Community Detection:
Overlapping Communities
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Overlapping Communities

Non-overlapping vs. overlapping communities
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Overlapping Communities

What is the structure of community overlaps:
Edge density in the overlaps is higher!




[Palla et al., ‘05]

Overlaps of Social Circles

A node can belong to many social “circles”
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Cliques
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Cligue: a maximum complete subgraph in
which all pairs of vertices are connected by an
edge

k-Clique: A clique of size k is a subgraph of k
vertices where the degree of all vertices in the
induced subgraph is k-1

Jure Leskovec, Stanford CS224W: Social and Information

Network Analysis, http://cs224w.stanford.edu



Maximum Clique & Maximal Cliques

Two problems

Find the maximum cligque (the one with the largest
number of vertices) or

Find all maximal cliques (cliques that are not
subgraphs of a larger clique; i.e., cannot be
expanded further).

Both problems are NP-hard
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How to Find Maximal Cliques?

No nice way, hard combinatorial problem
Maximal clique: Clique that can’t be extended

{a, b, c} is a clique but not maximal clique
{a, b, c,d} is maximal clique

Algorithm: Sketch

2/7/2017

Start with a seed node
Expand the clique around the seed

Once the cligue cannot be further
expanded we found the maximal clique

Note:
This will generate the same cliqgue multiple times

Jure Leskovec, Stanford CS224W: Social and Information Network Analysis, http://cs224w.stanford.edu
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How to Find Maximal Cliques?

Start with a seed vertex a
Goal: Find the max clique Q that a belongs to

Observation:

If some x belongs to Q then it is a neighbor of a
Why? If a, x € Q but edge (a, x) does not exist, Q is not a clique!

Recursive algorithm: @&G
Q ... current clique
R ... candidate vertices to expand the clique to
Example: Start with a and expand around it

Q- 1 [

R=

Steps of the recursive algorithm I'(u)...neighbor set of u
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How to Find Maximal Cliques?

Q ... current clique
R ... candidate vertices

Expand (R, Q)

2/7/2017

while R # {}
p = vertex 1n R

Q = Q U {p}
R, = R N 1 (p)
if Rp# {}: Expand(R@Qp)

else: output Q,
R =R - {p}

Jure Leskovec, Stanford CS224W: Social and Information Network Analysis, http://cs224w.stanford.edu
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Prune all vertices (and incident edges) with
degrees less than k-1

Effective due to the power-law distribution of vertex
degrees

“Exact cligues” are rarely observed in real networks
A cligue of 1,000 vertices has 499,500 edges

A single edge removal results in a subgraph that is no
longer a clique (less than 0.0002% of the edges)

Relaxing Cliques

All vertices have a minimum degree but not necessarily
k-1
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Cligue Percolation Method



[Palla et al., ‘05]

Cligue Percolation Method (CPM)

Two nodes belong to the same community if they
can be connected through adjacent k-cliques:

K-clique:
Fully connected
graph on k nodes

Adjacent k-cliques: 3-clique Adjacent .
3-cligues  Non-adjacent

overlap in k-1 nodes 3-cliques

K-clique community

Set of nodes that can
be reached through a
sequence of adjacent

K-cliques . . y
Two overlapping 3-cligue communities
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[Palla et al., ‘05]

Cligue Percolation Method (CPM)

Two nodes belong to the same community if
they can be connected through adjacent k-
cliques:

s

Adjacent 4-cliques

A

Non-adjacent 4-cliques Communities for k=4

4-cliqgue
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(CPM): Using Cliques as Seeds

Given k, find all cliques of size k.

Create graph (clique graph) where all cliques
are vertices, and two cliques that share k - 1
vertices are connected via an edge.
Communities are the connected components
of this graph.

Algorithm 6.2 Clique Percolation Method (CPM)

Require: parameter k
1: return Overlapping Communities
2: Cliquesy = find all cliques of size k
3: Construct clique graph G(V, E), where |V| = |Cliques,|
4
5

. £ = {ejj | clique 7 and clique j share k — 1 nodes}
. Return all connected components of G
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CPM: Steps explained

Cligue Percolation Method:

Find maximal-cliques

Def: Cligue is maximal if
no superset is a clique

Clique overlap super-graph:
Each clique is a super-node Cliques Communities

Connect two cliques if they @
overlap in at least k-1 nodes

Communities:
Connected components of #
the clique overlap matrix
How to set k?

