
 Getting Started with

Apache Spark
from Inception to Production

Carol McDonald
with contribution from Ian Downard

COMPLIMENTS OF

E B O O K

Getting Started with

Apache Spark
from Inception to Production

Carol McDonald
with contribution from Ian Downard

EBOOK

Getting Started with Apache Spark
From Inception to Production
By Carol McDonald

Copyright © 2018
Carol McDonald, Ian Downard, and MapR Technologies, Inc. All rights reserved.

Printed in the United States of America
Published by MapR Technologies, Inc.
4555 Great America Parkway, Suite 201
Santa Clara, CA 95054

October 2018: Second Edition

Revision History for the First Edition
2015-09-01: First release

Apache, Apache Spark, Apache Hadoop, Spark, and Hadoop are trademarks of The Apache
Software Foundation. Used with permission. No endorsement by The Apache Software
Foundation is implied by the use of these marks. While every precaution has been taken in
the preparation of this book, the publisher and authors assume no responsibility for errors
or omissions or for damages resulting from the use of the information contained herein.

Table of Contents

Chapter 1 Spark 101: What It Is, What It Does, and Why It Matters 5

Chapter 2 Datasets, DataFrames, and Spark SQL 13

Chapter 3 How Spark Runs Your Applications 30

Chapter 4 Demystifying AI, Machine Learning, and Deep Learning 47

Chapter 5 Predicting Flight Delays Using Apache Spark Machine Learning 71

Chapter 6 Cluster Analysis on Uber Event Data to Detect and Visualize Popular
Uber Locations

94

Chapter 7 Real-Time Analysis of Popular Uber Locations Using Apache APIs:
Spark Structured Streaming, Machine Learning, Kafka, and MapR-DB

110

Chapter 8 Predicting Forest Fire Locations with K-Means in Spark 135

Chapter 9 Using Apache Spark GraphFrames to Analyze Flight Delays
and Distances

144

Chapter 10 Tips and Best Practices to Take Advantage of Spark 2.x 172

Appendix 192

5

Spark 101: What It Is, What It Does,
and Why It Matters
In this chapter, we introduce Apache Spark and explore some of the areas in which its
particular set of capabilities show the most promise. We discuss the relationship to
other key technologies and provide some helpful pointers, so that you can hit the ground
running and confidently try Spark for yourself.

What Is Apache Spark?

Spark is a general-purpose distributed data processing engine that is suitable for use in
a wide range of circumstances. On top of the Spark core data processing engine, there
are libraries for SQL, machine learning, graph computation, and stream processing,
which can be used together in an application. Programming languages supported by
Spark include: Java, Python, Scala, and R. Application developers and data scientists
incorporate Spark into their applications to rapidly query, analyze, and transform data
at scale. Tasks most frequently associated with Spark include ETL and SQL batch jobs
across large data sets, processing of streaming data from sensors, IoT, or financial
systems, and machine learning tasks.

Apache Spark

Spark
SQL

Spark
Streaming

MLIib
Machine
Learning

GraphX
Graph

Chapter 1

6

Chapter 1: Spark 101: What It Is, What It Does, and Why It Matters

History

In order to understand Spark, it helps to understand its history. Before Spark, there was
MapReduce, a resilient distributed processing framework, which enabled Google to index
the exploding volume of content on the web, across large clusters of commodity servers.

There were 3 core concepts to the Google strategy:

1.	 Distribute data: when a data file is uploaded into the cluster, it is split into chunks,
called data blocks, and distributed amongst the data nodes and replicated across
the cluster.

2.	 Distribute computation: users specify a map function that processes a key/value pair
to generate a set of intermediate key/value pairs and a reduce function that merges
all intermediate values associated with the same intermediate key. Programs written
in this functional style are automatically parallelized and executed on a large cluster
of commodity machines in the following way:

•	The mapping process runs on each assigned data node, working only on its block of
data from a distributed file.

•	The results from the mapping processes are sent to the reducers in a process called
“shuffle and sort”: key/value pairs from the mappers are sorted by key, partitioned by
the number of reducers, and then sent across the network and written to key sorted
“sequence files” on the reducer nodes.

Node 1

Mapping Process

Node 2

Mapping Process

Node 3

Mapping Process

Node 1

Reducing Process

Node 2

Reducing Process

Node 3

Reducing Process

7

Chapter 1: Spark 101: What It Is, What It Does, and Why It Matters

•	The reducer process executes on its assigned node and works only on its subset of
the data (its sequence file). The output from the reducer process are written to an
output file.

3.	 Tolerate faults: both data and computation can tolerate failures by failing over to
another node for data or processing.

MapReduce word count execution example:

Some iterative algorithms, like PageRank, which Google used to rank websites in their
search engine results, require chaining multiple MapReduce jobs together, which causes a
lot of reading and writing to disk. When multiple MapReduce jobs are chained together, for
each MapReduce job, data is read from a distributed file block into a map process, written
to and read from a SequenceFile in between, and then written to an output file from a
reducer process.

Input Map Shuffle Reduce Output

the, 1

time, 1

and, 1

the, 1

the, 1

and, 1

the, (1,1,1)

and, (1,1)

come, (1)

the, 3

and, 2

come, 1

"The time has
come," the
Walrus said,
"To talk of
many things:
Of shoes—
and ships—
and sealing
wax— Of
cabbages—
and kings—
And why the
sea is boiling
hot—And
whether pigs
have wings..."

“The Walrus and
the Carpenter”
by Lewis Carroll

8

Chapter 1: Spark 101: What It Is, What It Does, and Why It Matters

Maps Reduces

Job 1

SequenceFile

HDFS

Output
from

Last Job

Input
to

Last Job

Output
from
Job 2

Output
from
Job 1

Input
to

Job 1

Maps Reduces

Job 2

SequenceFile

Maps Reduces

Last Job

SequenceFile

A year after Google published a white paper describing the MapReduce framework
(2004), Doug Cutting and Mike Cafarella created Apache HadoopTM

Apache SparkTM began life in 2009 as a project within the AMPLab at the University
of California, Berkeley. Spark became an incubated project of the Apache Software
Foundation in 2013, and it was promoted early in 2014 to become one of the Foundation’s
top-level projects. Spark is currently one of the most active projects managed by the
Foundation, and the community that has grown up around the project includes both
prolific individual contributors and well-funded corporate backers, such as Databricks,
IBM, and China’s Huawei.

The goal of the Spark project was to keep the benefits of MapReduce’s scalable,
distributed, fault-tolerant processing framework, while making it more efficient and
easier to use. The advantages of Spark over MapReduce are:

•	Spark executes much faster by caching data in memory across multiple parallel
operations, whereas MapReduce involves more reading and writing from disk.

•	Spark runs multi-threaded tasks inside of JVM processes, whereas MapReduce runs
as heavier weight JVM processes. This gives Spark faster startup, better parallelism,
and better CPU utilization.

•	Spark provides a richer functional programming model than MapReduce.

•	Spark is especially useful for parallel processing of distributed data with
iterative algorithms.

http://static.googleusercontent.com/media/research.google.com/en/us/archive/mapreduce-osdi04.pdf
https://mapr.com/products/apache-hadoop/

9

Chapter 1: Spark 101: What It Is, What It Does, and Why It Matters

How a Spark Application Runs on a Cluster

The diagram below shows a Spark application running on a cluster.

•	A Spark application runs as independent processes, coordinated by the SparkSession
object in the driver program.

•	The resource or cluster manager assigns tasks to workers, one task per partition.

•	A task applies its unit of work to the dataset in its partition and outputs a new partition
dataset. Because iterative algorithms apply operations repeatedly to data, they benefit
from caching datasets across iterations.

•	Results are sent back to the driver application or can be saved to disk.

Driver Program
Application

Spark
Session

Resource
Manager/Spark

Master

MAPR NODE

Partition Task

Partition Task

Executor

Cache
Data

Data

Disk

MAPR NODE

Partition Task

Partition Task

Executor

Cache
Data

Data

Disk

10

Chapter 1: Spark 101: What It Is, What It Does, and Why It Matters

Spark supports the following resource/cluster managers:

Spark Standalone – a simple cluster manager included with Spark

Apache Mesos – a general cluster manager that can also run Hadoop applications

Apache Hadoop YARN – the resource manager in Hadoop 2

Kubernetes – an open source system for automating deployment, scaling, and
management of containerized applications

Spark also has a local mode, where the driver and executors run as threads on your
computer instead of a cluster, which is useful for developing your applications from a
personal computer.

What Does Spark Do?

Spark is capable of handling several petabytes of data at a time, distributed across a
cluster of thousands of cooperating physical or virtual servers. It has an extensive set
of developer libraries and APIs and supports languages such as Java, Python, R, and
Scala; its flexibility makes it well-suited for a range of use cases. Spark is often used with
distributed data data stores such as MapR-XD, Hadoop’s HDFS, and Amazon’s S3, with
popular NoSQL databases such as MapR-DB, Apache HBase, Apache Cassandra, and
MongoDB, and with distributed messaging stores such as MapR-ES and Apache Kafka.

Typical use cases include:

Stream processing: From log files to sensor data, application developers are increasingly
having to cope with “streams” of data. This data arrives in a steady stream, often from
multiple sources simultaneously. While it is certainly feasible to store these data streams
on disk and analyze them retrospectively, it can sometimes be sensible or important
to process and act upon the data as it arrives. Streams of data related to financial
transactions, for example, can be processed in real time to identify – and refuse –
potentially fraudulent transactions.

Machine learning: As data volumes grow, machine learning approaches become more
feasible and increasingly accurate. Software can be trained to identify and act upon
triggers within well-understood data sets before applying the same solutions to new and
unknown data. Spark’s ability to store data in memory and rapidly run repeated queries
makes it a good choice for training machine learning algorithms. Running broadly similar
queries again and again, at scale, significantly reduces the time required to go through a
set of possible solutions in order to find the most efficient algorithms.

11

Chapter 1: Spark 101: What It Is, What It Does, and Why It Matters

Interactive analytics: Rather than running pre-defined queries to create static dashboards
of sales or production line productivity or stock prices, business analysts and data
scientists want to explore their data by asking a question, viewing the result, and then
either altering the initial question slightly or drilling deeper into results. This interactive
query process requires systems such as Spark that are able to respond and adapt quickly.

Data integration: Data produced by different systems across a business is rarely
clean or consistent enough to simply and easily be combined for reporting or analysis.
Extract, transform, and load (ETL) processes are often used to pull data from different
systems, clean and standardize it, and then load it into a separate system for analysis.
Spark (and Hadoop) are increasingly being used to reduce the cost and time required
for this ETL process.

Who Uses Spark?

A wide range of technology vendors have been quick to support Spark, recognizing the
opportunity to extend their existing big data products into areas where Spark delivers real
value, such as interactive querying and machine learning. Well-known companies such as
IBM and Huawei have invested significant sums in the technology, and a growing number
of startups are building businesses that depend in whole or in part upon Spark. For
example, in 2013 the Berkeley team responsible for creating Spark founded Databricks,
which provides a hosted end-to-end data platform powered by Spark. The company is
well-funded, having received $47 million across two rounds of investment in 2013 and
2014, and Databricks employees continue to play a prominent role in improving and
extending the open source code of the Apache Spark project.

The major Hadoop vendors, including MapR, Cloudera, and Hortonworks, have all moved
to support YARN-based Spark alongside their existing products, and each vendor is
working to add value for its customers. Elsewhere, IBM, Huawei, and others have all
made significant investments in Apache Spark, integrating it into their own products
and contributing enhancements and extensions back to the Apache project. Web-based
companies, like Chinese search engine Baidu, e-commerce operation Taobao, and social
networking company Tencent, all run Spark-based operations at scale, with Tencent’s 800
million active users reportedly generating over 700 TB of data per day for processing on
a cluster of more than 8,000 compute nodes.

In addition to those web-based giants, pharmaceutical company Novartis depends upon
Spark to reduce the time required to get modeling data into the hands of researchers,
while ensuring that ethical and contractual safeguards are maintained.

12

Chapter 1: Spark 101: What It Is, What It Does, and Why It Matters

What Sets Spark Apart?

There are many reasons to choose Spark, but three are key:

Simplicity: Spark’s capabilities are accessible via a set of rich APIs, all designed
specifically for interacting quickly and easily with data at scale. These APIs are well-
documented and structured in a way that makes it straightforward for data scientists
and application developers to quickly put Spark to work.

Speed: Spark is designed for speed, operating both in memory and on disk. Using Spark,
a team from Databricks tied for first place with a team from the University of California,
San Diego, in the 2014 Daytona GraySort benchmarking challenge (https://spark.apache.
org/news/spark-wins-daytona-gray-sort-100tb-benchmark.html). The challenge involves
processing a static data set; the Databricks team was able to process 100 terabytes of data
stored on solid-state drives in just 23 minutes, and the previous winner took 72 minutes by
using Hadoop and a different cluster configuration. Spark can perform even better when
supporting interactive queries of data stored in memory. In those situations, there are
claims that Spark can be 100 times faster than Hadoop’s MapReduce.

Support: Spark supports a range of programming languages, including Java, Python, R,
and Scala. Spark includes support for tight integration with a number of leading storage
solutions in the Hadoop ecosystem and beyond, including: MapR (file system, database,
and event store), Apache Hadoop (HDFS), Apache HBase, and Apache Cassandra.
Furthermore, the Apache Spark community is large, active, and international. A growing
set of commercial providers, including Databricks, IBM, and all of the main Hadoop
vendors, deliver comprehensive support for Spark-based solutions.

