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 Erdös-Renyi Random Graph Model
 The Small-World Model
 The Configuration Model





 Erdös-Renyi Random Graphs [Erdös-Renyi, ‘60]
 Two variants:
 Gn,p: undirected graph on n nodes and each 

edge (u,v) appears i.i.d. with probability p

 Gn,m : undirected  graph with n nodes, and 
m uniformly at random picked edges
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What kinds of networks 
does such model produce?



 n and p do not uniquely determine the graph!

 The graph is a result of a random process

 We can have many different realizations given 
the same n and p
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n = 10 

p= 1/6



 How likely is a graph on E edges?
 P(E): the probability that a given Gnp

generates a graph on exactly E edges:

where Emax=n(n-1)/2 is the maximum possible number of edges 
in an undirected graph of n nodes
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Degree distribution: P(k)

Path length: h

Clustering coefficient: C

What are values of these 
properties for Gnp?



 What is expected degree of a node?
 Let Xv be a rnd. var. measuring the degree of node v

 We want to know:

 For the calculation we will need: Linearity of expectation
 For any random variables Y1,Y2,…,Yk

 If Y=Y1+Y2+…Yk, then E[Y]= i E[Yi]

 An easier way:
 Decompose Xv to Xv= Xv,1+Xv,2+…+Xv,n-1

 where Xv,u is a {0,1}-random variable 
which tells if edge (v,u) exists or not
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How to think about this?

• Prob. of node u linking to node v is p

• u can link (flips a coin) to all other (n-1) nodes

• Thus, the expected degree of node u is: p(n-1)
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 Fact: Degree distribution of Gnp is Binomial.
 Let P(k) denote a fraction of nodes with 

degree k:
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 Remember:

 Edges in Gnp appear i.i.d. with prob. p

 So:

 Then:
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Degree distribution: 

Clustering coefficient: C=p=k/n

Path length: next!
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 We need to define two concepts

 1) Define: Random k-Regular graph

 Assume each node has k spokes (half-edges)

 Randomly pair them up!

 2) Define: Expansion

 Graph G(V, E) has expansion α:
if S  V: #edges leaving S 

 α min(|S|,|V\S|)

 Or equivalently: 
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 To prove the diameter of a Gnp we define few concepts

 Define: Random k-Regular graph

 Assume each node has k spokes (half-edges)

 k=1:

 k=2:

 k=3:

 Randomly pair them up!
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Graph is a set of pairs

Graph is a set of cycles

Arbitrarily complicated
graphs
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S nodes ≥ α·S edges

S’ nodes ≥ α·S’ edges

(A big) graph with “good” expansion
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 Expansion is measure of robustness:

 To disconnect l nodes, we need to cut  α l edges

 Low expansion:

 High expansion:

 Social networks:

 “Communities”
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 k-regular graph (every node has degree k):
 Expansion is at most k (when S is a single node)

 Is there a graph on n nodes (n), of fixed max 
deg. k, so that expansion α remains const?

Examples:
 nn grid: k=4: α =2n/(n2/4)0

(S=n/2  n/2 square in the center)

 Complete binary tree:
α 0 for |S|=(n/2)-1

 Fact: For a random 3-regular graph on n nodes, there is 
some const α (α >0, independent. of n) such that w.h.p. 
the expansion of the graph is  α (In fact, α=d/2 as d→∞)
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 Fact: In a graph on n nodes with expansion α,

for all pairs of nodes s and t there is a path of 
O((log n) / α) edges connecting them.

 Proof:

 Proof strategy: 

 We want to show that from any 
node s there is a path of length 
O((log n)/α) to any other node t

 Let Sj be a set of all nodes 
found within j steps of BFS from s. 

 How does Sj increase as a function of j?
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 Proof (continued):

 Let Sj be a set of all nodes found 
within j steps of BFS from s. 

 We want to relate Sj and Sj+1
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 Proof (continued):

 In how many steps of BFS 
do we reach >n/2 nodes?

 Need j so that:

 Let’s set:

 Then:

 In 2k/α·log n steps |Sj| grows to Θ(n). 
So, the diameter of G is O(log(n)/ α)
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Degree distribution: 

Clustering coefficient: C=p=k/n

Path length: O(log n)
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Paul Erdos
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Paul Erdös



 Graph structure of Gnp as p changes:

 Emergence of a Giant Component:
avg. degree k=2E/n or p=k/(n-1)

 k=1-ε: all components are of  size Ω(log n)

 k=1+ε: 1 component of  size Ω(n), others have size Ω(log n)
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 Gnp, n=100,000, k=p(n-1) = 0.5 … 3
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Fraction of nodes in the 

largest component
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Degree distribution: 

Path length: 6.6      O(log n)

Clustering coefficient: 0.11        k / n

Connected component:  99%

C ≈ 8·10-8

h  ≈ 8.2

MSN        Gnp

GCC exists

when k>1.

k ≈ 14.

n=180M






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 Are real networks like random graphs?
 Average path length: 

 Giant connected component: 

 Clustering Coefficient: 

 Degree Distribution: 
 Problems with the random network model:
 Degreed distribution differs from that of real networks

 Giant component in most real networks 
does NOT emerge through a phase transition

 No “local” structure – clustering coefficient is too low
 Most important: Are real networks random?
 The answer is simply: NO!
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 If Gnp is wrong, why did we spend time on it?

 It is the reference model for the rest of the class

 It will help us calculate many quantities, that can 
then be compared to the real data

 It will help us understand to what degree is a 
particular property the result of some random 
process
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So, while Gnp is WRONG, it will turn out 
to be extremly USEFUL!



Can we have high clustering while also having short paths?

Vs.

