Vector Space Model: TF-IDF

Adapted from Lectures by Prabhakar Raghavan and Christopher Manning

Bag of words model

- Vector representation doesn't consider the ordering of words in a document
 - John is quicker than Mary and Mary is quicker than John have the same vectors
- This is called the <u>bag of words</u> model
- Bag: multiset (multiplicity counts, abstract order)

Term frequency tf

- The term frequency tf_{t,d} of term t in document d is defined as the number of times that t occurs in d.
- We want to use *tf* when computing querydocument match scores. But how?
- Raw term frequency is not what we want:
 - A document with 10 occurrences of the term may be more relevant than a document with one occurrence of the term.
 - But not 10 times more relevant.
- Relevance does not increase proportionally with term frequency.

Log-frequency weighting

• The log frequency weight of term *t* in *d* is $w_{t,d} = \begin{cases} 1 + \log_{10} tf_{t,d}, & \text{if } tf_{t,d} > 0 \\ 0, & \text{otherwise} \end{cases}$

• $0 \to 0, 1 \to 1, 2 \to 1.3, 10 \to 2, 1000 \to 4, \text{ etc.}$

Score for a document-query pair: sum over terms
t in both query *q* and document *d*:

score =
$$\sum_{t \in q \cap d} (1 + \log tf_{t,d})$$

 The score is 0 if none of the query terms is present in the document.

Document frequency

- Rare terms are more informative than frequent terms
 - Recall stop words
 - For example, consider a term in the query that is rare in the collection (e.g., *eccentric*)
 - A document containing this term is very likely to be relevant to the query *eccentric*
 - → We want a higher weight for rare terms like eccentric

Document frequency, continued

- Consider a query term that is frequent in the collection (e.g., high, increase, line)
 - A document containing such a term is more likely to be relevant than a document that doesn't, *but it's not a sure indicator of relevance.*
 - → For frequent terms, we want positive weights for words like *high, increase, and line*, but lower weights than for rare terms.
- We will use document frequency (df) to capture this in the score.
- df (≤ N) is the number of documents that contain the term

idf weight

- df_t is the document_frequency of t: the number of documents that contain t
 - df is a measure of the informativeness of t
- We define the idf (inverse document frequency) of t by $idf_t = log_{10} N/df_t$
 - We use log N/df_t instead of N/df_t to "dampen" the effect of idf.

the base of the log is immaterial.

idf example, suppose N = 1 million

term	df _t	idf _t
calpurnia	1	6
animal	100	4
sunday	1,000	3
fly	10,000	2
under	100,000	1
the	1,000,000	0

There is one **idf** value for each term **t** in a collection.

Collection vs. Document frequency

The collection frequency of t is the number of occurrences of t in the collection, counting multiple occurrences.

Word	Collection frequency	Document frequency
insurance	10440	3997
try	10422	8760

Which word is a better search term (and should get a higher weight)?

tf-idf weighting

The tf-idf weight of a term is the product of its tf weight and its idf weight.

$$\mathbf{w}_{t,d} = (1 + \log \mathrm{tf}_{t,d}) \times \log N / \mathrm{df}_t$$

- Best known weighting scheme in information retrieval
 - Note: the "-" in tf-idf is a hyphen, not a minus sign!
 - Alternative names: tf.idf, tf x idf
- Increases with
 - the number of occurrences within a document
 - the rarity of the term in the collection

TF-IDF Example Applications

- How to find similar twitter users or bloggers?
 - Build user profiles
 - Compare profiles
- How to build a user profile?
 - Twitter user profile
 - Blogger profile
- How to compare profiles?

QUESTIONS?