The Power of Data Pipelines

Much of Spark’s power lies in its ability to combine very different techniques and
processes together into a single, coherent whole. Outside Spark, the discrete tasks of
selecting data, transforming that data in various ways, and analyzing the transformed
results might easily require a series of separate processing frameworks, such as
Apache Oozie. Spark, on the other hand, offers the ability to combine these together,
crossing boundaries between batch, streaming, and interactive workflows in ways that
make the user more productive.

Spark jobs perform multiple operations consecutively, in memory, and only spilling to
disk when required by memory limitations. Spark simplifies the management of these
disparate processes, offering an integrated whole – a data pipeline that is easier to
configure, easier to run, and easier to maintain. In use cases such as ETL, these pipelines
can become extremely rich and complex, combining large numbers of inputs and a wide
range of processing steps into a unified whole that consistently delivers the desired result.

https://spark.apache.org/news/spark-wins-daytona-gray-sort-100tb-benchmark.html
https://spark.apache.org/news/spark-wins-daytona-gray-sort-100tb-benchmark.html
https://spark.apache.org/news/spark-wins-daytona-gray-sort-100tb-benchmark.html

13

Datasets, DataFrames, and Spark SQL
A Spark Dataset is a distributed collection of typed objects, which are partitioned across
multiple nodes in a cluster and can be operated on in parallel. Datasets can be created
from MapR-XD files, MapR-DB tables, or MapR-ES topics, and can be cached, allowing
reuse across parallel operations. A Dataset can be manipulated using functional
transformations (map, flatMap, filter, etc.) and/or Spark SQL. A DataFrame is a Dataset
of Row objects and represents a table of data with rows and columns. A DataFrame
consists of partitions, each of which is a range of rows in cache on a data node.

Chapter 2

MAPR NODE

Partition

Partition

Executor

Cache

MAPR NODE

Partition

Partition

Executor

Cache

DataFrame is like a partitioned table.

AUCTION ID BID BID TIME BIDDER BIDDER RATE OPEN BID PRICE ITEM DAYS TO LIVE

8213034705 95 2.927373 JAKE7870 0 95 117.5 XBOX 3

8213034705 115 2.943484 DAVIDBRESLER2 1 95 117.5 XBOX 3

8213034705 100 2.951285 GLADIMACOWGIRL 58 95 117.5 XBOX 3

8213034705 117.5 2.998947 DAYSRUS 95 95 117.5 XBOX 3

COLUMNROW AUCTION ID BID BID TIME BIDDER BIDDER RATE OPEN BID PRICE ITEM DAYS TO LIVE

8213034705 95 2.927373 JAKE7870 0 95 117.5 XBOX 3

8213034705 115 2.943484 DAVIDBRESLER2 1 95 117.5 XBOX 3

8213034705 100 2.951285 GLADIMACOWGIRL 58 95 117.5 XBOX 3

8213034705 117.5 2.998947 DAYSRUS 95 95 117.5 XBOX 3

AUCTION ID BID BID TIME BIDDER BIDDER RATE OPEN BID PRICE ITEM DAYS TO LIVE

8213034705 95 2.927373 JAKE7870 0 95 117.5 XBOX 3

8213034705 115 2.943484 DAVIDBRESLER2 1 95 117.5 XBOX 3

8213034705 100 2.951285 GLADIMACOWGIRL 58 95 117.5 XBOX 3

8213034705 117.5 2.998947 DAYSRUS 95 95 117.5 XBOX 3

AUCTION ID BID BID TIME BIDDER BIDDER RATE OPEN BID PRICE ITEM DAYS TO LIVE

8213034705 95 2.927373 JAKE7870 0 95 117.5 XBOX 3

8213034705 115 2.943484 DAVIDBRESLER2 1 95 117.5 XBOX 3

8213034705 100 2.951285 GLADIMACOWGIRL 58 95 117.5 XBOX 3

8213034705 117.5 2.998947 DAYSRUS 95 95 117.5 XBOX 3

AUCTION ID BID BID TIME BIDDER BIDDER RATE OPEN BID PRICE ITEM DAYS TO LIVE

8213034705 95 2.927373 JAKE7870 0 95 117.5 XBOX 3

8213034705 115 2.943484 DAVIDBRESLER2 1 95 117.5 XBOX 3

8213034705 100 2.951285 GLADIMACOWGIRL 58 95 117.5 XBOX 3

8213034705 117.5 2.998947 DAYSRUS 95 95 117.5 XBOX 3

Dataset[Row]

14

The SparkSession Object

As discussed before, a Spark application runs as independent processes, coordinated by
the SparkSession object in the driver program. The entry point to programming in Spark
is the org.apache.spark.sql.SparkSession class, which you use to create a SparkSession
object as shown below:

val spark = SparkSession.builder().appName(“example”).master
(“local[*]”).getOrCreate()

If you are using the spark-shell or a notebook, the SparkSession object is already created
and available as the variable Spark.

Interactive Analysis with the Spark Shell

The Spark shell provides an easy way to learn Spark interactively. You can start the shell
with the following command:

$ /[installation path]/bin/spark-shell --master local[2]

You can enter the code from the rest of this chapter into the Spark shell; outputs from the
shell are prefaced with result.

Exploring U.S. Flight Data with Spark Datasets and DataFrames

To go over some core concepts of Spark Datasets, we will be using some flight information
from the United States Department of Transportation. Later, we will use this same data
to predict flight delays, so we want to explore the flight attributes that most contribute to
flight delays. Using Spark Datasets, we will explore the data to answer questions, like:
which airline carriers, days of the week, originating airport, and hours of the day have the
highest number of flight delays, when a delay is greater than 40 minutes.

The flight data is in JSON files, with each flight having the following information:

•	 id: ID composed of carrier, date, origin, destination, flight number

•	dofW: day of week (1=Monday, 7=Sunday)

•	carrier: carrier code

•	origin: origin airport code

•	dest: destination airport code

•	crsdephour: scheduled departure hour

Chapter 2: Datasets, DataFrames, and Spark SQL

https://www.transtats.bts.gov/DL_SelectFields.asp?Table_ID=236&DB_Short_Name=On-Time

15

Chapter 2: Datasets, DataFrames, and Spark SQL

•	crsdeptime: scheduled departure time

•	depdelay: departure delay in minutes

•	crsarrtime: scheduled arrival time

•	arrdelay: arrival delay minutes

•	crselapsedtime: elapsed time

•	dist: distance

It appears in the following format:

{
“_id”: “AA_2017-01-01_ATL_LGA_1678”,
“dofW”: 7,
“carrier”: “AA”,
“origin”: “ATL”,
“dest”: “LGA”,
“crsdephour”: 17,
“crsdeptime”: 1700,
“depdelay”: 0.0,
“crsarrtime”: 1912,
“arrdelay”: 0.0,
“crselapsedtime”: 132.0,
“dist”: 762.0
}

(The complete data and code for all examples are available in the GitHub link in
the appendix.)

16

Chapter 2: Datasets, DataFrames, and Spark SQL

Loading Data from a File into a Dataset

With the SparkSession read method, we can read data from a file into a DataFrame,
specifying the file type, file path, and input options for the schema. The schema
can optionally be inferred from the contents of the JSON file, but you will get better
performance and accuracy by specifying the schema.

Loading data from
a distributed file
into a Dataset

MAPR NODE

Partition Task

Partition Task

Executor

Cache
Data

Data

Disk

MAPR NODE

Partition Task

Partition Task

Executor

Cache
Data

Data

Disk

17

Chapter 2: Datasets, DataFrames, and Spark SQL

import org.apache.spark.sql.types._
import org.apache.spark.sql._
import org.apache.spark.sql.functions._

val schema = StructType(Array(
 StructField(“_id”, StringType, true),
 StructField(“dofW”, IntegerType, true),
 StructField(“carrier”, StringType, true),
 StructField(“origin”, StringType, true),
 StructField(“dest”, StringType, true),
 StructField(“crsdephour”, IntegerType, true),
 StructField(“crsdeptime”, DoubleType, true),
 StructField(“crsarrtime”, DoubleType, true),
 StructField(“crselapsedtime”, DoubleType, true),
 StructField(“label”, DoubleType, true),
 StructField(“pred_dtree”, DoubleType, true)
))
var file = “maprfs:///data/flights.json”

val df = spark.read.format(“json”).option(“inferSchema”, “false”).
schema(schema).load(file)

result:
df: org.apache.spark.sql.DataFrame = [_id: string, dofW: int ...
10 more fields]

The take method returns an array with objects from this Dataset, which we see is of
type Row.

df.take(1)

result:
Array[org.apache.spark.sql.Row] =
Array([ATL_LGA_2017-01-01_17_AA_1678, 7, AA, ATL, LGA, 17, 1700.0,
0.0, 1912.0, 0.0, 132.0, 762.0])

18

Chapter 2: Datasets, DataFrames, and Spark SQL

If we supply a case class with the as method when loading the data, then the data is
read into a Dataset of typed objects corresponding to the case class.

case class Flight(_id: String, dofW: Integer, carrier: String,
origin: String, dest: String, crsdephour: Integer, crsdeptime:
Double, depdelay: Double,crsarrtime: Double, arrdelay: Double,
crselapsedtime: Double, dist: Double) extends Serializable

val df = spark.read.format(“json”).option(“inferSchema”, “false”).
schema(schema).load(file).as[Flight]

result:
df: org.apache.spark.sql.Dataset[Flight] = [_id: string, dofW: int
... 10 more fields]

Now the take method returns an array of Flight objects.

df.take(1)

result:
Array[Flight] = Array(Flight(ATL_LGA_2017-01-01_17_AA_1678,
7,AA,ATL,LGA,17,1700.0,0.0,1912.0,0.0,132.0,762.0))

19

Transformations and Actions

There are two types of operations you can perform on a Dataset:

•	 transformations: create a new Dataset from the current Dataset

•	actions: trigger computation and return a result to the driver program

Transformations are lazily evaluated, which means they are not computed immediately.
A transformation is executed only when it is triggered by an action. Once an action has
run and the value is returned, the Dataset is no longer in memory, unless you call the
cache method on the Dataset. If you will reuse a Dataset for more than one action, you
should cache it.

Chapter 2: Datasets, DataFrames, and Spark SQL

Driver Program
Application

Spark
Session

Resource
Manager/Spark

Master

MAPR NODE

Partition Task

Partition Task

Executor

Cache

MAPR NODE

Partition Task

Partition Task

Executor

Cache

Actions return
values to driver

Transformations
create new Dataset
from current one

20

Datasets and Type Safety

Datasets are composed of typed objects, which means that transformation syntax errors
(like a typo in the method name) and analysis errors (like an incorrect input variable type)
can be caught at compile time. DataFrames are composed of untyped Row objects, which
means that only syntax errors can be caught at compile time. Spark SQL is composed of
a string, which means that syntax errors and analysis errors are only caught at runtime.
Datasets save a developer’s time by catching errors sooner, even while typing when using
an IDE.

Image reference: Databricks

Dataset Transformations

Here is a list of some commonly used typed transformations, which can be used on
Datasets of typed objects (Dataset[T]).

map Returns new Dataset with result of applying input function
to each element

filter Returns new Dataset containing elements where input
function is true

groupByKey Returns a KeyValueGroupedDataset where the data is
grouped by the given key function

Syntax
Errors

Analysis
Errors

SQL

Runtime

Runtime

DataFrames

Compile Time

Runtime

DataSets

Compile Time

Compile Time

(Image reference: Databricks)

Chapter 2: Datasets, DataFrames, and Spark SQL

21

Chapter 2: Datasets, DataFrames, and Spark SQL

This example filter transformation on the flight Dataset returns a Dataset with flights that
departed at 10 AM. The take action returns an array of flight objects to the driver program.

df.filter(flight => flight.crsdephour == 10).take(3)

result:
Array[Flight] = Array(Flight(ORD_DEN_2017-01-01_AA_2300, 7,AA,ORD,
DEN,10,1005.0,5.0,1145.0,3.0,160.0,888.0), Flight(MIA_ORD_2017-01-
01_AA_2439,7,AA,MIA,ORD,10, 1005.0,4.0,1231.0,0.0,206.0,1197.0))

DataFrame Transformations

Here is a list of some commonly used untyped transformations, which can be used on
Dataframes (Dataset[Row]).

select Selects a set of columns
join Join with another DataFrame, using the given join

expression
groupBy Groups the DataFrame, using the specified columns

This groupBy transformation example groups the flight Dataset by carrier, then the
count action counts the number of flights for each carrier. The show action prints out
the resulting DataFrame rows in tabular format.

df.groupBy(“carrier”).count().show()

result:
+-------+-----+
|carrier|count|
+-------+-----+
UA	18873
AA	10031
DL	10055
WN	2389
+-------+-----+

22

Chapter 2: Datasets, DataFrames, and Spark SQL

Here is a list of some commonly used Dataset actions.

show(n) Displays the first n rows in a tabular form
take(n) Returns the first n objects in the Dataset in an array
count Returns the number of rows in the Dataset

Here is an example using typed and untyped transformations and actions to get the
destinations with the highest number of departure delays, where a delay is greater than
40 minutes. We count the departure delays greater than 40 minutes by destination and
sort them with the highest first.

df.filter($”depdelay” > 40).groupBy(“dest”).count()
.orderBy(desc(“count”)).show(3)

result:
+----+-----+
|dest|count|
+----+-----+
SFO	711
EWR	620
ORD	593
+----+-----+

Exploring the Flight Dataset with Spark SQL

Now let’s explore the flight Dataset using Spark SQL and DataFrame transformations. After
we register the DataFrame as a SQL temporary view, we can use SQL functions on the
SparkSession to run SQL queries, which will return the results as a DataFrame. We cache
the DataFrame, since we will reuse it and because Spark can cache DataFrames or Tables
in columnar format in memory, which can improve memory usage and performance.