Set kK so that we get the “richest” (most widely
distributed cluster sizes) communlty structure
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CPM method: Example

Overlap
Cligues size

Start with graph

Find maximal g
cliques 7 Wl
Create clique B R aaan:
overlap matrix =

Threshold the _~ (2) Clique overlap
matrix at value k-1 k=4 matrix

Ifa;; <k—1set0
Communities are  ®mLlifolo 10
the connected “nonone
components of 1

the threSh()lded WMojofolo]o]1

: (3) Thresholded
matrix matrix at 3

(4) Communities
(connected Components)
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(CPM): Using Cliques as Seeds

Input graph, let k=3

2/7/2017 Jure Leskovec, Stanford CS224W: Social and Information Network Analysis, http://cs224w.stanford.edu



(CPM): Using Cliques as Seeds

Cligue graph for k=3

(vl, v2,,v3)
(v8, v9, v10)
(v3, v4, v5, v6, v7, v8)
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(CPM): Using Cliques as Seeds

2/7/2017

Result

(vl, v2, v3)
(v8, v9, v10)
(v3, v4, v5, v6, v7, v8)

d CS224W: Social and Information Network Ana

Note: the example
protein network
was detected using
a CPM algorithm

lysis, http://cs224w.stanford.e



[Palla et al., ‘07]

Example: Phone-Call Network
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How to Model Networks with
Communities?



Network and Communities

How should we think about large scale
organization of clusters in networks?

Finding: Community Structure

[l
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Network and Communities

How should we think about large scale
organization of clusters in networks?

Finding: Core-periphery structure

Nested Core-Periphery

2/7/2017



Network and Communities

How do we reconcile these two views?
(and still do community detection)

Community structure Core-periphery

2/7/2017 Jure Leskovec, Stanford CS224W: Social and Information Network Analysis, http://cs224w.stanford.edu 34



Community Score

How community-like is a set of nodes?
A good cluster S has S

Many edges internally

Few edges pointing outside
What’s a good metric:
Conductance

I,])eE;1€S,]1¢S
45y HG. D) j S}
2.4
SeS

Small conductance corresponds to good clusters
(Note |S| < |V]|/2)
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[WWW ‘08]

Network Community Profile Plot

(Note |S]| < |[V]|/2)
Define:

Network community profile (NCP) plot

Plot the score of best community of size k

®(k) = _min_ o(S)

A k=% ko=7 k=10 \ %%}
log ®(k) S o L /

Community size, log k
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How to (Really) Compute NCP?

dblp-lars
1
~~
7
N’
E} %
(@))
=
)
| -
3
. * Run the favorite clustering method
B} B.e1
7 * Each dot represents a cluster
> . .
O * For each size find “best” cluster
Spectral x
Graclus +
8.001 ' N . N . L , .| Metis ®
1@ 18@ 188a 10866 1egBBE le+B6

Cluster size, log k
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NCP Plot: Meshes

Meshes, grids, dense random graphs:
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K (number of nodes in the cluster)

d-dimensional meshes

10

@ (conductance)

[WWW ‘08]
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k (number of nodes in the cluster)
California road network
38

Jure Leskovec, Stanford CS224W: Social and Information Network Analysis, http://cs224w.stanford.edu



NCP plot: Network Science

Collaborations between scientists in networks
[Newman, 2005]

1: [ |III||I| [ IIIIIII| =
X = -
o B -
()]
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C B 1
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S L -
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0.001 BN L nulC+E
1 10 100

Community size, log k
Dips in the conductance graph correspond to the
"good" clusters we can visually detect
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Natural Hypothesis

[Internet Mathematics ‘og]

Natural hypothesis about NCP:

NCP of real networks slopes
downward
Slope of the NCP corresponds
to the “dimensionality” of the
network

2/7/2017

What about

large networks?
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3
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o

Clique, -1/d=0

| IIIIIII|—

@ -
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& , Grid, -1/d=-.50 3
“Chain, -1/d~1.0
10-3 ] I U RN BRI B,
10" 10° 10° 10" 10° 10°
n (number of nodes in the cluster)
e Social nets | Nodes | Edges | Description
LIVEJOURNAL | 4,843,953 | 42,845,684 | Blog friendships [5]
EPINIONS 7H,877 405,739 | Trust network [28]
CA-DBLP 317,080 1,049,866 | Co-authorship [5]
e Information (citation) networks
CIT-HEP-TH 27,400 352,021 | Arxiv hep-th |14
AMazoNPROD 524,371 1,491,793 | Amazon products [§]
o Web graphs
WEB-GOOGLE 855,802 4,291,352 | Google web graph
WeB-wTl0G 1,458 316 6,225033 | TREC WT10G

e Bipartite affil

1ation (authors-to-papers) networks

ATP-DBLP 615,678 944 456 | DBLP [21]
ATM-InMDB 2,076,978 5,847,693 | Actors-to-movies
e Internet networks

ASSKITTER 1,719,037 | 12,814,089 | Autonom. sys.
SNUTELLA 62,561 147,878 | P2P network [29]
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[Internet Mathematics ‘og]

