
Python + Docker for Big Data

EECS 4415: Big Data System (Fall 2018)

Agenda

1. Recap: Python

2. Introducing Docker

3. Installing Docker

4. Using Docker

5. Our Docker Environment

6. Examples

7. Python Code Snippets

8. Conclusion

Examples

0. Basic Docker

1. Basic Python and CSVs

2. Word Frequency

3. Great Lakes Water Quality

Recap: Python

• Dynamically-typed scripting language

• Very easy to learn

• Interactive front-end for C/C++ code

• Object-oriented

• Lots of libraries

− Including tools for data analysis

• Powerful, scalable

− Supporting tools that handle very large datasets

Introducing Docker

Introducing Docker

• Docker is a platform for developers and sysadmins to develop, deploy, and run applications

with containers. The use of Linux containers to deploy applications is called containerization.

Containers are not new, but their use for easily deploying applications is.

− Containerization is increasingly popular because containers are:

− Flexible: Even the most complex applications can be containerized.

− Lightweight: Containers leverage and share the host kernel.

− Interchangeable: You can deploy updates and upgrades on-the-fly.

− Portable: You can build locally, deploy to the cloud, and run anywhere.

− Scalable: You can increase and automatically distribute container replicas.

− Stackable: You can stack services vertically and on-the-fly.

Docker Basics

Images and Containers

• A container is launched by running an image. An

image is an executable package that includes

everything needed to run an application--the

code, a runtime, libraries, environment variables,

and configuration files.

• A container is a runtime instance of an image--

what the image becomes in memory when

executed (that is, an image with state, or a user

process). You can see a list of your running

containers with the command, docker ps, just

as you would in Linux.

Containers vs Virtual Machines

• A container runs natively on Linux and shares

the kernel of the host machine with other

containers. It runs a discrete process, taking no

more memory than any other executable,

making it lightweight.

• By contrast, a virtual machine (VM) runs a full-

blown “guest” operating system with virtual

access to host resources through a hypervisor.

In general, VMs provide an environment with

more resources than most applications need.

Docker Basics: Images + Containers

• A Docker Image is the template (application plus required

binaries and libraries) needed to build a running Docker

Container (the running instance of that image). As

templates, images are what can be used to share a

containerized applications. Collections of images are

stored/shared in registries like Docker Hub.

Why Docker?

• A lightweight approach that allows us to simulate an environment that has

parallels to how one might interact with a cloud-based VM or container, without

having the overhead and cost of setting up AWS or Azure instances.

• FYI: If you’re intrigued:

− https://aws.amazon.com/docker/

− https://docs.docker.com/docker-for-azure/

− https://azure.microsoft.com/en-us/services/kubernetes-service/

https://aws.amazon.com/docker/
https://docs.docker.com/docker-for-azure/
https://azure.microsoft.com/en-us/services/kubernetes-service/

Installing Docker

For Windows, Mac & Linux

Go to https://store.docker.com/search?type=edition&offering=community

https://store.docker.com/search?type=edition&offering=community

Select the Edition that matches your computer’s OS.

Then click Get Docker. You may need to login / create a Docker account first.

Installing Docker: For Windows

1. Enable Hyper-V:

− https://blogs.technet.microsoft.com/canit

pro/2015/09/08/step-by-step-enabling-

hyper-v-for-use-on-windows-10/

− Steps 1 through 2(6)

2. Run downloaded EXE as Administrator

3. Start the Docker client by opening Docker

for Windows via the Start Menu

4. Open Docker controls via the notification

area (system tray).

Refer to: https://docs.docker.com/install/

https://blogs.technet.microsoft.com/canitpro/2015/09/08/step-by-step-enabling-hyper-v-for-use-on-windows-10/
https://docs.docker.com/install/

Installing Docker: For Mac

1. Run downloaded DMG as Super user

2. Start the Docker client by opening Docker

for Mac via the Launchpad

3. Open Docker controls via the menu bar.

Refer to: https://docs.docker.com/install/

https://docs.docker.com/install/

For non Windows 10 Pro/Edu users:

• If you have Windows 10 Home:

− Upgrade to Windows 10 Pro via

https://webapp.eecs.yorku.ca/imagine/

− These editions work:

▪ Windows 10 Education, Version 1803 32/64-bit

▪ Windows 10 (Multiple Editions), Version 1803 32/64-bit

• If you have Windows 7 or 8.1:

− Um… Upgrade, already?

