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 Preferential Attachment Model
 Microscopic Evolution of Social Networks
 Macroscopic Evolution of Social Networks
 Forest Fire Model
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Gnp ?Model:



 Preferential attachment: 
[de Solla Price ‘65, Albert-Barabasi ’99, Mitzenmacher ‘03]

 Nodes arrive in order 1,2,…,n

 At step j, let di be the degree of node i < j

 A new node j arrives and creates m out-links

 Prob. of j linking to a previous node i is 
proportional to degree di of node i
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 New nodes are more likely to link to 
nodes that already have high degree

 Herbert Simon’s result:
 Power-laws arise from “Rich get richer” (cumulative 

advantage)

 Examples
 Citations [de Solla Price ‘65]: New citations to a paper 

are proportional to the number it already has
 Herding: If a lot of people cite a paper, then it must be good, 

and therefore I should cite it too

 Sociology: Matthew effect
 Eminent scientists often get more credit than a comparatively 

unknown researcher, even if their work is similar
 http://en.wikipedia.org/wiki/Matthew_effect
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http://en.wikipedia.org/wiki/Matthew_effect


 Preferential attachment gives 
power-law degrees!

 Intuitively reasonable process
 Can tune p to get the observed exponent

 On the web, P[node has degree d] ~ d-2.1

 2.1 = 1+1/(1-p)  p ~ 0.1
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 Preferential attachment is not so good at 
predicting network structure

 Age-degree correlation

 Solution: Node fitness (virtual degree)

 Links among high degree nodes:

 On the web nodes sometime avoid linking to each other

 Further questions:

 What is a reasonable model for how people 
sample through network node and link to them?

 Short random walks
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 A simple trick to generate values that follow a 
power-law distribution:

 Generate values 𝑟 uniformly at random within the 
interval [0,1]

 Transform the values using the equation

𝑥 = 𝑥𝑚𝑖𝑛 1 − 𝑟 −1/(𝛼−1)

 Generates values distributed according to power-
law with exponent 𝛼



 Copying mechanism (directed network)

 Select a node and an edge of this node

 Attach to the endpoint of this edge

 Walking on a network (directed network)

 The new node connects to a node, then to every first, 
second, … neighbor of this node

 Attaching to edges

 Select an edge and attach to both endpoints of this edge

 Node duplication

 Duplicate a node with all its edges

 Randomly prune edges of new node
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Size of the biggest hub is of order O(N). Most nodes can 

be connected within two steps, thus the average path 

length will be independent of the network size.

The average path length increases slower than 

logarithmically. In Gnp all nodes have comparable degree, 

thus most paths will have comparable length. In a scale-

free network vast majority of the path go through the few 

high degree hubs, reducing the distances between nodes. 

Some models produce 𝛼 = 3. This was first derived by 

Bollobas et al. for the network diameter in the context of  a 

dynamical model, but it holds for the average path length 

as well.

The second moment of the distribution is finite, thus in 

many ways the network behaves as a random network. 

Hence the average path length follows the result that we 

derived for the random network model earlier.Degree

exponent

Avg. path

length

Ultra

small

world

Small

world
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Extra!



𝛼 = 1

Second moment 𝑘2 diverges 𝑘2 finite

Average 𝑘 diverges Average 𝑘 finite

Ultra small world behavior Small world

Behaves like a 

random network

The scale-free behavior is 

relevant

Regime full of anomalies…

web web
internet

actor

collaborationmetabolic

citation

𝛼 = 2 𝛼 = 3
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Extra!





 Preferential attachment is a model 
of a growing network

 Can we find a more realistic model? 
 What governs network  growth & evolution?

 P1) Node arrival process: 

 When nodes enter the network

 P2) Edge initiation process: 

 Each node decides when to initiate an edge

 P3) Edge destination process: 

 The node determines destination of the edge
[Leskovec, Backstrom, Kumar, Tomkins, 2008]
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 4 online social networks with 
exact edge arrival sequence

 For every edge (u,v) we know exact 
time of the creation tuv

 Directly observe mechanisms leading 
to global network properties
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(F)
(D)
(A)
(L)

and so on for 
millions…

[Leskovec et al., KDD ’08]
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(F) (D)

(A) (L)

Flickr: 
Exponential

Delicious: 
Linear

Answers: 
Sub-linear

LinkedIn: 
Quadratic



 How long do nodes live?

 Node life-time is the time between the 1st

and the last edge of a node

 When do nodes “wake up” to create links?
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time
1st edge

of node i
Last edge

of node i

Lifetime of a node

time
1st edge

of node i
Last edge

of node i
Times when node 

i creates edges



 Lifetime a: 
Time between 
node’s first 
and last edge

LinkedIn

Node lifetime is exponentially distributed: 

𝑝𝑙 𝑎 = 𝜆𝑒−𝜆𝑎
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 How do nodes “wake up” to create edges?

 Edge gap 𝜹𝒅 𝒊 : time between 𝒅th and 𝒅 + 𝟏st

edge of node 𝒊:

 Let 𝒕𝒅 𝒊 be the creation time of 𝒅-th edge of node 𝒊

 𝜹𝒅 𝒊 = 𝒕𝒅+𝟏 𝒊 − 𝒕𝒅 𝒊

 𝜹𝒅 is a distribution (histogram) of 𝜹𝒅 𝒊 over all nodes 𝒊
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time
1st edge

of node i
Last edge

of node i

𝜹𝟏 𝒊 𝜹𝟐 𝒊 𝜹𝟑 𝒊

Node i𝜹𝟏 𝒊

Node j𝜹𝟏 𝒋

Node k𝜹𝟏 𝒌




 

 epg 11)(

Edge gap 𝜹𝒅: inter-
arrival time 
between 𝒅th and 
𝒅 + 𝟏st edge
is distributed by 
a power-law 
with exponential 
cut-off

LinkedIn

For every d we 
make a separate 

histogram
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 How do 𝜶 and 𝜷 change as a function of 𝒅?
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)(To each plot of 𝜹𝒅 fit: 

𝜶 is constant!