// cache DataFrame in columnar format in memory
df.cache

// create Table view of DataFrame for Spark SQL
df.createOrReplaceTempView(“flights”)

// cache flights table in columnar format in memory
spark.catalog.cacheTable(“flights”)

23

Chapter 2: Datasets, DataFrames, and Spark SQL

Below we display information for the top five longest departure delays with Spark SQL and
with DataFrame transformations (where a delay is considered greater than 40 minutes):

// Spark SQL
spark.sql(“select carrier,origin, dest, depdelay,crsdephour, dist,
dofW from flights where depdelay > 40 order by depdelay desc limit
5”).show

// same query using DataFrame transformations

df.select($”carrier”,$”origin”,$”dest”,$”depdelay”, $”crsdephour”).
filter($”depdelay” > 40).orderBy(desc(“depdelay”)).show(5)

result:
+-------+------+----+--------+-----------+
|carrier|origin|dest|depdelay|crsdephour |
+-------+------+----+--------+----- -----+
AA	SFO	ORD	1440.0	8
DL	BOS	ATL	1185.0	17
UA	DEN	EWR	1138.0	12
DL	ORD	ATL	1087.0	19
UA	MIA	EWR	1072.0	20
+-------+------+----+--------+-----------+

24

Chapter 2: Datasets, DataFrames, and Spark SQL

Below we display the average departure delay by carrier:

// DataFrame transformations

df.groupBy(“carrier”).agg(avg(“depdelay”)).show

result:
+-------+-------------------+
|carrier| avg(depdelay)|
+-------+-------------------+
UA	17.477878450696764
AA	10.45768118831622
DL	15.316061660865241
WN	13.491000418585182
+-------+-------------------+

With a notebook like Zeppelin or Jupyter, you can also display the SQL results in
graph formats.

// Spark SQL
%sql select carrier, avg(depdelay)
 from flights
 group by carrier

av
g(

de
pd

el
ay

)

carrier

20

15

10

5

0
UA AA DL WN

25

Chapter 2: Datasets, DataFrames, and Spark SQL

Let’s explore this data for flight delays, when the departure delay is greater than 40
minutes. Below we see that United Airlines and Delta have the highest count of flight
delays for January and February 2017 (the training set).

// Count of Departure Delays by Carrier (where delay=40 minutes)

df.filter($”depdelay” > 40)
.groupBy(“carrier”).count.orderBy(desc(“count”)).show(5)

result:
+-------+-----+
|carrier|count|
+-------+-----+
UA	2420
DL	1043
AA	757
WN	244
+-------+-----+

// Count of Departure Delays by Carrier (where delay=40 minutes)

%sql
select carrier, count(depdelay)
from flights where depdelay > 40
group by carrier

co
un

t(d
ep

de
la

y)

2,500

2,000

1,500

1,000

500

0
UA AA DL WN

carrier

26

Chapter 2: Datasets, DataFrames, and Spark SQL

In the query below, we see that Monday (1), Tuesday (2), and Sunday (7) have the highest
count of flight delays.

// Count of Departure Delays by Day of the Week

%sql
select dofW, count(depdelay)
from flights where depdelay > 40
group by dofW

co
un

t(d
ep

de
la

y)

1,000

800

600

400

200

0
1 2 3 4 5 6 7

dofW

27

Chapter 2: Datasets, DataFrames, and Spark SQL

In the query below, we see that the hours between 13:00-19:00 have the highest count of
flight delays.

%sql
select crsdephour, count(depdelay)
from flights where depdelay > 40
group by crsdephour order by crsdephour

co
un

t(d
ep

de
la

y)

500

400

300

200

100

0

crsdephour

28

Chapter 2: Datasets, DataFrames, and Spark SQL

In the query below, we see that the originating airports, Chicago and Atlanta, have the
highest count of flight delays.

%sql
select origin, count(depdelay)
from flights where depdelay > 40
group by origin
ORDER BY count(depdelay) desc

co
un

t(d
ep

de
la

y)

700

600

500

400

300

200

100

0

origin

29

Chapter 2: Datasets, DataFrames, and Spark SQL

In the query below, we see the count of departure delays by origin and destination. The
routes ORD->SFO and DEN->SFO have the highest delays, maybe because of weather in
January and February. Adding weather to this Dataset would give better results.

%sql
select origin, dest, count(depdelay)
from flights where depdelay > 40
group by origin, dest
ORDER BY count(depdelay) desc

Summary

You have now learned how to load data into Spark Datasets and DataFrames and how
to explore tabular data with Spark SQL. These code examples can be reused as the
foundation to solve many types of business problems. In later chapters, we will use the
same data with DataFrames for machine learning and graph analysis of flight delays.

co
un

t(d
ep

de
la

y)

200

150

100

50

0

origin

destination

30

Chapter 3

How Spark Runs Your Applications
Recall from chapter 1 that your Spark Application runs as a set of parallel tasks. In this
chapter, we will go over how Spark translates Dataset transformations and actions into
an execution model. In order to understand how your application runs on a cluster, an
important thing to know about Dataset transformations is that they fall into two types,
narrow and wide, which we will discuss first, before explaining the execution model.

Driver Program
Application

Spark
Session

Resource
Manager/Spark

Master

MAPR NODE

Partition Task

Partition Task

Executor

Cache
Data

Data

Disk

MAPR NODE

Partition Task

Partition Task

Executor

Cache
Data

Data

Disk

31

Chapter 3: How Spark Runs Your Applications

Narrow and Wide Transformations

As a review, transformations create a new Dataset from an existing one. Narrow
transformations do not have to move data between partitions when creating a new
Dataset from an existing one. Some example narrow transformations are “filter” and
“select,” which are used in the example below to retrieve flight information for the
carrier “AA”:

// select and filter are narrow transformations
df.select($”carrier”,$”origin”, $”dest”, $”depdelay”,
$”crsdephour”).filter($”carrier” === “AA”).show(2)

result:
+-------+------+----+--------+----------+
|carrier|origin|dest|depdelay|crsdephour|
+-------+------+----+--------+----------+
| AA| ATL| LGA| 0.0| 17|
| AA| LGA| ATL| 0.0| 13|
+-------+------+----+--------+----------+

Multiple narrow transformations can be performed on a Dataset in memory, in a process
called pipelining, making narrow transformations very efficient.

NARROW

AA UA
DL

AA UA
DL

AA UA
DL

AA UA
DL

AA

AA

AA

AA

WIDE

AA UA
DL

AA UA
DL

AA UA
DL

AA AA
AA AA

DL DL
DL DL

UA UA
UA UA

AA UA
DL

32

Wide transformations cause data to be moved between partitions when creating a new
Dataset, in a process called the shuffle. With wide transformation shuffles, data is sent
across the network to other nodes and written to disk, causing network and disk I/O, and
making the shuffle a costly operation. Some example wide transformations are “groupBy,”
“agg,” “sortBy,” and “orderBy.” Below is a wide transformation to count the number of
flights by carrier.

df.groupBy(“carrier”).count.show
+-------+-----+
|carrier|count|
+-------+-----+
UA	18873
AA	10031
DL	10055
WN	2389
+-------+-----+

The Spark Execution Model

The Spark execution model can be defined in three phases: creating the logical plan,
translating that into a physical plan, and then executing the tasks on a cluster.

You can view useful information about your Spark jobs in real time in a web browser
with this URL: http://<driver-node>:4040. For Spark applications that have finished,
you can use the Spark history server to see this information in a web browser at this
URL: http://<server-url>:18080. Let’s walk through the three phases and the Spark UI
information about the phases, with some sample code.

Chapter 3: How Spark Runs Your Applications

NARROW

AA UA
DL

AA UA
DL

AA UA
DL

AA UA
DL

AA

AA

AA

AA

WIDE

AA UA
DL

AA UA
DL

AA UA
DL

AA AA
AA AA

DL DL
DL DL

UA UA
UA UA

AA UA
DL

33

Chapter 3: How Spark Runs Your Applications

Unresolved
Logical Plan

SQL

Dataset

DataFrame

Logical Plan

Metadata
Catalog

Optimized
Logical Plan

Selected
Physical

Plans
RDDs

Co
st

 M
od

el

Parser Analyzer Optimizer Planner Query
Execution

Physical
Plans

(Image reference Databricks)

Cache
Manager

The Logical Plan

In the first phase, the logical plan is created. This is the plan that shows which steps will
be executed when an action gets applied. Recall that when you apply a transformation on a
Dataset, a new Dataset is created. When this happens, that new Dataset points back to the
parent, resulting in a lineage or directed acyclic graph (DAG) for how Spark will execute
these transformations.

The Physical Plan

Actions trigger the translation of the logical DAG into a physical execution plan. The Spark
Catalyst query optimizer creates the physical execution plan for DataFrames, as shown in
the diagram below:

Image reference: Databricks

The physical plan identifies resources, such as memory partitions and compute tasks, that
will execute the plan.

34

Chapter 3: How Spark Runs Your Applications

Viewing the Logical and Physical Plan

You can see the logical and physical plan for a Dataset by calling the explain(true) method.
In the code below, we see that the DAG for df2 consists of a FileScan, a Filter on depdelay,
and a Project (selecting columns).

import org.apache.spark.sql.types._
import org.apache.spark.sql._
import org.apache.spark.sql.functions._

var file = “maprfs:///data/flights20170102.json”

case class Flight(_id: String, dofW: Long, carrier: String,
origin: String, dest: String, crsdephour: Long, crsdeptime:
Double, depdelay: Double,crsarrtime: Double, arrdelay: Double,
crselapsedtime: Double, dist: Double) extends Serializable

val df = spark.read.format(“json”).option(“inferSchema”, “true”).
load(file).as[Flight]

val df2 = df.filter($”depdelay” > 40)

df2.take(1)

result:
Array[Flight] = Array(Flight(MIA_IAH_2017-01-01_AA_2315,
7,AA,MIA,IAH,20,2045.0,80.0,2238.0,63.0,173.0,964.0))

df2.explain(true)

35

Chapter 3: How Spark Runs Your Applications

result:
== Parsed Logical Plan ==
‘Filter (‘depdelay > 40)
+- Relation[_id#8,arrdelay#9,…] json

== Analyzed Logical Plan ==
_id: string, arrdelay: double…
Filter (depdelay#15 > cast(40 as double))
+- Relation[_id#8,arrdelay#9…] json

== Optimized Logical Plan ==
Filter (isnotnull(depdelay#15) && (depdelay#15 > 40.0))
+- Relation[_id#8,arrdelay#9,…] json

== Physical Plan ==
*Project [_id#8, arrdelay#9,…]
+- *Filter (isnotnull(depdelay#15) && (depdelay#15 > 40.0))
 +- *FileScan json [_id#8,arrdelay#9,…] Batched: false, Format:
JSON, Location: InMemoryFileIndex[maprfs:///..],

READ

FILE
SCAN

FILTER

PROJECT,
FILTER

36

Chapter 3: How Spark Runs Your Applications

You can see more details about the plan produced by Catalyst on the web UI SQL tab
(http://<driver-node>:4040/SQL/). Clicking on the query description link displays the DAG
and details for the query.

DETAILS FOR QUERY 0
Submitted Time: 2018/07/31 1:22:12
Duration: 0.9 s
Succeeded Jobs: 1

WholeStageCodegen
0 ms (0 ms, 0 ms, 0 ms)

Filter
number of output rows: 22

Project

CollectLimit

Scan json
number of output rows: 313
number of files: 1
metadata time (ms): 0

37

Chapter 3: How Spark Runs Your Applications

In the code below, after the explain, we see that the physical plan for df3 consists of a
FileScan, Filter, Project, HashAggregate, Exchange, and HashAggregate. The Exchange
is the shuffle caused by the groupBy transformation. Spark performs a hash aggregation
for each partition before shuffling the data in the Exchange. After the exchange, there is
a hash aggregation of the previous sub-aggregations. Note that we would have an in-
memory scan instead of a file scan in this DAG, if df2 were cached.

val df3 = df2.groupBy(“carrier”).count

df3.collect

result:
Array[Row] = Array([UA,2420], [AA,757], [DL,1043], [WN,244])

df3.explain

result:
== Physical Plan ==
*HashAggregate(keys=[carrier#124], functions=[count(1)])
+- Exchange hashpartitioning(carrier#124, 200)
 +- *HashAggregate(keys=[carrier#124], functions=[partial_
count(1)])
 +- *Project [carrier#124]
 +- *Filter (isnotnull(depdelay#129) && (depdelay#129 >
40.0))
 +- *FileScan json [carrier#124,depdelay#129]

FILTERREAD

FILE
SCAN

PROJECT,
FILTER

HASH
AGGREGATE
EXCHANGE

GROUPBY

38

Chapter 3: How Spark Runs Your Applications

Clicking on the SQL tab link for this query displays the DAG below.