− But if you must insist:

▪ https://docs.docker.com/toolbox/toolbox_install_windows/

▪ Legacy desktop solution. Docker Toolbox is for older Mac and

Windows systems that do not meet the requirements of Docker

for Mac and Docker for Windows. We recommend updating to

the newer applications, if possible.

https://webapp.eecs.yorku.ca/imagine/
https://docs.docker.com/toolbox/toolbox_install_windows/

Installation: Notes for VM Users

• For Windows users that used VirtualBox or VMware

− Hyper-V is need for Docker for Windows

− Hyper-V cannot be used alongside other hypervisors

− Two options:
1. Use: Docker Toolbox https://docs.docker.com/toolbox/toolbox_install_windows/

2. Toggle on/off hypervisorlaunchtype at startup

INVOLVES EDIT BOOT MENU

PROCEED AT YOUR OWN RISK! YOU BETTER KNOW WHAT YOU’RE DOING!

https://www.hanselman.com/blog/SwitchEasilyBetweenVirtualBoxAndHyperVWithABCDEditBootEntryInWindows81.aspx

https://docs.docker.com/toolbox/toolbox_install_windows/
https://www.hanselman.com/blog/SwitchEasilyBetweenVirtualBoxAndHyperVWithABCDEditBootEntryInWindows81.aspx

Installation: Alternatives

• For those comfortable using command-lines

• For those who don’t want to create a Docker account

− Package Manager:

▪ Chocolatey: Windows

▪ Homebrew: macOS

▪ Snap: Ubuntu / Linux

https://chocolatey.org/
https://brew.sh/
https://snapcraft.io/

Alternative for Windows:

1. Enable Hyper-V:

− https://blogs.technet.microsoft.com/canitpro/

2015/09/08/step-by-step-enabling-hyper-v-

for-use-on-windows-10/

− Steps 1 through 2(6)

2. Install chocolatey first:

− https://chocolatey.org/install

3. In PowerShell as Administrator:

− PS> choco install docker-for-windows

4. Start the Docker client by opening Docker

for Windows via the Start Menu

5. Open Docker controls via the notification

area (system tray).

https://blogs.technet.microsoft.com/canitpro/2015/09/08/step-by-step-enabling-hyper-v-for-use-on-windows-10/
https://chocolatey.org/install

Alternative for Mac:

1. Install Homebrew:

− https://brew.sh/

− https://docs.brew.sh/Installation

2. In the Terminal as Administrator, run:

− $ brew install docker

3. Start the Docker client by opening

Docker for Mac via the Launchpad

4. Open Docker controls via the menu bar.

https://brew.sh/
https://docs.brew.sh/Installation

Alternative for Linux:

• In the terminal, run:

− $ sudo snap install docker

− https://github.com/docker/docker-snap/blob/master/README.md

− https://snapcraft.io/docker

• If you use other methods or can’t install snap…

− https://docs.docker.com/install/#supported-platforms

− Install Docker CE

https://github.com/docker/docker-snap/blob/master/README.md
https://snapcraft.io/docker
https://docs.docker.com/install/#supported-platforms

Alternative for Linux (Ubuntu):

PROCEED AT YOUR OWN RISK!

sudo apt-get update

sudo apt-get install apt-transport-https ca-certificates curl software-properties-common

curl -fsSL https://download.docker.com/linux/ubuntu/gpg | sudo apt-key add -

sudo apt-key fingerprint 0EBFCD88

sudo add-apt-repository "deb [arch=amd64] https://download.docker.com/linux/ubuntu $(lsb_release -cs) stable"

sudo apt-get update

sudo apt-get install docker-ce

sudo usermod -aG docker $USER

export DOCKER_COMPOSE_VERSION=1.22.0

sudo curl -L https://github.com/docker/compose/releases/download/${DOCKER_COMPOSE_VERSION}/docker-compose-$(uname –s)-$(uname –m) -o /usr/local/bin/docker-compose

sudo chmod a+rx /usr/local/bin/docker-compose

sudo -i << 'EOF'

curl -L https://raw.githubusercontent.com/docker/docker-ce/master/components/cli/contrib/completion/bash/docker > /etc/bash_completion.d/docker

curl -L https://raw.githubusercontent.com/docker/compose/$(docker-compose version --short)/contrib/completion/bash/docker-compose > /etc/bash_completion.d/docker-compose

EOF

Uninstall:

sudo apt-get remove docker-ce

sudo apt autoremove

sudo rm /usr/local/bin/docker-compose

sudo rm /etc/bash_completion.d/docker

sudo rm /etc/bash_completion.d/docker-compose

Alternative for Windows (WSL):