𝜷 linearly

increases!

𝜹(𝟑) 𝜹(𝟒) 𝜹(𝟓)
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 𝜶 const., 𝜷 linear in 𝒅. What does this mean? 
 Gaps get smaller with 𝒅!

Degree

𝒅 = 𝟏
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 Source node i wakes up and creates an edge
 How does i select a target node j?

 What is the degree of the target j?

 Does preferential attachment really hold?

 How many hops away is the target j?

 Are edges attaching locally?
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 Are edges more likely to connect to higher 
degree nodes? YES!
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Gnp

PA

Flickr

Network τ

Gnp 0

PA 1

Flickr 1

Delicious 1

Answers 0.9

LinkedIn 0.6



u
w

v

 Just before the edge (u,w) is placed how 
many hops are between u and w?
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Network %Δ

Flickr 66%

Delicious 28%

Answers 23%

LinkedIn 50%

Fraction of triad 
closing edges

Real edges are local!
Most of them close 

triangles!

Gnp
PA

Flickr

[Leskovec et al., KDD ’08]



 Focus only on triad-closing edges
 New triad-closing edge (u,w) appears next 
 2 step walk model:

 u is about to create an edge

1. u choses neighbor v

2. v choses neighbor w
and u connects  to w

 One can use different strategies for choosing v
and w: Random-Random works well. Why?
 More common friends (more paths) helps
 High-degree nodes are more likely to be hit
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 The model of network evolution
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Process Model

P1) Node arrival • Node arrival function is given

P2) Edge initiation

• Node lifetime is exponential

• Edge gaps get smaller as the 

degree increases

P3) Edge 

destination

Pick edge destination using 

random-random
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[Leskovec et al., KDD ’08]



 Theorem: Exponential node lifetimes and 
power-law with exponential cutoff edge gaps 
lead to power-law degree distributions

 Comments:

 The proof is based on a combination of 
exponentials

 Interesting as temporal behavior predicts a 
structural network property
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[Leskovec et al., KDD ’08]



 Given the model one can take an existing 
network and continue its evolution

 Compare true and predicted (based on the 
theorem) degree exponent: 
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degree exponent





 How do networks evolve at the macro level?

 What are global phenomena of network growth?

 Questions:

 What is the relation between the number of nodes 
n(t) and number of edges e(t) over time t?

 How does diameter change as the network grows?

 How does degree distribution evolve as the 
network grows?
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 𝑵(𝒕) … nodes at time 𝒕
 𝑬(𝒕) … edges at time 𝒕
 Suppose that

𝑵 𝒕 + 𝟏 = 𝟐 ⋅ 𝑵(𝒕)
 Q: what is:

𝑬 𝒕 + 𝟏 = ? Is it 𝟐 ⋅ 𝑬(𝒕)?

 A: More than doubled!

 But obeying the Densification Power Law
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 Networks are denser over time 
 Densification Power Law:

a … densification exponent (1 ≤ a ≤ 2)

 What is the relation between 
the number of nodes and the 
edges over time?

 First guess: constant average 
degree over time

Internet

Citations

a=1.2

a=1.6

N(t)

E
(t

)

N(t)

E
(t

)
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 Densification Power Law 
 the number of edges grows faster than the 

number of nodes – average degree is increasing

a … densification exponent: 1 ≤ a ≤ 2:
 a=1: linear growth – constant out-degree 

(traditionally assumed)

 a=2: quadratic growth – fully connected graph
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or
equivalently



 Prior models and intuition say 
that the network diameter slowly 
grows (like log N)

time

d
ia

m
et

er
d
ia

m
et

er

size of the graph

Internet

Citations

 Diameter shrinks over time

 as the network grows the 
distances between the nodes 
slowly decrease
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size of the graph

Erdos-Renyi
random graph

Densification 

exponent a =1.3

Densifying random graph has increasing diameter 
 There is more to shrinking diameter than 

just densification!

Is shrinking 
diameter just a 
consequence of 
densification?

48



Is it the degree sequence?
Compare diameter of a:

 Real network (red)

 Random network with 
the same degree 
distribution (blue)
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Citations

Densification + degree sequence 
gives shrinking diameter



 Want to model graphs that densify and have 
shrinking diameters

 Intuition:
 How do we meet friends at a party?
 How do we identify references when writing 

papers?
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 The Forest Fire model has 2 parameters: 
 p … forward burning probability

 r … backward burning probability
 The model: Directed Graph
 Each turn a new node v arrives

 Uniformly at random chooses an  “ambassador” w

 Flip 2 geometric coins (based on p and r) to 
determine the number of in- and out-links of w to 
follow

 “Fire” spreads recursively until it dies

 New node v links to all burned nodes
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Geometric distribution:



 Forest Fire generates graphs that densify
and have shrinking diameter
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densification diameter

1.32
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E(t)
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 Forest Fire also generates graphs with 
power-law degree distribution

Jure Leskovec, Stanford CS224W: Social and Information Network Analysis, http://cs224w.stanford.edu 55

in-degree out-degree

log count vs. log in-degree log count vs. log out-degree
1/19/2017



 Fix backward 
probability r and 
vary forward 
burning prob. p

 Notice a sharp 
transition 
between sparse 
and clique-like 
graphs

 The “sweet spot” 
is very narrow

Sparse 
graph

Clique-like

graph
Increasing

diameter

Decreasing 
diameter

Constant

diameter
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