Submitted Time: 2018/07/31 18:51:49
Duration: 5 s
Succeeded Jobs: 2 3 4 5 6

wholestagecodegen
2.4 s (1.1 s, 1.3 s, 1.3 s)

Filter
number of output rows: 4,464

Scan json
number of output rows: 41,348
number of files: 1
metadata time (ms): 0
scan time total (min, med, max):
0 ms (0 ms, 0 ms, 0 ms)

Project

CollectLimit

HashAggregate
number of output rows: 8
peak memory total (min, med, max):
512.0 KB (256.0 KB, 256.0 KB, 256.0 KB)
spill size total (min, med, max):
0.0 B (0.0 B, 0.0 B, 0.0 B)
aggregate time total (min, med, max):
1.4 s (567 ms, 786 ms, 786 ms)

Exchange
data size total (min, med, max):
286.0 (143.0 B, 143.0 B, 143.0 B)

HashAggregate
number of output rows: 4
peak memory total (min, med, max):
82.0 KB (256.0 KB, 256.0 KB, 8.2 MB)
spill size total (min, med, max):
0.0 B (0.0 B, 0.0 B,0.0 B)
aggregate time total (min, med, max):
529 ms (0 ms, 0 ms, 44 ms)

Stage 1

Stage 2

Stage 3

39

Chapter 3: How Spark Runs Your Applications

Executing the Tasks on a Cluster

In the third phase, the tasks are scheduled and executed on the cluster. The scheduler
splits the graph into stages, based on the transformations. The narrow transformations
(transformations without data movement) will be grouped (pipe-lined) together into a
single stage. The physical plan for this example has two stages, with everything before the
exchange in the first stage.

Each stage is comprised of tasks, based on partitions of the Dataset, which will perform
the same computation in parallel.

FILTERREAD GROUPBY

Physical Plan

Stage 1 Stage 2

Physical Plan

STAGE 1 STAGE 2

Task

Task

Task

Task

Task

Task

Task

Split into Tasks Task Set

FILTERREAD GROUPBY

Stage 1 Stage 2

40

Chapter 3: How Spark Runs Your Applications

The scheduler submits the stage task set to the task scheduler, which launches tasks
via a cluster manager. These phases are executed in order and the action is considered
complete when the final phase in a job completes. This sequence can occur many times
when new Datasets are created.

Here is a summary of the components of execution:

•	Task: a unit of execution that runs on a single machine

•	Stage: a group of tasks, based on partitions of the input data, which will perform the
same computation in parallel

•	Job: has one or more stages

•	Pipelining: collapsing of Datasets into a single stage, when Dataset transformations
can be computed without data movement

•	DAG: Logical graph of Dataset operations

STAGE 1 STAGE 2

Task

Task

Task

Task

Task

Task

Task

Driver Program
Application

Spark
Session

Cluster Resource
Manager/Spark

Master

Task set sent to
Task Scheduler

MAPR NODE

Partition Task

Partition Task

Executor

Cache
Data

Data

Disk

MAPR NODE

Partition Task

Partition Task

Executor

Cache
Data

Data

Disk

41

Chapter 3: How Spark Runs Your Applications

Exploring the Task Execution on the Web UI

Here is a screen shot of the web UI Jobs tab, after running the code above. The Jobs page
gives you detailed execution information for active and recently completed Spark jobs.
It gives you the performance of a job and also the progress of running jobs, stages, and
tasks. In this example, Job Id 2 is the job that was triggered by the collect action on df3.

Completed Jobs(3)
Job Id

2

1

0

Description

collect at <console>:43

take at <console>:41

json at <console>:36

Submitted

2018/07/31 20:37:39

2018/07/31 20:37:35

2018/07/31 20:37:31

Duration

4 s

0.3 s

2 s

Stages: Succeeded/Total

2/2

1/1

1/1

Tasks (for all stages): Succeeded/Total

202/202

1/1

2/2

42

Chapter 3: How Spark Runs Your Applications

Clicking the link in the Description column on the Jobs page takes you to the Job Details
page. This page gives you details on the progress of the job, stages, and tasks. We see this
job consists of 2 stages, with 2 tasks in the stage before the shuffle and 200 in the stage
after the shuffle.

The number of tasks correspond to the partitions: after reading the file in the first stage,
there are 2 partitions; after a shuffle, the default number of partitions is 200. You can see
the number of partitions on a Dataset with the rdd.partitions.size method shown below.

df3.rdd.partitions.size
result: Int = 200

df2.rdd.partitions.size
result: Int = 2

DETAILS FOR JOB 2
Status: SUCCEEDED
Completed Stages: 2

Event Timeline
DAG Visualization

WholeStageCodegen

Exchange

Exchange

WholeStageCodegen

maprPartitionsInternal

Stage 2 Stage 3

43

Chapter 3: How Spark Runs Your Applications

127.0.01:4040/Storage/

2.2.1-mapr-1803
Jobs Stages Storage Environment Executors SQL Spark shell application

Storage
RDDs

Under the Stages tab, you can see the details for a stage by clicking on its link in the
description column.

Here we have summary metrics and aggregated metrics for tasks, and aggregated metrics
by executor. You can use these metrics to identify problems with an executor or task
distribution. If your task process time is not balanced, then resources could be wasted.

The Storage tab provides information about persisted Datasets. The dataset is persisted
if you called persist or cache on the dataset, followed by an action to compute on that
Dataset. This page tells you which fraction of the Dataset’s underlying RDD is cached and
the quantity of data cached in various storage media. Look at this page to see if important
Datasets are fitting into memory. You can also click on the link to view more details about
the persisted Dataset. If you no longer need a cached Dataset, you can call Unpersist to
uncache it.

127.0.01:4040/stages/

2.2.1-mapr-1803
Jobs Stages Storage Environment Executors SQL Spark shell application

Stages for All Jobs
Completed Jobs: 4

Completed Stages(4)

44

Chapter 3: How Spark Runs Your Applications

Try caching df2, performing an action, then seeing how this gets persisted on the storage
tab and how it changes the plan and execution time for df3 on the job details page. Notice
how the execution time is faster after caching.

df2.cache
df2.count
df3.collect

Notice how the first stage is skipped in job4, when df2 is cached and df3 collect is
executed again.

DETAILS FOR JOB 2
Status: SUCCEEDED
Completed Stages: 2

Event Timeline
DAG Visualization

WholeStageCodegen

Exchange

Exchange

WholeStageCodegen

maprPartitionsInternal

Stage 2 Stage 3

45

Chapter 3: How Spark Runs Your Applications

The Environment tab lists all the active properties of your Spark application environment.
Use this page when you want to see which configuration flags are enabled. Only values
specified through spark-defaults.conf, SparkSession, or the command line will be
displayed here. For all other configuration properties, the default value is used.

127.0.01:4040/Environment/

2.2.1-mapr-1803
Jobs Stages Storage Environment Executors SQL Spark shell application

Environment
Runtime Information
Name

Java Home

Java Version

Scala Version

Spark Properties
Name

spark.app.id

spark.app.name

spark.driver.host

spark.driver.port

spark.eventLog.dir

Value

/usr/lib/jvm/java-1.80...

1.80_102 (Oracle Co...

version 2.11.8

Value

local-1533071702543

Spark shell

10.0.2.15

43211

maprfs:///apps/spark

46

Chapter 3: How Spark Runs Your Applications

Under the Executors tab, you can see processing and storage for each executor:

•	Shuffle Read Write Columns: shows size of data transferred between stages

•	Storage Memory Column: shows the current used/available memory

•	Task Time Column: shows task time/garbage collection time

Use this page to confirm that your application has the amount of resources you were
expecting. You can look at the thread call stack by clicking on the thread dump link.

Summary

In this chapter, we discussed the Spark execution model, and we explored task execution
on the Spark Web UI. This understanding of how Spark runs your applications is important
when debugging, analyzing, and tuning the performance of your applications.

127.0.01:4040/Executors/

2.2.1-mapr-1803
Jobs Stages Storage Environment Executors SQL Spark shell application

Executors
Show Additional Metrics

Summary

RDD
Blocks

Storage
Memory

Disk
Used Cores

Active
Tasks

Failed
Tasks

Complete
Tasks

Total
Tasks

Tasks Time
(GC Time) Input Read Write Blacklisted

Active(1) 0 0.0.B / 384.1
MB

0.0 B 2 0 0 204 204 9 s (0.2 s) 17.2 MB 0.0 B 607 B 0

Dead(0) 0 0.0.B / 0.0.B 0.0 B 0 0 0 0 0 0 ms (0 ms) 0.0 B 0.0 B 0.0 B 0
Total (1) 0 0.0.B / 384.1

MB
0.0 B 2 0 0 204 204 9 s (0.2 s) 17.2 MB 0.0 B 607 B 0

Executors

Executor
ID Address Status

RDD
Blocks

Storage
Memory

Disk
Used Cores

Active
Tasks

Failed
Tasks

Complete
Tasks

Total
Tasks

Tasks Time
(GC Time) Input Read Write

Thread
Dump

driver 10.0.2.15:36610 Active 0 0.0.B /
384.1 MB

0.0 B 2 0 0 204 204 9 s (0.2 s) 17.2
MB

0.0 B 607 B Thread
Dump

Show 20 entries

Showing 1 to 1 of 1 entries

47

Chapter 4

Demystifying AI, Machine Learning,
and Deep Learning
Deep learning, machine learning, artificial intelligence – all buzzwords and representative
of the future of analytics. In this chapter, we will explain machine learning and deep
learning at a high level with some real world use cases. In the next three chapters, we
will explore some machine learning examples with Apache Spark. The goal is to give you
a better understanding of what you can do with machine learning. Machine learning is
becoming more accessible to developers, and data scientists work with domain experts,
architects, developers, and data engineers, so it is important for everyone to have a better
understanding of the possibilities. Every piece of information that your business generates
has potential to add value. This overview is meant to provoke a review of your own data to
identify new opportunities.

Retail Marketing Healthcare Telco Finance

Demand
Forecasting

Supply chain
optimization

Pricing
optimization

Market
segmentation
and targeting

Recommendations

Recommendation
engines and targeting

Customer 360

Click-stream
analysis

Social media
analysis

Ad optimization

Predicting patient
disease risk

Diagnostics
and alerts

Fraud

Customer churn

System log analysis

Anomaly detection

Preventive
maintenance

Smart meter
analysis

Risk analytics

Customer 360

Fraud

Credit scoring

48

Chapter 4: Demystifying AI, Machine Learning, and Deep Learning

What is Artificial Intelligence?

Throughout the history of AI, the definition has been continuously redefined. AI is an
umbrella term for an idea that started in the 50s; machine learning is a subset of AI; and
deep learning is a subset of ML.

In the late 80s, when I was a student interning at the NSA, AI was also a very hot topic. At
the NSA, I took an MIT video (VCR) class on AI, which was about expert systems. Expert
systems capture an expert’s knowledge in a rules engine.

ARTIFICIAL
INTELLIGENCE

MACHINE
LEARNING

DEEP
LEARNING

User Interface
Send input data to
interface engine
Return output

Interface Engine
Evaluates rules
on given inputs
with forward and
backward chain

Knowledge Base
Facts and if-then-
else rules about
the knowledge
domainQuery

Advice

Expert knowledge in
the form of rules

49

Rules engines have wide use in industries such as finance and healthcare, and more
recently for event processing, but when data is changing, rules can become difficult to
update and maintain. Machine learning has the advantage that it learns from the data, and
it can give finer grained data-driven probabilistic predictions.

According to Ted Dunning, it is better to use precise terminology, like machine learning or
deep learning, instead of the word AI, because before we get something to work well, we
call it AI; afterwards, we always call it something else. AI is better used as a word for the
next frontier.

How Has Analytics Changed in the Last 10 Years?

According to Thomas Davenport’s update to the Competing on Analytics book, analytical
technology has changed dramatically over the last decade, with more powerful and less
expensive distributed computing across commodity servers, streaming analytics, and
improved machine learning technologies, enabling companies to store and analyze both
far more data and many different types of it.

Traditionally, data was stored on a RAID system, sent to a multi-core server for processing,
and sent back for storage, which was expensive and caused a bottleneck on data transfer.
With file and table storage like MapR-XD and MapR-DB, data is distributed across a cluster.

Data distributed
across cluster

Result Driver sends
program tasks

Chapter 4: Demystifying AI, Machine Learning, and Deep Learning

https://mapr.com/blog/better-complex-event-processing-scale-using-microservices-based-streaming-architecture-part-1/
https://www.forbes.com/sites/teradata/2015/12/15/data-science-machine-learning-vs-rules-based-systems/#27ec39242119
https://www.foxbusiness.com/features/7-tips-for-machine-learning-success
https://hbr.org/2017/06/how-analytics-has-changed-in-the-last-10-years-and-how-its-stayed-the-same
https://hbr.org/2017/06/how-analytics-has-changed-in-the-last-10-years-and-how-its-stayed-the-same
https://mapr.com/products/mapr-xd/

50

Chapter 4: Demystifying AI, Machine Learning, and Deep Learning

Technologies like Apache Spark speed up parallel processing of distributed data with
iterative algorithms by caching data in memory across iterations and using lighter
weight threads.

