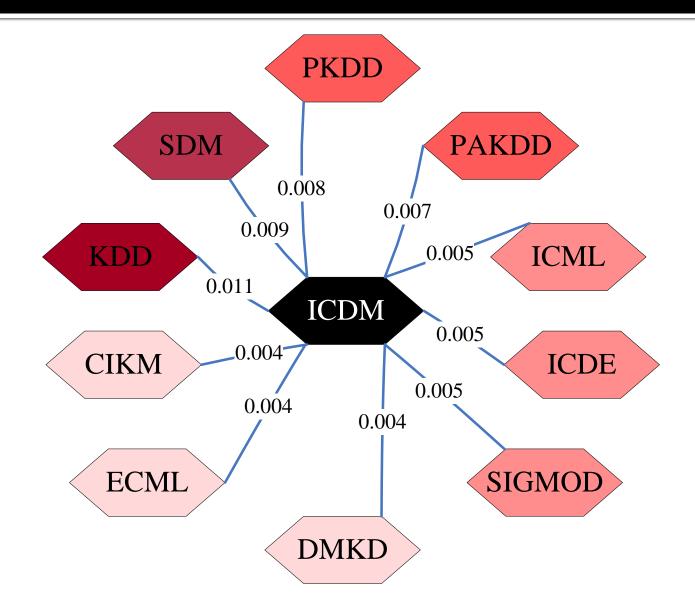


### Nearby nodes, higher scores More red, more relevant

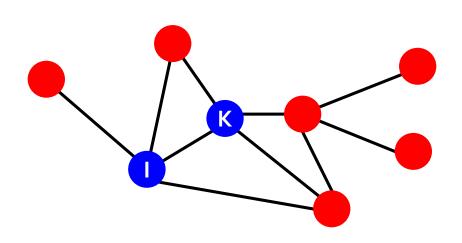
Ranking vector

ŕ

### Most related conferences to ICDM



## Personalized PageRank



Graph of CS conferences

**Q**: Which conferences are closest to KDD & ICDM?

A: Personalized PageRank with teleport set S={KDD, ICDM}