
Introduction to MapReduce

EECS 4415

Big Data Systems

Tilemachos Pechlivanoglou

tipech@eecs.yorku.ca



■ Our first peek into MapReduce implementation

■ Using Python

■ Example program: WordCount

MapReduce

2



3

Conventional approach



Preparation:

Loading file line by line:

4

Conventional (step 0)

import sys

import re

sums = {}

for line in sys.stdin:



Removing non-word characters:

Splitting into words:

5

Conventional (step 1)

line = re.sub( r'^\W+|\W+$', '', line )

words = re.split( r'\W+', line )



Iterating over words:

Making everything lowercase:

Incrementing the count of every word in the dictionary

(if word doesn’t exist, get 0)
6

Conventional (step 2)

for word in words:

word = word.lower()

sums[word] = sums.get( word, 0 ) + 1



7

Conventional (Moby Dick) 



8

Conventional (output) 



Limitations of approach

■ Requires use of dictionary
– entire object stored in memory
– if too big for memory crashes

■ Slower as dictionary grows
– the bigger it is, the more time needed to get key (word)

9



Limitations of approach (graph)

10



MapReduce approach

Does not require a central data structure (dictionary)

Steps:
■ map: intermediate results, associates them with output key
■ shuffle: intermediate results, same output key
■ reduce: final result, takes keys as input

11



MapReduce Mapper

12



Same first steps:

13

MapReduce Mapper (step 0)

import sys

import re

sums = {}

for line in sys.stdin:

line = re.sub( r'^\W+|\W+$', '', line )

words = re.split( r'\W+', line )

for word in words:



Output word and count:
■ convert to lowercase
■ “\t” (tab) is Hadoop for “:”  separates key from value

Conventional execution:

14

MapReduce Mapper (step 1)

print( word.lower() + "\t1" )

./mapper.py < input.txt



MapReduce Mapper (output)

15



Simple sort of calculated words
■ Running on a cluster, more distribution happens here

Conventional execution (Linux command):

16

MapReduce Shuffle

./mapper.py < input.txt | sort



MapReduce Shuffle (output)

17



MapReduce Reducer

18



Preparation:

Loading previous results line by line:

19

MapReduce Reducer (step 0)

import sys

previous = None

sum = 0

for line in sys.stdin:



Split pairs again:

If we are still counting occurences of the same word:

Unless it’s the first entry:

20

MapReduce Reducer (step 1)

key, value = line.split( '\t' )

if key != previous:

if previous is not None:



Sum up 2 words:

Otherwise, re-initialize for next word

Either way, add new value to sum

21

MapReduce Reducer (step 1)

print str( sum ) + '\t' + previous

previous = key

sum = 0

sum = sum + int( value )



Return those two words:

Conventional execution:

22

MapReduce Reducer (step 4)

print str( sum ) + '\t' + previous

./mapper.py < input.txt | sort | ./reducer.py



MapReduce Reduce (output)

23



MapReduce Execution

24

hadoop jar /usr/hadoop-3.0.0/share/hadoop/tools/lib/hadoop-streaming-

3.0.0.jar \

-file ./mapper.py \

-mapper ./mapper.py \

-file ./reducer.py \

-reducer ./reducer.py \

-input /input.txt \

-output /output



Thank you!

25

Based on
https://zettadatanet.wordpress.com/2015/04/04/a-hands-on-introduction-to-mapreduce-in-python/