Large Networks: Very Different

Typical example: General Relativity collaborations

(n=4,158, m=13,422)

0.01
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[Internet Mathematics ‘og]

More NCP Plots of Networks
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NCP: LiveJournal (n=5m, m=42m)
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Explanation: The Upward Part

As clusters grow the number of edges
inside grows slower that the number crossing

‘\ —_/  ®=1/7=0.14

/
\\~ '4

\ ®=2/10=0.2
o’ O= 8/20 0.4

““"“

504\\ N __ » D) \q\ \
////’4 \ )'//,J,‘ \\

A

(D =64/92 = 0.69

Each node has twice

as many children
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Explanation: Downward Part

Empirically we note that best clusters
(corresponding to green nodes) are barely
connected to the network \

NCP plot

—> Core-periphery structure
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What If We Remove Good Clusters?

1OO|||||||||||||||||

=
g 107 & =
C — _
® N ’
o
3 107° = =
- — ]
@] - _]
3 | |
= 103 = =
hi o h B : Original network =
ML Vhiskers remoyed ———

— Nestedness of the
core-periphery structure

10 10° 10 10° 10°
ber of nodes in the cluster)
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Suggested Network Structure

Denser and

denser core
of the

N
network .\

Core contains

Whiskers 60% node and | )
(! Whiskers are

0
\ O S edges ' responsible for

good communities

>0

e
Nested Core-Periphery "'
e (jellyfish, octopus) o
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Part 2: Explanation

)

P~
iV
. =4

L5
Way

How do we reconcile these two views?

2/7/2017 Jure Leskovec, Stanford CS224W: Social and Information Network Analysis, http://cs224w.stanford.edu 48



Overlapping Community Detection

Many methods for overlapping communities
Clique percolation [Palla et al. ‘05]
Link clustering [Ahn et al. “10] [Evans et al."09]
Cligue expansion [Lee et al. “10]

Mixed membership stochastic block models
[Airoldi et al. '08]

Bayesian matrix factorization [Psorakis et al. “11]
What do these methods assume about

community overlaps?



Overlapping Communities

Many overlapping community detection
methods make an implicit assumption:

Edge probability decreases with the
number of shared communities

Nodes
cNoNoNoNoNoNoNoMeoNoNoNo]

Nodes
00RO OOOOOOOO

. y matrix
Is this true?




Ground-truth Communities

Basic question: nodes U, V share K communities
What'’s the edge probability?

0.8 ' . ' ' ' 0.25

> > 0.2 +

= o

© @

e 2 015+

a S

Q QD

'8) %” 01t

Ll N .

< T 005

. 1 1 1 1 1 0 1 1 1 1 1
1 2 3 4 5 6 7 1 2 3 4 5 6 7
k, Numper of shared communities k, Number of shared communities
LiveJournal Amazon

social network product network



Communities as Tiles!

Edge density in the overlaps is higher!

“The more different foci (communities) that two individuals share,

the more likely it is that they will be tied” -S. Feld, 1981

Communities as “tiles”



Communities as Tiles/Circles

\The densest
part of the

graph

Communities as overlapping tiles

Jure LesKovec, dtantora L>244vv: d0Cidl ana inrtormdatuon Network Andlysis, Nttp://cszZ4w.stanrtora.eau



Communities in Networks

What does this mean?

Non-overlapping Clique percolation,
methods (spectral, and many other
modularity optimization) overlapping

methods as well
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Many Methods Falil

Many methods fail to detect dense overlaps:

Clique percolation, ...

&

Clique percolation



Community-Affiliation Graph Model (AGM

Nodes,V @ © © © '

Community Affiliation Network

Communities, C pA . pB

Memberships, M

Generative model: How is a network
generated from community affiliations?
Model parameters:

Nodes V, Communities C, Memberships M
Each community C has a single probability p,

56



AGM: Generative Process

Nodes,V @ @ © © ’

Community Affiliation Network

Given parameters (V, C, M, {p.})

Nodes in community C connect to each other by
flipping a coin with probability p,

Nodes that belong to multiple communities have
multiple coin flips: Dense community overlaps

If they "miss" the first time, they get another chance through the next community"

p(u,v) =1- H (1 - pC)

ce M, NM,

Communities, C Pa . Pg

Memberships, M
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AGM: Dense Overlaps
Pi Ps Po

Model

Network



Community-Affiliation Graph Model

AGM is flexible and can

A B
express variety of
network structures: A B
Non-overlapping, /I\ /I\
Nested, Overlapping

° A B

2/7/2017
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59



Community Evaluation:
Extras



Community Evaluation

Without ground truth
With ground truth

2/7/2017 Jure Leskovec, Stanford CS224W: Social and Information Network Analysis, http://cs224w.stanford.edu 65