MAPR NODE

Partition Task

Partition Task

Executor

Cache
Data

Data

Disk

MAPR NODE

Partition Task

Partition Task

Executor

Cache
Data

Data

Disk

https://mapr.com/products/apache-spark/
https://mapr.com/blog/parallel-and-iterative-processing-machine-learning-recommendations-spark/

51

Chapter 4: Demystifying AI, Machine Learning, and Deep Learning

Streaming

Collect Data Stream Processing

Batch Processing

Data Sources

Weather and
Event Data

Web
Clickstream

Application
Web Logs

Topic

Stream

Topic

Stream

Derive
Features

Streaming Models

Model

Serve Data

Personalized
Offers

Feature
Extraction

Update
Models

Machine
Learning

Product
Recommendations

Predictive
Logistics

Predictive
Analytics

Process
MAPR-DB

MAPR-DB

MAPR-XD

MapR Event Streams, a distributed messaging system for streaming event data at scale,
combined with stream processing like Apache Spark Streaming, speed up parallel
processing of real-time events with machine learning models.

Event Streams and Machine Learning Logistics

Combining event streams with machine learning can handle the logistics of machine
learning in a flexible way by:

•	Making input and output data available to independent consumers

•	Managing and evaluating multiple models and easily deploying new models

Input

Stream

Archive

Stream

Scores

Stream

PRODUCER DATA PREDICTIONS RESULTS

Decoy

Consumer
with ML
Model 2

Consumer
with ML
Model 3

Consumer

Consumer

Consumer
with ML
Model 1

MAPR-DB

https://mapr.com/products/mapr-streams/

52

Architectures for these types of applications are discussed in more detail in the ebooks
Machine Learning Logistics, Streaming Architecture, and Microservices and Containers.

Graphical Processing Units (GPUs) have sped up multi-core servers for parallel
processing. A GPU has a massively parallel architecture consisting of thousands of
smaller, more efficient cores designed for handling multiple tasks simultaneously,
whereas a CPU consists of a few cores optimized for sequential serial processing. In
terms of potential performance, the evolution from the Cray-1 to today’s clusters with
lots of GPUs is roughly a million times what was once the fastest computer on the planet
at a tiny fraction of the cost.

Image reference: http://www.nvidia.com/object/what-is-gpu-computing.html

Improved technologies for parallel processing of distributed data, streaming analytics, and
machine learning have enabled faster machine learning predictions and recommendations,
even approaching real time in many cases.

CPU Multiple
Cores

CPU Thousands
of Cores

Image reference: https://www.maketecheasier.com/difference-between-cpu-and-gpu/

Chapter 4: Demystifying AI, Machine Learning, and Deep Learning

https://mapr.com/ebooks/
https://www.kdnuggets.com/2017/06/deep-learning-demystifying-tensors.html
https://www.kdnuggets.com/2017/06/deep-learning-demystifying-tensors.html
https://www.kdnuggets.com/2017/06/deep-learning-demystifying-tensors.html
https://www.kdnuggets.com/2017/06/deep-learning-demystifying-tensors.html
http://www.nvidia.com/object/what-is-gpu-computing.html

53

What is Machine Learning?

Machine learning uses algorithms to find patterns in data, and then uses a model that
recognizes those patterns to make predictions on new data.

In general, machine learning may be broken down into two types: supervised, unsupervised,
and in between those two. Supervised learning algorithms use labeled data; unsupervised
learning algorithms find patterns in unlabeled data. Semi-supervised learning uses
a mixture of labeled and unlabeled data. Reinforcement learning trains algorithms to
maximize rewards based on feedback.

CONTAINS
PATTERNS

Data

New Data

FINDS
PATTERNS

Data

New Data

RECOGNIZES
PATTERNS

Data

Use Model
(prediction
function)

Predictions

Chapter 4: Demystifying AI, Machine Learning, and Deep Learning

Machine Learning

Supervised

Classification

Regression

Unsupervised

Clustering

Collaborative Filtering

Frequent Pattern Mining

54

Chapter 4: Demystifying AI, Machine Learning, and Deep Learning

Three Common Categories of Techniques for Machine Learning

Three common categories of machine learning techniques are Classification, Clustering,
and Collaborative Filtering.

Classification

Clustering

Collaborative Filtering
(Recommendation)

in: spam

Email Mr. Norman Accept My Donation
Lending Simple Loans
election time Please Help My Campaign
Hi friend Limited time offer
confirm Confirmation Needed Now

search: Pharmacy

Business
Technology
Entertainment
Heath
Sports
Science

Lorem ipsum dolor sit amet, consectetuer qui
adipiscing elit, sed diam nonummy nibh euismod
tincidunt ut laoreet dolore magna dignissim blandit

Veniam, quis nostrud exerci tation ullamcorper
suscipit lobortis nisl ut aliquip ex ea commodo
consequat. Duis autem vel eum iriure dolor in

Vulputate velit esse molestie consequat, vel illum dolore eu
feugiat nulla facilisis at vero eros et accumsan et iusto odio

Customers who bought this book also bought

Book 1 Book 2 Book 3 Book 4

55

Chapter 4: Demystifying AI, Machine Learning, and Deep Learning

Classification: Gmail uses a machine learning technique called classification to
designate if an email is spam or not, based on the data of an email: the sender,
recipients, subject, and message body. Classification takes a set of data with known
labels and learns how to label new records based on that information.

Clustering: Google News uses a technique called clustering to group news articles
into different categories, based on title and content. Clustering algorithms discover
groupings that occur in collections of data.

Collaborative Filtering: Amazon uses a machine learning technique called collaborative
filtering (commonly referred to as recommendation) to determine which products users
will like, based on their history and similarity to other users.

Supervised Learning: Classification and Regression

Supervised algorithms use labeled data in which both the input and target outcome, or
label, are provided to the algorithm.

Data

New Data

Build Model

Use Model Predictive

Features

Features

X1, X2

X1, X2

Y
ƒ(X1, X2) = Y

Y

56

Chapter 4: Demystifying AI, Machine Learning, and Deep Learning

Supervised Learning is also called predictive modeling or predictive analytics, because
you build a model that is capable of making predictions.

Some examples of predictive modeling are classification and regression. Classification
identifies which category an item belongs to (e.g., whether a transaction is fraud or not
fraud), based on labeled examples of known items (e.g., transactions known to be fraud
or not). Logistic regression predicts a probability (e.g., the probability of fraud). Linear
regression predicts a numeric value (e.g., the amount of fraud).

CREDIT CARD FRAUD
LOGISTIC REGRESSION
CLASSIFICATION EXAMPLE

1

.5

0

Label
Probability of fraud

X

Fraud

Not
fraud

Features
Transaction amount,
merchant type, time
location, and time
difference since last
transaction.

CAR INSURANCE FRAUD
REGRESSION EXAMPLE

Y

Label
Amount
of fraud

X

Data Point
Fraud amount,
claimed amount

Feature
Claimed amount

AmntFraud = intercept +
coefficient x claimedAmnt

57

Chapter 4: Demystifying AI, Machine Learning, and Deep Learning

Classification and Regression Example

Classification and Regression take a set of data with known labels and pre-determined
features and learns how to label new records based on that information. Features are
the “if questions” that you ask. The label is the answer to those questions.

If it walks/swims/quacks like a duck ... then it must be a duck.

Features FeaturesFeatures

Walks

Swims

Quacks

Walks

Swims

Quacks

58

Chapter 4: Demystifying AI, Machine Learning, and Deep Learning

Regression Example

Let’s go through an example of car insurance fraud:

What are we trying to predict?

•	This is the Label: Amount of fraud

What are the “if questions” or properties that you can use to predict?

•	These are the Features: to build a classifier model, you extract the features of interest
that most contribute to the classification.

•	 In this simple example, we will use the claimed amount.

Linear regression models the relationship between the Y “Label” and the X “Feature,”
in this case the relationship between the amount of fraud and the claimed amount. The
coefficient measures the impact of the feature, the claimed amount, on the label, the
fraud amount.

Y

Label
Amount
of fraud

Data Point
Fraud amount,
claimed amount

AmntFraud = intercept + coefficient x claimedAmnt

X Feature
Claimed amount

59

Chapter 4: Demystifying AI, Machine Learning, and Deep Learning

Multiple linear regression models the relationship between two or more “Features” and
a response “Label.” For example, if we wanted to model the relationship between the
amount of fraud and the age of the claimant, the claimed amount, and the severity of the
accident, the multiple linear regression function would look like this:

Yi = β0 + β1X1 + β2X2 + · · · + βp Xp + Ɛ

Amount Fraud = intercept + (coefficient1 * age) + (coefficient2 * claimed Amount) +
(coefficient3 * severity) + error.

The coefficients measure the impact on the fraud amount of each of the features.

Some examples of linear regression include:

•	Given historical car insurance fraudulent claims and features of the claims, such as
age of the claimant, claimed amount, and severity of the accident, predict the amount
of fraud.

•	Given historical real estate sales prices and features of houses (square feet, number
of bedrooms, location, etc.), predict a house’s price.

•	Given historical neighborhood crime statistics, predict crime rate.

Classification Example

Let’s go through an example of Debit Card Fraud:

What are we trying to predict?

•	This is the Label: Probability of fraud

What are the “if questions” or properties that you can use to make predictions?

•	 Is the amount spent today > historical average?

•	Are there transactions in multiple countries today?

•	Are the number of transactions today > historical average?

•	Are the number of new merchant types today high compared to the last 3 months?

•	Are there multiple purchases today from merchants with a category code of risk?

•	 Is there unusual signing activity today, compared to historically using pin?

•	Are there new state purchases compared to the last 3 months?

•	Are there foreign purchases today compared to the last 3 months?

60

Chapter 4: Demystifying AI, Machine Learning, and Deep Learning

To build a classifier model, you extract the features of interest that most contribute to
the classification.

Logistic regression measures the relationship between the Y “Label” and the X “Features”
by estimating probabilities using a logistic function. The model predicts a probability, which
is used to predict the label class.

Some examples of Classification include:

•	Given historical car insurance fraudulent claims and features of the claims, such
as age of the claimant, claimed amount, and severity of the accident, predict the
probability of fraud.

•	Given patient characteristics, predict the probability of congestive heart failure.

•	Credit card fraud detection (fraud, not fraud)

•	Credit card application (good credit, bad credit)

•	Email spam detection (spam, not spam)

•	Text sentiment analysis (happy, not happy)

•	Predicting patient risk (high risk patient, low risk patient)

•	Classifying a tumor (malignant, not malignant)

1

.5

0

Label
Probability of fraud

X

Fraud

Not
fraud

Features
Transaction amount, merchant type, time location,
and time difference since last transaction.

https://en.wikipedia.org/wiki/Logistic_function

61

Chapter 4: Demystifying AI, Machine Learning, and Deep Learning

Spark Supervised Algorithms Summary

Unsupervised Learning

Unsupervised learning, also sometimes called descriptive analytics, does not have
labeled data provided in advance. These algorithms discover similarities, or regularities,
in the input data. An example of unsupervised learning is grouping similar customers,
based on purchase data.

Classification

•	Logistic regression

•	Decision tree classifier

•	Random forest classifier

•	Gradient-boosted tree classifier

•	Multilayer perception classifier

•	Linear Support Vector Machine

•	Naive Bayes

Regression

•	Linear regression

•	Generalized linear regression

•	Decision tree regression

•	Random forest regression

•	Gradient-boosted tree regression

•	Survival regression

•	 Isotonic regression

Similar Customer
Group

Customer
Groups

CONTAINS
PATTERNS

Customer
Purchase Data

New Customer
Purchase Data

FINDS
PATTERNS

Train
Algorithm

RECOGNIZES
PATTERNS

Build Model

Use Model

62

Chapter 4: Demystifying AI, Machine Learning, and Deep Learning

Clustering

In clustering, an algorithm classifies inputs into categories by analyzing similarities
between input examples. Some clustering use cases include:

•	Search results grouping

•	Grouping similar customers

•	Grouping similar patients

•	Text categorization

•	Network Security Anomaly detection (anomalies find what is not similar, which means
the outliers from clusters)

10,000

5,000

0

-5,000

-1,000

-15,000

-5,000 0 5,000 10,000 15,000 20,000

63

Chapter 4: Demystifying AI, Machine Learning, and Deep Learning

The k-means algorithm groups observations into k clusters in which each observation
belongs to the cluster with the nearest mean from its cluster center.

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.0

-0.2 0 0.2 0.4 0.6 0.8 1 1.2

64

Chapter 4: Demystifying AI, Machine Learning, and Deep Learning

An example of clustering is a company that wants to segment its customers in order to
better tailor products and offerings. Customers could be grouped on features such as
demographics and purchase histories. Clustering with unsupervised learning is often
combined with supervised learning in order to get more valuable results. For example, in
this banking customer 360 use case, customers were first clustered based on answers to
a survey. The customer groups were analyzed and then labeled with customer personas.
Next, the persona labels were linked by customer ID with customer features, such as types
of accounts and purchases. Finally, supervised machine learning was applied and tested
with the labeled customers, allowing it to link the survey customer personas with their
banking actions and provide insights.

A B C D < “Attitude” Personas A B C D
Cash Reserve
Flex Equity
Auto
Flex Fixed

“
”

“

”

“

Credit Card/Bank A
Credit Card/Bank B
Credit Card/Bank C

Cable Company
Phone Company
“
”
“

Fitness Club A

Products Payees

https://mapr.com/blog/how-use-data-science-and-machine-learning-revolutionize-360-customer-views-part-2/

65

Chapter 4: Demystifying AI, Machine Learning, and Deep Learning

Frequent Pattern Mining, Association, Co-Occurrence, Market Basket
Recommendations

Frequent pattern or association rule mining finds frequent co-occurring associations
among a collection of items, such as products often purchased together. A famous story
about association rule mining is the “beer and diaper” story. An analysis of behavior of
grocery shoppers discovered that men who buy diapers often also buy beer.