• For Windows Subsystem for Linux, install Docker CE with instructions for

Alternative for Linux (Ubuntu), but requires the below setting be enabled in

the Docker Settings. There are more secure, but very involved workarounds.

https://medium.com/@sebagomez/installing-the-docker-client-on-ubuntus-windows-subsystem-for-linux-612b392a44c4

https://nickjanetakis.com/blog/setting-up-docker-for-windows-and-wsl-to-work-flawlessly

https://blogs.msdn.microsoft.com/commandline/2017/12/08/cross-post-wsl-interoperability-with-docker/

https://raesene.github.io/blog/2018/03/29/WSL-And-Docker/

https://docs.docker.com/engine/security/https/#create-a-ca-server-and-client-keys-with-openssl

https://blogs.technet.microsoft.com/stefan_stranger/2018/04/02/access-my-docker-for-windows-kubernetes-cluster-from-debian-wsl/

https://medium.com/@sebagomez/installing-the-docker-client-on-ubuntus-windows-subsystem-for-linux-612b392a44c4
https://nickjanetakis.com/blog/setting-up-docker-for-windows-and-wsl-to-work-flawlessly
https://blogs.msdn.microsoft.com/commandline/2017/12/08/cross-post-wsl-interoperability-with-docker/
https://raesene.github.io/blog/2018/03/29/WSL-And-Docker/
https://docs.docker.com/engine/security/https/#create-a-ca-server-and-client-keys-with-openssl
https://blogs.technet.microsoft.com/stefan_stranger/2018/04/02/access-my-docker-for-windows-kubernetes-cluster-from-debian-wsl/

Additional Notes

• Recommend installing and using Git

• For Windows, Git comes with a Bash terminal

− The Git-Bash / MinGW terminal works with Docker with

some caveats requiring some workarounds.

− PowerShell and CMD should work will Docker

− Windows Subsystem for Linux can install Docker CE, but

can only be used as a client not the engine. See here.

Using Docker

Docker commands

Using Docker: The Basic Commands

• docker images List images

• docker pull Pull an image or a repository from a registry

• docker ps List containers

• docker run Run a command in a new container

• docker rm Remove one or more containers

• docker help Help about the command

https://docs.docker.com/get-started/

https://docs.docker.com/engine/reference/commandline/docker/

https://docs.docker.com/get-started/
https://docs.docker.com/engine/reference/commandline/docker/

docker images

• The default docker images will show all top level images, their repository and tags, and their

size. The docker images command takes an optional [REPOSITORY[:TAG]] argument that

restricts the list to images that match the argument. If you specify REPOSITORY but no TAG,

the docker images command lists all images in the given repository.

docker pull

• Most of your images will be created on top of a base

image from the Docker Hub registry. Docker Hub contains

many pre-built images that you can pull and try without

needing to define and configure your own. To download a

particular image, or set of images (i.e., a repository), use

docker pull.

• Find images & documentation on: https://hub.docker.com/

https://hub.docker.com/

docker pull

• If no tag is provided, Docker Engine uses the :latest tag as

a default. This command pulls the debian:latest image:

docker pull

docker pull python

− Downloads the latest python image

− Same as: docker pull python:latest

docker pull python:3.7

− Downloads the python image for version 3.7

docker pull eecsyorku/eecs4415

− Downloads the latest version of the class’s image

− Same as: docker pull eecsyorku/eecs4415:latest

docker ps

• List containers

• The docker ps command only shows running containers by

default. To see all containers, use the -a (or --all) flag:

docker run

• The docker run command first creates a writeable

container layer over the specified image, and then starts it

using the specified command.

• A stopped container can be restarted with all its previous

changes intact using docker start. See docker ps -a to

view a list of all containers.

docker run

docker run -it -v $PWD:/app -w /app python:3.7 bash

− Start a new python:3.7 container

− Run the bash command within the container

− -v $PWD:/app same as --volume $PWD:/app

▪ Mount a volume with the current working directory to the /app path in

container, so you can access files within the container from /app directory.

▪ If -v /doesnt/exist:/foo, when the host directory of a bind-mounted volume

doesn’t exist, Docker will automatically create this directory on the host for

you. In the example above, Docker will create the /doesnt/exist folder before

starting your container.