High clustering coefficient, 
High diameter

Low clustering coefficient
Low diameter



Origins of a small-world idea:
 The Bacon number:
 Create a network of Hollywood actors

 Connect two actors if they 
co-appeared in the movie

 Bacon number: number of steps to 
Kevin Bacon

 As of Dec 2007, the highest (finite) 
Bacon number reported is 8

 Only approx. 12% of all actors 
cannot be linked to Bacon
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Erdös numbers are small!
(Jure’s number is 3.)

Find out your Erdos number: http://www.ams.org/mathscinet/collaborationDistance.html

http://www.ams.org/mathscinet/collaborationDistance.html


 What is the typical shortest path 
length between any two people?
 Experiment on the global friendship 

network
 Can’t measure, need to probe explicitly 

 Small-world experiment [Milgram ’67]

 Picked 300 people in Omaha, Nebraska 
and Wichita, Kansas

 Ask them to get a letter to a 
stock-broker in Boston by passing 
it through friends

 How many steps did it take?
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 64 chains completed:
(i.e., 64 letters reached the target)

 It took 6.2 steps on the 
average, thus 
“6 degrees of separation”

 Further observations:

 People who owned stock
had shorter paths to the stockbroker 
than random people: 5.4 vs. 6.7

 People from the Boston area have even 
closer paths: 4.4
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Milgram’s small world experiment

[Milgram, ’67]



 Boston vs. occupation networks:
 Criticism:
 Funneling:
 31 of 64 chains passed through 1 of 3 people 

as their final step  Not all links/nodes are equal

 Starting points and the target were non-random

 There are not many samples (only 64)

 People refused to participate (25% for Milgram)
 Not all searches finished (only 64 out of 300)

 Some sort of social search: People in the experiment 
follow some strategy instead of forwarding the letter to 
everyone. They are not finding the shortest path!

 People might have used extra information resources
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 (Today) What is the structure of a social 
network?

 (offline) What kind of mechanisms do people 
use to route and find the target?
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 Assume each human is connected to 100 other people
Then:
 Step 1: reach 100 people
 Step 2: reach 100*100 = 10,000 people
 Step 3: reach 100*100*100 = 1,000,000 people
 Step 4: reach 100*100*100*100 = 100M people
 In 5 steps we can reach 10 billion people

 What’s wrong here?
 92% of new FB friendships are to a friend-of-a-friend 

[Backstom-Leskovec ‘11]
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 MSN network has 7 orders of magnitude 
larger clustering than the corresponding Gnp!

 Other examples:

1/17/2017 Jure Leskovec, Stanford CS224W: Social and Information Network Analysis, http://cs224w.stanford.edu 41

h ... Average shortest path length

C ... Average clustering coefficient

“actual” … real network

“random” … random graph with same avg. degree

Actor Collaborations (IMDB): N = 225,226 nodes, avg. degree k = 61

Electrical power grid: N = 4,941 nodes, k = 2.67

Network of neurons: N = 282 nodes, k = 14

Network hactual hrandom Crandom

Film actors 3.65 2.99 0.00027

Power Grid 18.70 12.40 0.005

C. elegans 2.65 2.25 0.05
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 Consequence of expansion:
 Short paths: O(log n)

 This is “best” we can do if we 
have a constant degree 

 But clustering is low!
 But networks have 

“local” structure:
 Triadic closure:

Friend of a friend is my friend

 High clustering but 
diameter is also high

 How can we have both?

Low diameter
Low clustering coefficient

High clustering coefficient
High diameter



 Could a network with high clustering be 
at the same time a small world?
 How can we at the same time have 

high clustering and small diameter?

 Clustering implies edge “locality”

 Randomness enables “shortcuts”
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High clustering

High diameter

Low clustering

Low diameter



Small-world Model [Watts-Strogatz ‘98]
Two components to the model:
 (1) Start with a low-dimensional regular lattice
 (In our case we using a ring as a lattice)
 Has high clustering coefficient

 Now introduce randomness (“shortcuts”)

 (2) Rewire: 
 Add/remove edges to create 

shortcuts to join remote parts 
of the lattice

 For each edge with prob. p move 
the other end to a random node
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[Watts-Strogatz, ‘98]
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High clustering
High diameter

High clustering
Low diameter

Low clustering
Low diameter
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 Alternative formulation of the model:

 Start with a square grid

 Each node has 1 random long-range edge

 Each node has 1 spoke. Then randomly connect them.
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There are already 12 triangles in the grid and 

the long-range edge can only close more.

What’s the diameter?

It is O(log(n))
Why?

Ci =
2 ×ei

ki (ki -1)
=

2 ×12

9 ×8
³ 0.33



 Proof:
 Consider a graph where we contract 

2x2 subgraphs into supernodes
 Now we have 4 edges sticking out of 

each supernode
 4-regular random graph!

 From Thm. we have short paths 
between super nodes

 We can turn this into a path in a real 
graph by adding at most 2 steps per 
long range edge (by having to 
traverse internal nodes)

 Diameter of the model is 
O(2 log n)
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4-regular random

graph



 Could a network with high clustering be at the 
same time a small world?

 Yes! You don’t need more than a few random links

 The Watts Strogatz Model:

 Provides insight on the interplay between clustering 
and the small-world 

 Captures the structure of many realistic networks

 Accounts for the high clustering of real networks

 Does not lead to the correct degree distribution

 Does not enable navigation (offline lecture)

1/17/2017 Jure Leskovec, Stanford CS224W: Social and Information Network Analysis, http://cs224w.stanford.edu 49



 (offline) What mechanisms do people 
use to navigate networks and find the 
target?
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 Goal: Generate a random graph with a 
given degree sequence k1, k2, … kN

 Configuration model:

 Useful as a “null” model of networks

 We can compare the real network G and a “random” 
G’ which has the same degree sequence as G
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