Walmart mined their massive retail transaction database to see what their customers
really wanted to buy prior to the arrival of a hurricane. They found one particular item
which had an increase in sales by a factor of 7 over normal shopping days, a huge lift
factor for a real-world case. The item was not bottled water, batteries, beer, flashlights,
generators, or any of the usual things that you might imagine: it was strawberry pop tarts!

2018

2018

2018

2018

2018

2018

https://www.nytimes.com/2004/11/14/business/yourmoney/what-walmart-knows-about-customers-habits.html
https://mapr.com/blog/association-rule-mining-not-your-typical-data-science-algorithm/

66

Chapter 4: Demystifying AI, Machine Learning, and Deep Learning

Another example is from Target, which analyzed that when a woman starts buying scent-
free lotion, vitamin supplements, and a combination of some other items, it signals she
could be pregnant. Unfortunately, Target sent a coupon for baby items to a teenager
whose father questioned why she was receiving such coupons.

Co-occurrence analysis is useful for:

•	Store layouts

•	Determining which products to put on specials, promotions, coupons, etc.

•	 Identifying healthcare patients, like mine cohorts

20% OFF
your next purchase of all baby products

This is the fine print. Only baby products 20% off. We appreciate your business. Come
back soon. One coupon per item per person. This offer is good until January 31, 2018.

67

Chapter 4: Demystifying AI, Machine Learning, and Deep Learning

Collaborative Filtering

Collaborative filtering algorithms recommend items (this is the filtering part) based on
preference information from many users (this is the collaborative part). The collaborative
filtering approach is based on similarity; people who liked similar items in the past will
like similar items in the future. The goal of a collaborative filtering algorithm is to take
preferences data from users and create a model that can be used for recommendations or
predictions. Ted likes movies A, B, and C. Carol likes movies B and C. We take this data and
run it through an algorithm to build a model. Then, when we have new data, such as Bob
likes movie B, we use the model to predict that C is a possible recommendation for Bob.

Spark Unsupervised Algorithms Summary

Clustering

•	k-means

•	Latent Dirichlet allocation (LDA)

•	Gaussian mixture model (GMM)

Collaborative Filtering

•	Alternating least squares (ALS)

Frequent Pattern Mining

•	FP-Growth Algorithm

Ted and Carol like movies B and C.
Training

Data Algorithm Model

Bob likes movie B; what else might he like?
New
Data Model Predictions

Bob likes movie B, so predict movie C.

4 5 5

5 5

5 ?

Ted

Carol

Bob

User item rating matrix

A B C

68

Chapter 4: Demystifying AI, Machine Learning, and Deep Learning

Deep Learning

Deep learning is the name for multilayered neural networks, which are networks
composed of several “hidden layers” of nodes between the input and output. There are
many variations of neural networks, which you can learn more about on this neural
network cheat sheet. Improved algorithms, GPUs, and massively parallel processing
(MPP) have given rise to networks with thousands of layers. Each node takes input data
and a weight and outputs a confidence score to the nodes in the next layer, until the
output layer is reached, where the error of the score is calculated.

Inputs Threshold Binary Output

No * Weight Yes

http://www.asimovinstitute.org/neural-network-zoo/
http://www.asimovinstitute.org/neural-network-zoo/

69

Chapter 4: Demystifying AI, Machine Learning, and Deep Learning

With backpropagation inside of a process called gradient descent, the errors are sent
back through the network again and the weights are adjusted, improving the model. This
process is repeated thousands of times, adjusting a model’s weights in response to the
error it produces, until the error can’t be reduced any more.

During this process the layers learn the optimal features for the model, which has
the advantage that features do not need to be predetermined. However, this has the
disadvantage that the model’s decisions are not explainable. Because explaining the
decisions can be important, researchers are developing new ways to understand the
black box of deep learning.

Train Errors

ü

ü

ü

ü

Ñ

Features
(eyes, feet)

Deploy

ü

Features
(eyes, feet)

https://en.wikipedia.org/wiki/Backpropagation
https://en.wikipedia.org/wiki/Gradient_descent
http://www.sciencemag.org/news/2017/07/how-ai-detectives-are-cracking-open-black-box-deep-learning
http://www.sciencemag.org/news/2017/07/how-ai-detectives-are-cracking-open-black-box-deep-learning

70

Chapter 4: Demystifying AI, Machine Learning, and Deep Learning

There are different variations of deep learning algorithms, which can be used with
the Distributed Deep Learning Quick Start Solution from MapR to build data-driven
applications, such as the following:

Deep Neural Networks for improved traditional algorithms
•	Finance: enhanced fraud detection through identification of more complex patterns

•	Manufacturing: enhanced identification of defects, based on deeper anomaly detection

Convolutional Neural Networks for images
•	Retail: in-store activity analysis of video to measure traffic

•	Satellite images: labeling terrain, classifying objects

•	Automotive: recognition of roadways and obstacles

•	Healthcare: diagnostic opportunities from x-rays, scans, etc.

•	 Insurance: estimating claim severity, based on photographs

Recurrent Neural Networks for sequenced data
•	Customer satisfaction: transcription of voice data to text for NLP analysis

•	Social media: real-time translation of social and product forum posts

•	Photo captioning: search archives of images for new insights

•	Finance: Predicting behavior based on time series analysis (also enhanced
recommendation systems)

Deep Learning with Spark

Deep learning libraries or frameworks that can be leveraged with Spark include:

Summary

A confluence of several different technology shifts have dramatically changed machine
learning applications. The combination of distributed computing, streaming analytics,
and machine learning is accelerating the development of next-generation intelligent
applications, which are taking advantage of modern computational paradigms, powered
by modern computational infrastructure. The MapR Data Platform integrates global
event streaming, real-time database capabilities, and scalable enterprise storage with
a collection of data processing and analytical engines to power this new generation of
data processing pipelines and intelligent applications.

BigDL
Spark Deep Learning
Pipelines

TensorFlowOnSpark
dist-keras
H2O Sparkling Water

PyTorch
Caffe
MXNet

https://mapr.com/solutions/quickstart/deep-learning-quick-start/
https://mapr.com/blog/what-is-next-gen-app/
https://mapr.com/blog/what-is-next-gen-app/

71

Chapter 5

Predicting Flight Delays Using
Apache Spark Machine Learning
Because flight delays create problems in scheduling, passenger inconvenience, and
economic losses, there is growing interest in predicting flight delays beforehand in order
to optimize operations and improve customer satisfaction. Google Flights uses historic
flight status data with machine learning algorithms to find common patterns in late
departures in order to predict flight delays and share the reasons for those delays. In
this chapter, we will go over using Apache Spark’s ML pipelines with a Random Forest
Classifier to predict flight delays.

Classification

Classification is a family of supervised machine learning algorithms that identify which
category an item belongs to, based on labeled examples of known items. Classification
takes a set of data with known labels and pre-determined features and learns how to label
new records, based on that information. Features are the “if questions” or properties that
you can use to make predictions. To build a classifier model, you explore and extract the
features that most contribute to the classification.

https://www.google.com/flights/#flt=/m/0d6lp..2018-10-13*./m/0d6lp.2018-10-17;c:USD;e:1;ls:1w;sd:0;t:h
https://spark.apache.org/docs/latest/ml-pipeline.html
http://spark.apache.org/docs/latest/ml-classification-regression.html
http://spark.apache.org/docs/latest/ml-classification-regression.html

72

Chapter 5: Predicting Flight Delays using Apache Spark Machine Learning

Let’s go through an example for flight delays:

What are we trying to predict?

•	Whether a flight will be delayed or not.

•	Delayed is the Label: True or False

What are the “if questions” or properties that you can use to make predictions?

•	What is the originating airport?

•	What is the destination airport?

•	What is the scheduled time of departure?

•	What is the scheduled time of arrival?

•	What is the day of the week?

•	What is the airline carrier?

Data

New Data

Build Model

Use Model Predictive

Features

Features

X1, X2

X1, X2

Y
ƒ(X1, X2) = Y

Y

73

Decision Trees

Decision trees create a model that predicts the label (or class) by evaluating a set of rules
that follow an if-then-else pattern. The if-then-else feature questions are the nodes, and
the answers “true” or “false” are the branches in the tree to the child nodes. A decision
tree model estimates the minimum number of true/false questions needed to assess the
probability of making a correct decision. Below is an example of a simplified decision tree
for flight delays:

Q1: If the scheduled departure time is < 10:15 AM
TQ2: If the originating airport is in the set {ORD, ATL, SFO}

T:Q3: If the day of the week is in the set {Monday, Sunday}
•	T: Delayed=1
•	F: Delayed=0

F: Q3: If the destination airport is in the set {SFO, ORD, EWR}
•	T: Delayed=1
•	F: Delayed=0

F: Q2: If the originating airport is not in the set {BOS, MIA}
T:Q3: If the day of the week is in the set {Monday, Sunday}

•	T: Delayed=1
•	F: Delayed=0

F: Q3: If the destination airport is not in the set {BOS, MIA}
•	T: Delayed=1
•	F: Delayed=0

Chapter 5: Predicting Flight Delays using Apache Spark Machine Learning

If crsdepTime < 10:15

If origin in {ORD, ATL, SFO}

If dofW in {Mon, Sun}

Delayed = 1

Delayed = 0

If origin not in {BOS, MIA}

If dofW in {Mon, Sun}

Delayed = 1

Delayed = 0

T F

T

F

F F

If dest in {SFO, ORD, EWR}

Delayed = 1

Delayed = 0

If dest not in {BOS, MIA}

Delayed = 1

Delayed = 0

74

Random Forests

Ensemble learning algorithms combine multiple machine learning algorithms to obtain
a better model. Random Forest is a popular ensemble learning method for classification
and regression. The algorithm builds a model consisting of multiple decision trees, based
on different subsets of data at the training stage. Predictions are made by combining
the output from all of the trees, which reduces the variance and improves the predictive
accuracy. For Random Forest classification, each tree’s prediction is counted as a vote for
one class. The label is predicted to be the class which receives the most votes.

All Data

Subset Subset Subset

Tree Tree Tree

Chapter 5: Predicting Flight Delays using Apache Spark Machine Learning

http://spark.apache.org/docs/latest/mllib-ensembles.html

75

Typical Machine Learning Workflow

Using machine learning in order to better understand your data and make predictions is
an iterative process, which involves:

1.	 Data discovery and model creation:

•	Analysis of historical data

•	 Identifying new data sources, which traditional analytics or databases are not
using, due to the format, size, or structure

•	Collecting, correlating, and analyzing data across multiple data sources

•	Knowing and applying the right kind of machine learning algorithms to get value
out of the data

•	Training, testing, and evaluating the results of machine learning algorithms to build
a model.

2.	 Using the model in production to make predictions

3.	 Data discovery and updating the model with new data

Topic

StreamProduction

Data
Discovery,
Model
Creation

Flight
Data

Flight
Data

Historical
Data

Test Model
Predictions

New
Data

Feature
Extraction

Feature
Extraction

Training
Set

Test
Set

Model
Training/
Building

Test Model
Predictions

Deployed
Model Insights

Evaluate
Results

Chapter 5: Predicting Flight Delays using Apache Spark Machine Learning

76

Data Exploration and Feature Extraction

We will be using the Flight Data set that we explored in chapter 2. To build a classifier
model, you extract the features that most contribute to the classification. In this scenario,
we will build a tree to predict the label of delayed or not, based on the following features:

Label → delayed = 0

•	Delayed = 1 if delay > 40 minutes

Features → {day of the week, scheduled departure time, scheduled arrival time,
carrier, scheduled elapsed time, origin, destination, distance}

In order for the features to be used by a machine learning algorithm, they must be
transformed and put into feature vectors, which are vectors of numbers representing
the value for each feature.

Reference: Learning Spark

delayed dofW crsdepTime crsArrTime carrier elapTime orign dest dist

1.0/0.0 1 1015 1230 AA 385.0 JFK LAX 2475.0

Training Data Feature Vectors Model Best Model

(Reference Learning Spark)

Day of
the Week

Scheduled
Departure

Originating
Airport

Carrier

Featurization Training Model Evaluation

Chapter 5: Predicting Flight Delays using Apache Spark Machine Learning

http://shop.oreilly.com/product/0636920028512.do

77

Using The Spark ML Package

Spark ML provides a uniform set of high-level APIs, built on top of DataFrames with
the goal of making machine learning scalable and easy. Having ML APIs built on top of
DataFrames provides the scalability of partitioned data processing with the ease of SQL
for data manipulation.
We will use an ML Pipeline to pass the data through transformers in order to extract the

features and an estimator to produce the model.

Transformer: A transformer is an algorithm that transforms one DataFrame into another
DataFrame. We will use transformers to get a DataFrame with a features vector column.

Estimator: An estimator is an algorithm that can be fit on a DataFrame to produce a
transformer. We will use a an estimator to train a model, which can transform input data
to get predictions.

Pipeline: A pipeline chains multiple transformers and estimators together to specify an
ML workflow.

DataFrame

Transformer

Estimator

Evaluator

Training Testing

Load Data

Extract Features

Train Model

Evaluate

Load Data

Extract Features

Predict Using Model

Evaluate

Chapter 5: Predicting Flight Delays using Apache Spark Machine Learning

78

Load the Data from a File into a DataFrame

The first step is to load our data into a DataFrame, like we did in chapter 2. We use a Scala
case class and StructType to define the schema, corresponding to a line in the JSON data
file. Below, we specify the data source, schema, and class to load into a Dataset. We load
the data from January and February, which we will use for training and testing the model.
(Note that specifying the schema when loading data into a DataFrame will give better
performance than schema inference.)