See: https://docs.docker.com/engine/reference/commandline/run/

https://docs.docker.com/engine/reference/commandline/run/

docker run

docker run -it -v $PWD:/app -w /app python:3.7 bash

− -w /app lets the command being executed inside directory given, here /app. If the

path does not exist it is created inside the container.

− -it instructs Docker to allocate a pseudo-TTY connected to the container’s stdin;

creating an interactive bash shell in the container.

▪ -t, --tty Allocate a pseudo-TTY

▪ -i, --interactive Keep STDIN open even if not attached

− --rm automatically remove the container when it exits

See: https://docs.docker.com/engine/reference/commandline/run/

https://docs.docker.com/engine/reference/commandline/run/

docker rm

docker rm $(docker ps -a -q)

− This command will delete all stopped containers. The

command docker ps -a -q will return all existing container

IDs and pass them to the rm command which will delete

them. Any running containers will not be deleted.

Other Common Commands

• docker start Start one or more stopped containers

• docker build Build an image from a Dockerfile

• docker cp Copy files/folders between a container and the local filesystem

• docker exec Run a command in a running container

• docker kill Kill one or more running containers

• docker pause Pause all processes within one or more containers

• docker stop Stop one or more running containers

Usage Notes

• For Windows Users using Git-Bash or MinGW

− You may need to prefix docker run with winpty

− When setting volumes or working directories absolute paths must be

prefixed with an extra /.

− For instance: docker run -it -v $PWD:/app –w /app ubuntu bash

− Becomes: winpty docker run -it -v /$PWD:/app –w //app ubuntu bash

Our Docker Environment

eecs4415 Image

Our class’s Docker image is now available at: eecsyorku/eecs4415

See docs: https://hub.docker.com/r/eecsyorku/eecs4415/

Download: docker pull eecsyorku/eecs4415

Run: docker run –it –v $PWD:/app eecsyorku/eecs4415 bash

Python Shell: docker run –it eecsyorku/eecs4415 python3

Python Script: docker run –v $PWD:/app eecsyorku/eecs4415 python3 /app/main.py

https://hub.docker.com/r/eecsyorku/eecs4415/

Examples

Demos

0. Basic Docker

$ docker pull hello-world

$ docker images hello-world

$ docker run hello-world

0. Basic Docker
$ docker run -it ubuntu bash

$ uname -a

Linux VC003 4.4.0-17134-Microsoft #285-Microsoft Thu Aug 30 17:31:00 PST 2018 x86_64
x86_64 x86_64 GNU/Linux

$ echo 'uname -a' > script.sh

$ docker run -it --rm -v $PWD:/home/ubuntu -w /home/ubuntu ubuntu bash script.sh

Linux 0ba427dd6d8d 4.9.93-linuxkit-aufs #1 SMP Wed Jun 6 16:55:56 UTC 2018 x86_64
x86_64 x86_64 GNU/Linux

$ docker run –it --rm python python

Python 3.7.0 (default, Sep 5 2018, 03:25:31)

[GCC 6.3.0 20170516] on linux

Type "help", "copyright", "credits" or "license" for more information.

>>>

1. Basic Python and CSVs

• Demonstrates:

− Running Python scripts in Docker

− Reading and parsing STDIN into words

− Reading and writing CSV files

− Printing output to the terminal

1. Basic Python and CSVs

• Usage:

− Start Python Docker container with volume mounted

− Run each of the python scripts in the directory to observe the output

$ docker run -it –v $PWD:/usr/src/app –w /usr/src/app python bash

root:/usr/src/app# ls -la

root:/usr/src/app# python readstdin.py < inputs/input.txt

root:/usr/src/app# python readstdin.py < inputs/input.csv

root:/usr/src/app# python readtxt.py

root:/usr/src/app# python readcsv.py

2. Word Frequency

• A Python program (use Python 3) to find the top ten words in an input stream by number of

occurrences and to make a bar-chart plot and CSV output of them.

• Based on: https://www.eecs.yorku.ca/course_archive/2017-18/F/4415/project/zipf/

• Reads book.txt as input (downloaded from Dracula by Bram Stoker on The Project

Gutenberg website).

• Eliminate stopwords — the very common words in English — and words just one character

long as not being interesting. When tokenizing, split with “[\W+_]” (This splits on whitespace

and underscores “_”). We won't worry about preserving words with apostrophes for now (e.g.,

“won't”). If we were to extend our program to be more robust and useful later, we surely would

improve on our tokenizer, or find a good library for it.