Eval. Without Ground Truth

Cluster Cohesion: Measures how closely
related are objects in a cluster

Cluster Separation: Measure how distinct or
well-separated a cluster is from other clusters

# internal edges of C
ne(n.—1)/2

fjt'nf{ﬂ} —

# inter-cluster edges of C

Me (1 — 7))



Evaluation With Ground Truth

@ ®T @

%\!* /‘ﬂ
3z |

@?’-;,.f' o\ *
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B y B
3

Zachary's Karate Club

Club president (34) (circles) and instructor (1) (rectangles)



Metrics: Purity

the fraction of instances that have labels equal
to the label of the community’s majority

k

1 <
Purity = — max |C; N L;
y =1 ) max|GinL

i=1
Community 1 Community 2 Community 3

(5+6+4)/20 = 0.75
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Metrics: Pair Counting

Based on pair counting: the number of pairs of
vertices which are classified in the same (or
different) clusters

True Positive (TP): when similar members are
assigned to the same community (correct decision)

True Negative (TN): when dissimilar members are
assigned to different communities (correct decision)

False Negative (FN): when similar members are
assigned to different communities (incorrect decision)

False Positive (FP): when dissimilar members are
assigned to the same community (incorrect decision)
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Metrics: Pair Counting

Community 1 Community 2 Community 3

For TP, we need to compute the number of pairs with the
same label that are in the same community

e ) )

— i —— e — —

Community 1 Community 2 Community 3
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Metrics: Pair Counting

Community 1 Community 2 Community 3

For TN: compute the
number of dissimilar
pairs in dissimilar
communities

TN

»,+ +,% P o a4
e e | e | e |

(5x6+1x1+1x6+1x1)

L

Communities 1 and 2

X, A X,+ +,A A+
. J— LN e

+ (5x4+5x2+1x4+1x2)

¥

Communities 1 and 3

+,4 g LN
e e P i e

+ (6X4+1Xx2+1x4 =104.

-

Communities 2 and 3
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Metrics: Pair Counting

Community 1 Community 2 Community 3

For FP, compute dissimilar pairs that are in the same community

FP=(5x1+5x1+1x1)+ (6x1) + (4x2) =25

- —_— —— —

Community 1 Community 2 Community 3

For FN, compute similar members that are in different communities

FN=GXx1)+6XxT+6x2+2x1)+(4x1)=29
—_— - - - ———
ot + A
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Metrics: Pair Counting

Precision (P): the fraction of pairs that have been
correctly assigned to the same community

TP/(TP+FP)

Recall (R): the fraction of pairs assigned to the
same community of all the pairs that should have
been in the same community.

TP/(TP+FN)

F-measure:
2PR/(P+R)



Communities:
Issues and Questions




What is Cluster Analysis?

Finding groups of objects such that the objects in a group
will be similar (or related) to one another and different
from (or unrelated to) the objects in other groups

Inter-cluster
Intra-cluster distances are
distances are maximized
minimized
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Clusters Can Be Ambiguous

Two Clusters

Six Clusters

Four Clusters
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Communities: Issues and Questions

Many different formalizations of clustering
objective functions

Objectives are NP-hard to optimize exactly

Methods can find clusters that are
systematically “biased”

How well do algorithms optimize objectives?
What clusters do different methods find?
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[WWW ‘og]

Many Different Objective Functions

Modularity: m-E(m)
Edges cut: C

N: nodesinS
Conductance: ¢/(2m+c) nodesin

m: edgesinS
Expansion: ¢/n C: edges pointing
Density: 1-m/n? outside S

CutRatio: ¢/n(N-n)
Normalized Cut: ¢/(2m+c) + ¢/2(M-m)+c

Flake-ODF: frac. of nodes with more than %2 edges
pointing outside S
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Many Classes of Algorithms

Many algorithms to implicitly or explicitly
optimize objectives and extract communities:

4

popular heuristics
multi-resolution heuristic [Karypis-Kumar ‘98]
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NCP: Live Journal

100 ERRIE T =T T TH
g o | i
o 10 = =
O — /p A
- - / ]
o 5 Spectral A B
S 10 /o
-O 10 E Gﬁ-———_"’ E
) = E .
L B /s .
o

1073 .

] Illllll

= LT

N RN, A RN AN AN

—

107
10> 40" 10° 10° 10* 10°> 10° 10’
n (number of nodes in the cluster)

2/7/2017 Jure Leskovec, Stanford CS224W: Social and Information Network Analysis, http://cs224w.stanford.edu 80



Properties of Clusters (1)

500 node communities from Spectral:
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Properties of Clusters (2)

Diameter of the cluster
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Single-criterion Objectives
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Multi-criterion Objectives
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