+--------------------+----+-------+------+----+----------+----------+--------+----------+--------+--------------+------+
| _id|dofW|carrier|origin|dest|crsdephour|crsdeptime|depdelay|crsarrtime|arrdelay|crselapsedtime| dist|
+--------------------+----+-------+------+----+----------+----------+--------+---=------+--------+--------------+------+
AA_2017-01-01_ATL...	7	AA	ATL	LGA	17	1700.0	0.0	1912.0	0.0	132.0	762.0
AA_2017-01-01_LGA...	7	AA	LGA	ATL	13	1343.0	0.0	1620.0	0.0	157.0	762.0
AA_2017-01-01_MIA...	7	AA	MIA	ATL	9	939.0	0.0	1137.0	10.0	118.0	594.0

DataFrameLoad Data

Chapter 5: Predicting Flight Delays using Apache Spark Machine Learning

http://spark.apache.org/docs/latest/sql-programming-guide.html#manually-specifying-options

79

import org.apache.spark.sql.functions._
import org.apache.spark.sql.types._
import org.apache.spark.sql._
import org.apache.spark.ml._
import org.apache.spark.ml.feature._
import org.apache.spark.ml.classification._
import org.apache.spark.ml.evaluation._
import org.apache.spark.ml.tuning._
val schema = StructType(Array(
 StructField(“_id”, StringType, true),
 StructField(“dofW”, IntegerType, true),
 StructField(“carrier”, StringType, true),
 StructField(“origin”, StringType, true),
 StructField(“dest”, StringType, true),
 StructField(“crsdephour”, IntegerType, true),
 StructField(“crsdeptime”, DoubleType, true),
 StructField(“depdelay”, DoubleType, true),
 StructField(“crsarrtime”, DoubleType, true),
 StructField(“arrdelay”, DoubleType, true),
 StructField(“crselapsedtime”, DoubleType, true),
 StructField(“dist”, DoubleType, true)
))

case class Flight(_id: String, dofW: Integer, carrier: String,
origin: String, dest: String, crsdephour: Integer, crsdeptime:
Double, depdelay: Double,crsarrtime: Double, arrdelay: Double,
crselapsedtime: Double, dist: Double) extends Serializable

var file =”/path/flights20170102.json”

val df = spark.read.format(“json”).option(“inferSchema”, “false”).
schema(schema).load(file).as[Flight]

df.createOrReplaceTempView(“flights”)

Chapter 5: Predicting Flight Delays using Apache Spark Machine Learning

80

The DataFrame show method displays the first 20 rows or the specified number of rows:

In the code below, using the DataFrame with column transformation, we add a column
“orig_dest” for the origination->destination, in order to use this as a feature. Then we
query to get the count of departure delays by origin_destination. The routes ORD->SFO and
DEN->SFO have the highest delays, possibly because of weather in January and February.
Adding weather to this Dataset would give better results.

import org.apache.spark.sql.functions.{concat, lit}

val df1 = df.withColumn(“orig_dest”, concat($”origin”,lit(“_”),
$”dest”))

df1.select($”orig_dest”, $”depdelay”)
.filter($”depdelay” > 40)
.groupBy(“orig_dest”)
.count
.orderBy(desc(“count”)).show(5)

result:
+---------+-----+
|orig_dest|count|
+---------+-----+
DEN_SFO	172
ORD_SFO	168
ATL_LGA	155
ATL_EWR	141
SFO_DEN	134
+---------+-----+

scala> df.show(3)

+--------------------+----+-------+------+----+----------+----------+--------+----------+--------+--------------+-----+
| _id|dofW|carrier|origin|dest|crsdephour|crsdeptime|depdelay|crsarrtime|arrdelay|crselapsedtime| dist|
+--------------------+----+-------+------+----+----------+----------+--------+----------+--------+--------------+-----+
ATL_BOS_2017-01-01..	7	DL	ATL	BOS	9	859.0	30.0	1127.0	11.0	148.0	946.0
ATL_BOS_2017-01-01..	7	DL	ATL	BOS	11	1141.0	0.0	1409.0	0.0	148.0	946.0
ATL_BOS_2017-01-01..	7	WN	ATL	BOS	13	1335.0	0.0	1600.0	0.0	145.0	946.0
+--------------------+----+-------+------+----+----------+----------+--------+----------+--------+--------------+-----+

Chapter 5: Predicting Flight Delays using Apache Spark Machine Learning

81

Summary Statistics

Spark DataFrames include some built-in functions for statistical processing. The
describe() function performs summary statistics calculations on all numeric columns
and returns them as a DataFrame.

df.describe(“dist”,”depdelay”, “arrdelay”, “crselapsedtime”).show

result:
+-------+------------------+------------------+------------------+
|summary| depdelay| arrdelay| crselapsedtime|
+-------+------------------+------------------+------------------+
count	41348	41348	41348
mean	15.018719164167553	14.806907226468027	186.26264873754474
stddev	44.529632044361385	44.223705132666396	68.38149648990024
min	0.0	0.0	64.0
max	1440.0	1442.0	423.0
+-------+------------------+------------------+------------------+

In the code below, a Spark Bucketizer is used to split the Dataset into delayed and not
delayed flights with a delayed 0/1 column. Then the resulting total counts are displayed.
Grouping the data by the delayed field and counting the number of instances in each group
shows that there are roughly 8 times as many not delayed samples as delayed samples.

val delaybucketizer = new Bucketizer().setInputCol(“depdelay”)
 .setOutputCol(“delayed”).setSplits(Array(0.0, 15.0 , Double.
PositiveInfinity))

val df2 = delaybucketizer.transform(df1)

df2.createOrReplaceTempView(“flights”)

df2.groupBy(“delayed”).count.show

result:
+-------+-----+
|delayed|count|
+-------+-----+
| 0.0|36790|
| 1.0| 4558|
+-------+-----+

Chapter 5: Predicting Flight Delays using Apache Spark Machine Learning

https://spark.apache.org/docs/latest/api/python/pyspark.sql.html#pyspark.sql.DataFrame
https://spark.apache.org/docs/2.2.0/ml-features.html#bucketizer

82

In the query below we see the count of not delayed (0=dark blue) and delayed
(1= tourquoise) flights by departure hour.

%sql select crsdephour, delayed, count(delayed) from flights group by
crsdephour, delayed order by crsdephour

Delayed
0
1

3,500

3,000

2,500

2,000

1,500

1,000

500

0
20 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 24231

crsdephour

co
un

t(d
el

ay
ed

)

Chapter 5: Predicting Flight Delays using Apache Spark Machine Learning

83

Stratified Sampling

In order to ensure that our model is sensitive to the delayed samples, we can put the two
sample types on the same footing using stratified sampling. The DataFrames sampleBy()
function does this when provided with fractions of each sample type to be returned. Here,
we’re keeping all instances of delayed, but downsampling the not delayed instances to
13%, then displaying the results.

val fractions = Map(0.0 -> .13, 1.0 -> 1.0)
val strain = df2.stat.sampleBy(“delayed”, fractions, 36L)
val Array(trainingData, testData) = strain
 .randomSplit(Array(0.7, 0.3), 5043)

strain.groupBy(“delayed”).count.show

result:
+-------+-----+
|delayed|count|
+-------+-----+
| 0.0| 4766|
| 1.0| 4558|
+-------+-----+

Feature Extraction and Pipelining

The ML package needs the label and feature vector to be added as columns to the
input DataFrame. We set up a pipeline to pass the data through transformers in order
to extract the features and label. We will use Spark StringIndexers in the pipeline to
encode a column of string values to a column of number indices for those values (the
indices are proportional to the occurrence of the values in the dataset). An example of
StringIndexing, encoding a column of string values to a column of number indices for
carrier, is shown below:

+-------+--------------+
|carrier|carrierIndexed|
+-------+--------------+
UA	0.0
DL	1.0
WN	3.0
AA	2.0
+-------+--------------+

Chapter 5: Predicting Flight Delays using Apache Spark Machine Learning

84

The code below sets up StringIndexers for all of the categorical columns. Later, we will
put these StringIndexers in the pipeline.

// column names for string types
val categoricalColumns = Array(“carrier”, “origin”, “dest”, “dofW”,
“orig_dest”)

// used to encode string columns to number indices
// Indices are fit to dataset
val stringIndexers = categoricalColumns.map { colName =>
 new StringIndexer()
 .setInputCol(colName)
 .setOutputCol(colName + “Indexed”)
 .fit(strain)
}

A Bucketizer will be used in the pipeline to add a label of delayed 0/1, with 0 for delays
less than 40 minutes and 1 for delays greater than 40 minutes.

// add a label column based on departure delay
 val labeler = new Bucketizer().setInputCol(“depdelay”)
 .setOutputCol(“label”)
 .setSplits(Array(0.0, 40.0, Double.PositiveInfinity)

The VectorAssembler is used in the pipeline to combine a given list of columns into a
single feature vector column.

// list of feature columns
val featureCols = Array(“carrierIndexed”, “destIndexed”,
 “originIndexed”,”dofWIndexed”,”orig_destIndexed”,
 “crsdephour”, “crsdeptime”, “crsarrtime”,
 “crselapsedtime”,”dist”)

// combines a list of feature columns into a vector column
 val assembler = new VectorAssembler()
 .setInputCols(featureCols)
 .setOutputCol(“features”)

Chapter 5: Predicting Flight Delays using Apache Spark Machine Learning

85

The result of running these transformers in a pipeline will be to add a label and features
column to the dataset as shown below.

The final element in our pipeline is an estimator (a Random Forest Classifier), which will
train on the vector of labels and features and return a (transformer) model.

val rf = new RandomForestClassifier()
 .setLabelCol(“label”)
 .setFeaturesCol(“features”)
)

Below, we put the StringIndexers, VectorAssembler, and Random Forest Classifier in an
pipeline. A pipeline chains multiple transformers and estimators together to specify an
ML workflow for training and using a model.

val steps = stringIndexers ++ Array(labeler, assembler, rf)

val pipeline = new Pipeline().setStages(steps)

+--------------+-------------+----------+-----+--------------------+
|carrierIndexed|originIndexed|crsdephour|label|features |
+--------------+-------------+----------+-----+--------------------+
2.0	1.0	17	0.0	[2.0,3.0,1.0,2.0,...
2.0	1.0	10	0.0	[2.0,0.0,1.0,2.0,...
2.0	3.0	17	0.0	[2.0,0.0,3.0,2.0,...

DataFrameLoad Data
DataFrame +

Label and
Features

Transformers

StringIndexer BucketizerBucketizer VectorAssembler

Random Forest

Transformers

StringIndexer BucketizerBucketizer VectorAssembler

Pipeline

Estimator

Chapter 5: Predicting Flight Delays using Apache Spark Machine Learning

86

Train The Model

We would like to determine which parameter values of the Random Forest Classifier
produce the best model. A common technique for model selection is k-fold cross-
validation, where the data is randomly split into k partitions. Each partition is used
once as the testing data set, while the rest are used for training. Models are then
generated using the training sets and evaluated with the testing sets, resulting in k
model performance measurements. The model parameters leading to the highest
performance metric produce the best model.

Spark ML supports k-fold cross-validation with a transformation/estimation pipeline to
try out different combinations of parameters, using a process called grid search, where
you set up the parameters to test and a cross validation evaluator to construct a model
selection workflow.

Test Model
Predictions

Features
Without Labels

Feature
Extraction

Training
Set

Test
Set

Model
Training/
Building

Test Model
Predictions

Features
and Labels

Historical
Data

Train/Test Loop: Test accuracy of
predictions matching test labels

ML Cross-Validation Process

Chapter 5: Predicting Flight Delays using Apache Spark Machine Learning

87

Below, we use a ParamGridBuilder to construct the parameter grid for the model
training. We define an evaluator, which will evaluate the model by comparing the
test label column with the test prediction column. We use a CrossValidator for
model selection. The CrossValidator uses the pipeline, the parameter grid, and the
classification evaluator to fit the training data set and returns a model.

val paramGrid = new ParamGridBuilder()
 .addGrid(rf.maxBins, Array(100, 200))
 .addGrid(rf.maxDepth, Array(2, 4, 10))
 .addGrid(rf.numTrees, Array(5, 20))
 .addGrid(rf.impurity, Array(“entropy”, “gini”))
 .build()

val evaluator = new BinaryClassificationEvaluator()

 // Set up 3-fold cross validation with paramGrid
 val crossvalidator = new CrossValidator()
 .setEstimator(pipeline)
 .setEvaluator(evaluator)
 .setEstimatorParamMaps(paramGrid).setNumFolds(3)

// fit the training data set and return a model
val pipelineModel = crossvalidator.fit(trainingData)

The CrossValidator uses the ParamGridBuilder to iterate through the maxDepth, maxBins,
and numbTrees parameters of the Random Forest Classifier and to evaluate the models,
repeating 3 times per parameter value for reliable results.

