
Intro to Apache Spark

EECS 4415

Big Data Systems

Tilemachos Pechlivanoglou

tipech@eecs.yorku.ca

Apache Spark

2

■ Spark is a cluster computing engine.

■ Provides high-level API in Scala, Java, Python and R.

■ Provides high level tools:
– Spark SQL.
– MLib.
– GraphX.
– Spark Streaming.

RDDs

3

■ The basic abstraction in Spark is the RDD.

■ Stands for: Resilient Distributed Dataset.

■ A collection of items, with source:
– Hadoop (HDFS).
– JDBC.
– ElasticSearch.
– others…

RDD concepts

4

Main concepts regarding RDD:

■ Partitions.

■ Dependencies.

■ Lazy computation

RDD partitions

5

■ An RDD is partitioned.

■ A partition is usually computed on a different process
– (usually on a different machine).

■ This is the implementation of the distributed part of the
RDD.

RDD dependency

6

■ RDDs can depend on other RDDs.

■ RDD calculations are lazy
– map operation on RDD gives new RDD which depends on original
– new RDD only contains meta-data (i.e., the computing function)

■ Flow is only computed on a specific command
– i.e. when we calculate something final (reduce)

Lazy RDDs & dependency

7

■ RDDs can depend on other RDDs.

■ RDD calculations are lazy
– map operation on RDD gives new RDD which depends on original
– new RDD only contains meta-data (i.e., the computing function)

■ Flow is only computed on a specific command
– i.e. when we calculate something final (reduce)

Spark structure

8

■ Driver:
– Executes the main program
– Creates the RDDs
– Collects the results

■ Executors:
– Execute the RDD operations
– Participate in the shuffle

Taken from Spark wiki - https://cwiki.apache.org/confluence/display/SPARK/PySpark+Internals
9

■ Normal process:
– Data ingestion: turn any source of data to RDDs
– Transformations: modify the RDDs in some way
– Final actions: evaluate the RDDs and return some result

Spark flow

10

RDD creation

11

■ Spark supports reading files, directories, streams, etc.

■ Some out-of-the-box methods:
– textFile - retrieving an RDD[String]
– sequenceFile - Hadoop sequence files RDD[(K,V)]
– socketTextStream - text stream RDD[String]

RDD transformation

12

■ Transformations are divided to two main types:
– Those who shuffle
– Those who don’t

■ Remember these are lazy operations!

RDD transformations, no shuffle

13

■ map(func):
– return new RDD by passing each element through a function

■ filter(func):
– return new RDD by selecting elements on which func returns true

■ flatMap(func):
– similar to map, but each input item is mapped to 0 or more output items
– (so func should return a Seq rather than a single item)
– e.g. (lyrics1, lyrics2) -> flatmap -> (word1, word2, word3, word4)

from
lyrics1

from
lyrics2

RDD transformations, shuffle

14

■ Shuffle operations repartition the data across the network.
■ Can be very expensive operations in Spark.
■ You must be aware where and why shuffle happens.
■ Order is not guaranteed inside a partition.

■ Popular operations that cause shuffle are:
– groupBy*, reduceBy*, sort*, aggregateBy* and join/intersect RDDs

Final actions (1)

15

■ The following (selected) methods evaluate the RDD (not lazy):
– collect() – returns an list containing all the elements of the RDD

main RDD evaluation method
– count() – returns the number of the elements in the RDD

– first() – returns the first element of the RDD

– foreach(f) – performs a function on each element of the RDD

– isEmpty

– max/min
– reduce((T,T) => T) – parallel reduction.

Final actions (2)

16

■ More evaluating methods
– take(n) – returns the first n elements

– takeSample()
– takeOrdered(n) – returns the first (smallest) n elements

– top(n) – returns the first (largest) n elements

– countByKey – for pair RDDs

– save*File

An example workflow
17

Demo streaming Twitter app
18

Running the demo Twitter app

19

■ Demo is executed in two different Docker containers
– one responsible for connecting to Twitter stream and forwarding it locally
– one responsible for getting the local stream and processing it in Spark
– we make them talk to each other by “linking” them

■ Running twitter_app.py
– docker run -it -v $PWD:/app --name twitter -w /app python bash
– pip install -U git+https://github.com/tweepy/tweepy.git
– python twitter_app.py

■ Running spark_app.py
– docker run -it -v $PWD:/app --link twitter:twitter eecsyorku/eecs4415
– spark-submit spark_app.py

Installs latest version,
previous one has a bug

Twitter app credentials

20

■ Twitter requires app developer account for access to stream.
– Normally requires applying for it
– This is the best option

■ If that isn’t possible, you can use credentials below:
– May cause limiting issues with too many people running at the same time

ACCESS_TOKEN = '2591998746-Mx8ZHsXJHzIxAaD2IxYfmzYuL3pYNVnvWoHZgR5'

ACCESS_SECRET = 'LJDvEa0jL7QJXxql0NVrULTAniLobe2TAAlnBdXRfm1xF'

CONSUMER_KEY = 'ZAPfZLcBhYEBCeRSAK5PqkTT7'

CONSUMER_SECRET = 'M81KvgaicyJIaQegdgXcdKDeZrSsJz4AVrGv3yoFwuItQQPMay'

Thank you!

21

Based on:
http://trainologic.com/wp-content/uploads/2017/06/SparkForDataScienceMeetup1.pptx
https://www.toptal.com/apache/apache-spark-streaming-twitter

http://trainologic.com/wp-content/uploads/2017/06/SparkForDataScienceMeetup1.pptx
https://www.toptal.com/apache/apache-spark-streaming-twitter