• Use the file stopwords.txt for stopwords. Our program can read in the file and make a

stopword dictionary to use to check against to eliminate the stopwords as we are parsing the

input stream.

https://www.eecs.yorku.ca/course_archive/2017-18/F/4415/project/zipf/
https://www.gutenberg.org/ebooks/345

2. Word Frequency

• Demonstrates:

− Reading and parsing text files into words

− Multiple Python files

− Plotting bar graphs with matplotlib

− Writing to a CSV file

2. Word Frequency

• Usage:

− Start Python Docker container with volume mounted

− Run ./start.sh to install the python library dependencies

− Run python src/main.py

− Output graph and CSV should be found in the outputs/ directory.

$ docker run -it –v $PWD:/usr/src/app –w /usr/src/app python bash

root:/usr/src/app# ls -la

root:/usr/src/app# ./start.sh

root:/usr/src/app# python src/main.py

root:/usr/src/app# ls -la outputs/

2. Word Frequency

• The Bar Graph • The CSV

3. Great Lakes Water Quality

• Great Lakes Water Quality Monitoring and Surveillance Data

− Water quality and ecosystem health data collected in the Great Lakes and priority

tributaries to determine baseline water quality status, long term trends and spatial

distributions, the effectiveness of management actions, determine compliance with

water quality objectives and identify emerging issues are included in this dataset.

− http://data.ec.gc.ca/data/substances/monitor/great-lakes-water-quality-monitoring-and-aquatic-

ecosystem-health-data/great-lakes-water-quality-monitoring-and-surveillance-data/

− 5 Datasets: Lake Ontario, Lake Erie, Lake Huron, Lake Superior, & Georgian Bay

− Contains 2106 different measurement methods (codes) for assessing water quality

− Format: CSV

• Goal: Select a few methods, and output a line graph of the daily

averages of the measurement over time. Visualize the change in the

measurements.

http://data.ec.gc.ca/data/substances/monitor/great-lakes-water-quality-monitoring-and-aquatic-ecosystem-health-data/great-lakes-water-quality-monitoring-and-surveillance-data/

3. Great Lakes Water Quality

• Demonstrates:

− Handling command line arguments

− Working with multiple dataset files

− Reading and parsing multiple CSV files

− Multiple classes

− Plotting line graphs with matplotlib

3. Great Lakes Water Quality
• Usage:

− Start Python Docker container with volume mounted

− Run ./start.sh to download the datasets and install the python library dependencies

− Run python src/main.py with method codes as arguments. For instance:

▪ 245 -- OXYGEN,CONCENTRATION DISSOLVED

▪ 247 -- OXYGEN,% SAT. DISSOLVED

▪ 270 -- AMMONIA NITROGEN,SOLUBLE

− Output graphs should be found in the outputs/ directory.

$ docker run -it –v $PWD:/usr/src/app –w /usr/src/app python bash

root:/usr/src/app# ls -la

root:/usr/src/app# ./start.sh

root:/usr/src/app# python src/main.py 245 247 270

root:/usr/src/app# ls -la outputs/

3. Great Lakes Water Quality

• 245 -- OXYGEN,CONCENTRATION DISSOLVED

3. Great Lakes Water Quality

• 247 -- OXYGEN,% SAT. DISSOLVED

3. Great Lakes Water Quality

• 270 -- AMMONIA NITROGEN,SOLUBLE

Download

Examples
https://github.com/eecsyorku

/eecs4415-18f

Download the ZIP

Or if you know how to use Git:

• git clone the project onto

your computer and you

should be able to pull new

changes as we have more

tutorial sessions and update

the code.

https://github.com/eecsyorku/eecs4415-18f
https://www.git-scm.com/docs/git-clone
https://www.git-scm.com/docs/git-pull

Python Code Snippets

Main Code

if __name__ == "__main__":

Your main code goes here, or

call your main method here.

main()

Arguments / STDIN / STDOUT

import sys

arguments = sys.argv[1:]

print(sys.stdin)

sys.stdout.write('Text to print.\n')

Classes:

class MyNameClass:

"""Documentation for my MyNameClass class"""

def __init__(self, name):

"""

Initializes the object. (constructor)

The keyword 'self', refers object (like 'this' in Java)

"""

self.name = name

def __str__(self):

"""

Returns a string representation of the object

Equivalent to ‘toString()' in Java

"""

return self.name

Note:

• Methods prefixed by ‘__’ are

usually reserved for system

defined methods like __init__
or __str__.

• Methods prefixed by

underscore ‘_’ are private

methods within class.

• All other methods (not prefixed

by underscore ‘_’) are public

methods and accessible to calls

outside of the class.

Reading a File / STDIN

import sys

with open(filepath, 'r') as f:

for line in iter(f):

print(line)

for line in sys.stdin:

print(line)

Reading & Parsing Words in Plain Text File
import sys

import re

with open('essay.txt', 'r') as f:

for line in iter(f):

remove leading and trailing whitespace

line = line.strip()

split the line into words, by whitespace

words = filter(None, re.split('\W+', line))

increase counters

for word in words:

write the results to STDOUT (standard output), in all lowercase

print(word.lower())

Reading Words with Iterators
import sys

import re

def iterate_words(textfile):

with open(textfile, 'r') as f:

for line in iter(f):

line = line.strip()

words = filter(None, re.split('\W+', line))

for word in words:

Use the yield keyword to specify the next iteration item

yield word.lower()

def process_words(textfile):

for word in iterate_words(textfile):

print(word)

Reading & Parsing CSV

import csv

with open('names.csv', 'r') as csvfile:

reader = csv.DictReader(csvfile)

for row in reader:

print(row['first_name'], row['last_name’])

See: https://docs.python.org/3/library/csv.html

https://docs.python.org/3/library/csv.html

Writing Files

with open(output, 'w') as f:

f.write('Text to write.\n')

Writing CSV

import csv

with open('names.csv', 'w') as csvfile:

fieldnames = ['first_name', ‘last_name']

writer = csv.DictWriter(csvfile, fieldnames = fieldnames)

writer.writeheader()

writer.writerow({'first_name': 'Baked', 'last_name': 'Beans'})

writer.writerow({'first_name': 'Lovely', 'last_name': 'Spam'})

writer.writerow({'first_name': 'Wonderful', 'last_name': 'Spam’})

See: https://docs.python.org/3/library/csv.html

https://docs.python.org/3/library/csv.html

Find CSVs in a Directories
import os

import mimetypes

from os import path

__dirpath__ = path.dirname(__file__) # directory containing this script

datapath = path.join(__dirpath__, '../data')

for f in os.listdir(datapath):

f = path.join(datapath, f)

if path.isfile(f) and mimetypes.guess_type(f)[0] == 'text/csv':

print(f) # Full file path

print(path.basename(f)) # Just the filename

print(path.splitext(path.basename(f))[0]) # Filename without .csv

Plot Bar Graph & Save to PNG

import matplotlib; matplotlib.use('Agg')

import numpy as np

import matplotlib.pyplot as plot

def plot_figure(output, keys, values, ylabel, title):

"""Plot bar chart with the given values and output to the given file."""

ypos = np.arange(len(keys))

plot.figure()

plot.bar(ypos, values, align = 'center', alpha = 0.5)

plot.xticks(ypos, keys, rotation = 45)

plot.ylabel(ylabel)

plot.title(title)

plot.savefig(output)

See: https://matplotlib.org/

https://matplotlib.org/

Plot Line Graph & Show

import matplotlib; matplotlib.use(‘Agg')

import numpy as np

import matplotlib.pyplot as plot

def plot_figure(x, y, label, ylabel, title):

"""Plot line chart with the given values and show plot in a new window."""

plot.figure()

plot.plot(x, y, '--', label = label)

plot.legend(bbox_to_anchor = (1, 1), loc = 'upper left', borderaxespad = 0.)

plot.xticks(np.arange(min(x), max(x)))

plot.yticks(np.arange(min(y), max(y)))

plot.ylabel(ylabel)

plot.title(title)

plot.show()

See: https://matplotlib.org/

https://matplotlib.org/

Installing External Python Libraries

• Use Pip: https://pypi.org/project/pip/

• For instances:
pip install matplotlib

pip install numpy

pip install scipy

pip freeze > requirements.txt

• To reinstall:
pip install --no-cache-dir -r ./requirements.txt

https://pypi.org/project/pip/

Conclusions

Conclusions

• Install Docker on your computer

• Try out Docker and the Getting Started

• Try the Examples

• Learn Python 3

https://docs.docker.com/get-started/
https://www.learnpython.org/

Questions or Issues?

• Post questions and issues to

https://piazza.com/class/jlo569j7clw246

• Anyone having issues installing or using Docker on their

computer should submit their questions to the Piazza

• The TA’s will do our best to provide assistance and help

resolve any issues.

https://piazza.com/class/jlo569j7clw246