EvaluatorParameter
Grid

Pipeline

CrossValidator

Pipeline Model

Fit Fit a model to the data with
provided parameter grid

val cvModel = crossval.fit(ntrain)

Chapter 5: Predicting Flight Delays using Apache Spark Machine Learning

88

Next, we can get the best model, in order to print out the feature importances. The
results show that the scheduled departure time and the orig->dest are the most
important features.

val featureImportances = pipelineModel
 .bestModel.asInstanceOf[PipelineModel]
 .stages(stringIndexers.size + 2)
 .asInstanceOf[RandomForestClassificationModel]
 .featureImportances

assembler.getInputCols
 .zip(featureImportances.toArray)
 .sortBy(-_._2)
 .foreach { case (feat, imp) =>
 println(s”feature: $feat, importance: $imp”) }

result:
feature: crsdeptime, importance: 0.2954321019748874
feature: orig_destIndexed, importance: 0.21540676913162476
feature: crsarrtime, importance: 0.1594826730807351
feature: crsdephour, importance: 0.11232750835024508
feature: destIndexed, importance: 0.07068851952515658
feature: carrierIndexed, importance: 0.03737067561393635
feature: dist, importance: 0.03675114205144413
feature: dofWIndexed, importance: 0.030118527912782744
feature: originIndexed, importance: 0.022401521272697823
feature: crselapsedtime, importance: 0.020020561086490113

We find that the best random forest model produced, using the cross-validation process,
is one with a depth of 4, 20 trees and 100 bins.

val bestEstimatorParamMap = pipelineModel
 .getEstimatorParamMaps
 .zip(cvModel.avgMetrics)
 .maxBy(_._2)
 ._1
println(s”Best params:\n$bestEstimatorParamMap”)

result:
Best params: {
rfc-impurity: gini,
rfc-maxBins: 100,
rfc-maxDepth: 4,
rfc-numTrees: 20 }

Chapter 5: Predicting Flight Delays using Apache Spark Machine Learning

89

Predictions and Model Evaluation

The performance of the model can be determined using the test data set that has
not been used for any training or cross-validation activities. We transform the test
DataFrame with the pipeline model, which will pass the test data, according to the
pipeline steps, through the feature extraction stage, estimate with the random forest
model chosen by model tuning, and then return the label predictions in a column of a
new DataFrame.

val predictions = pipelineModel.transform(testData)

Train
DataFrame

Extract Features

Pipeline
Model

Fit

Load Data Evaluator
Pipeline

Transformers Estimator

Train Model

Extract Features

Load Data

Test
DataFrame

Evaluator

Predict With Model

Predictions
DataFrame

Chapter 5: Predicting Flight Delays using Apache Spark Machine Learning

90

The BinaryClassificationEvaluator provides a metric to measure how well a fitted model
does on the test data. The default metric for this evaluator is the area under the ROC
curve. The area measures the ability of the test to correctly classify true positives from
false positives. A random predictor would have .5. The closer the value is to 1, the better
its predictions are.

100

80

60

40

20

0

400 60 80 10020

Tr
ue

 P
os

iti
ve

 R
at

e
(S

en
si

tiv
ity

)

False Positive Rate (100-Specificity)

Chapter 5: Predicting Flight Delays using Apache Spark Machine Learning

91

Below, we pass the predictions DataFrame (which has a predictions column and a label
column) to the BinaryClassificationEvaluator, which returns .69 as the area under
the ROC curve. We could get better flight delay predictions with more data sources,
such as weather, holidays, incoming flight information, and current or incoming airport
operations problems.

val areaUnderROC = evaluator.evaluate(predictions)

result: 0.69

+-----+--------------------+----------+
|label| features|prediction|
+-----+--------------------+----------+
| 1.0|[117.0,0.0,0.0,18...| 1.0|
| 0.0|[65.0,0.0,0.0,129...| 0.0|

DataFrame Accuracy

Transform

Model Pipeline BucketizerDataFrame +
Predictions Evaluator

Evaluate

val predictions = cvModel.transfrom (test)
val accuracy = evaluator.evaluate(predictions)

Chapter 5: Predicting Flight Delays using Apache Spark Machine Learning

92

Below, we calculate some more metrics. The number of false/true positives and
negative predictions is also useful:

•	True positives are how often the model correctly predicted delayed flights.

•	False positives are how often the model incorrectly predicted delayed flights.

•	True negatives indicate how often the model correctly predicted not delayed flights.

•	False negatives indicate how often the model incorrectly predicted not delayed flights.

val lp = predictions.select(“label”, “prediction”)
val counttotal = predictions.count()
val correct = lp.filter($”label” === $”prediction”).count()
val wrong = lp.filter(not($”label” === $”prediction”)).count()
val ratioWrong = wrong.toDouble / counttotal.toDouble
val ratioCorrect = correct.toDouble / counttotal.toDouble

val truep = lp.filter($”prediction” === 0.0)
 .filter($”label” === $”prediction”).count() /
 counttotal.toDouble

val truen = lp.filter($”prediction” === 1.0)
 .filter($”label” === $”prediction”).count() /
 counttotal.toDouble

val falsep = lp.filter($”prediction” === 0.0)
 .filter(not($”label” === $”prediction”)).count() /
 counttotal.toDouble

val falsen = lp.filter($”prediction” === 1.0)
 .filter(not($”label” === $”prediction”)).count() /
 counttotal.toDouble

Results:
counttotal: Long = 2744
correct: Long = 1736
wrong: Long = 1008
ratioWrong: Double = 0.3673469387755102
ratioCorrect: Double = 0.6326530612244898
truep: Double = 0.3079446064139942
truen: Double = 0.32470845481049565
falsep: Double = 0.15998542274052477
falsen: Double = 0.20736151603498543

Chapter 5: Predicting Flight Delays using Apache Spark Machine Learning

93

Save The Model

We can now save our fitted pipeline model to the distributed file store for later use in
production. This saves both the feature extraction stage and the random forest model
chosen by model tuning.

pipelineModel.write.overwrite().save(modeldir)

The result of saving the pipeline model is a JSON file for metadata and a Parquet for
model data. We can reload the model with the load command; the original and reloaded
models are the same:

val sameModel = CrossValidatorModel.load(“modeldir”)

Summary

There are plenty of great tools to build classification models. Apache Spark provides an
excellent framework for building solutions to business problems that can extract value
from massive, distributed datasets.

Machine learning algorithms cannot answer all questions perfectly. But they do provide
evidence for humans to consider when interpreting results, assuming the right question
is asked in the first place. In this example, we could get better flight delay predictions
with more timely information, such as weather, holidays, incoming flight delays, and
airport problems.

All of the data and code to train the models and make your own conclusions, using
Apache Spark, are located in GitHub. Refer to the Appendix for the links to the GitHub
and more information about running the code.

Chapter 5: Predicting Flight Delays using Apache Spark Machine Learning

94

Chapter 6

Cluster Analysis on Uber Event
Data to Detect and Visualize
Popular Uber Locations
According to Bernard Marr, one of the 10 major areas in which big data is being used to
excellent advantage is in improving cities. The analysis of location and behavior patterns
within cities allows optimization of traffic, better planning decisions, and smarter
advertising. For example, the analysis of GPS car data can allow cities to optimize traffic
flows based on real-time traffic information. Telecom companies are using mobile
phone location data to provide insights, by identifying and predicting the location activity
trends and patterns of a population in a large metropolitan area. The application of
machine learning to geolocation data is being used in telecom, travel, marketing, and
manufacturing to identify patterns and trends, for services such as recommendations,
anomaly detection, and fraud.

https://www.bernardmarr.com/default.asp?contentID=1076

95

Chapter 6: Cluster Analysis on Uber Event Data to Detect and Visualize Popular Uber Locations

Uber is using Apache Spark and big data to perfect its processes, from calculating Uber’s
“surge pricing” to finding the optimal positioning of cars to maximize profits. In this
chapter, we are going to use public Uber trip data to discuss cluster analysis on Uber event
data to detect and visualize popular Uber locations. We start with a review of clustering
and the k-means algorithm and then explore the use case. In the next chapter, we will use
the saved k-means model with streaming data. (Note the code in this example is not from
Uber, only the data.)

Streaming

Collect Data Stream Processing

Batch Processing

Data Sources

Topic

Stream

Topic

Stream

Derive
Features

Streaming Models

Model

Serve Data

Update
Models

Machine
Learning

Process
MAPR-DB

MAPR-DB

MAPR-XD

Uber Trips

Uber Trips

Uber Trips

Kafka API

Topic

Stream 60,000

50,000

40,000

30,000

20,000

10,000

0
20 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 191

Co
un

t

20 21 22 23

5,000

4,000

3,000

2,000

1,000

0

6 7 8 9

Hour

Co
un

t

https://www.datanami.com/2015/10/05/how-uber-uses-spark-and-hadoop-to-optimize-customer-experience/

96

Chapter 6: Cluster Analysis on Uber Event Data to Detect and Visualize Popular Uber Locations

Clustering

Clustering is a family of unsupervised machine learning algorithms that discover groupings
that occur in collections of data by analyzing similarities between input examples. Some
examples of clustering uses include customer segmentation and text categorization.

K-means is one of the most commonly used clustering algorithms that clusters the data
points into a predefined number of clusters (k). Clustering using the k-means algorithm
begins by initializing all the coordinates to k number of centroids.

Similar Customer
Group

Customer
Groups

CONTAINS
PATTERNS

Customer
Purchase Data

New Customer
Purchase Data

FINDS
PATTERNS

Train
Algorithm

RECOGNIZES
PATTERNS

Build Model

Use Model

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.0

-0.2 0 0.2 0.4 0.6 0.8 1 1.2

https://en.wikipedia.org/wiki/K-means_clustering

97

Chapter 6: Cluster Analysis on Uber Event Data to Detect and Visualize Popular Uber Locations

With every pass of the algorithm, each point is assigned to its nearest centroid, based on
some distance metric, usually Euclidean distance. The centroids are then updated to be
the “centers” of all the points assigned to it in that pass.

This repeats until there is a minimum change in the centers.

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.0

-0.2 0 0.2 0.4 0.6 0.8 1 1.2

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.0

-0.2 0 0.2 0.4 0.6 0.8 1 1.2

98

Chapter 6: Cluster Analysis on Uber Event Data to Detect and Visualize Popular Uber Locations

Example Use Case Dataset

The example Dataset is Uber trip data, which FiveThirtyEight obtained from the NYC Taxi &
Limousine Commission. In this example, we will discover the clusters of Uber data based
on the longitude and latitude, then we will analyze the cluster centers by date/time, using
Spark SQL. The Dataset has the following schema:

Field Definition
Date/Time The date and time of the Uber pickup
Lat The latitude of the Uber pickup
Lon The longitude of the Uber pickup
Base The TLC base company code affiliated with the Uber pickup

The Data Records are in CSV format; an example line is shown below:

2014-08-01 00:00:00,40.729,-73.9422,B02598

Load the Data from a File into a DataFrame

First, we import the packages needed for Spark ML clustering and SQL.

import org.apache.spark.sql.functions._
import org.apache.spark.sql.types._
import org.apache.spark.sql._
import org.apache.spark.ml.clustering._
import org.apache.spark.ml._
import org.apache.spark.ml.feature._

We specify the schema with a Spark StructType and a Scala case class.

case class Uber(dt: java.sql.Timestamp, lat: Double,
 lon: Double, base: String) extends Serializable

val schema = StructType(Array(
 StructField(“dt”, TimestampType, true),
 StructField(“lat”, DoubleType, true),
 StructField(“lon”, DoubleType, true),
 StructField(“base”, StringType, true)
))

http://data.beta.nyc/dataset/uber-trip-data-foiled-apr-sep-2014
http://www.nyc.gov/html/tlc/html/home/home.shtml
http://www.nyc.gov/html/tlc/html/home/home.shtml
http://spark.apache.org/docs/latest/sql-programming-guide.html#programmatically-specifying-the-schema

99

Chapter 6: Cluster Analysis on Uber Event Data to Detect and Visualize Popular Uber Locations

Next we load the data from a CSV file into a Spark DataFrame, specifying the datasource
and schema to load into the DataFrame, as shown below. (Note: if you are using a notebook,
then you do not have to create the SparkSession.)

val spark: SparkSession = SparkSession.builder()
.appName(“uber”).getOrCreate()

import spark.implicits._

// path to dataset file
var file: String = “/mapr/demo.mapr.com/data/uber.csv”

val df: Dataset[Uber] = spark.read
.option(“inferSchema”, “false”)
.schema(schema)
.csv(file).as[Uber]

DataFrame printSchema() prints the schema to the console in a tree format, shown below:

df.printSchema

result:
root
 |-- dt: timestamp (nullable = true)
 |-- lat: double (nullable = true)
 |-- lon: double (nullable = true)
 |-- base: string (nullable = true)

+--------------------+-------+--------+------+
| dt| lat| lon| base|
+--------------------+-------+--------+------+
2014-08-01 07:00:...	40.729	-73.9422	B02598
2014-08-01 07:00:...	40.7476	-73.9871	B02598
2014-08-01 07:00:...	40.7424	-74.0044	B02598
2014-08-01 07:00:...	40.751	-73.9869	B02598
2014-08-01 07:00:...	40.7406	-73.9902	B02598
+--------------------+-------+--------+------+

DataFrameLoad Data

100

Chapter 6: Cluster Analysis on Uber Event Data to Detect and Visualize Popular Uber Locations

DataFrame show(5) displays the first 5 rows:

df.show(5)

result:
+-------------------+-------+--------+------+
| dt| lat| lon| base|
+-------------------+-------+--------+------+
2014-08-01 00:00:00	40.729	-73.9422	B02598
2014-08-01 00:00:00	40.7476	-73.9871	B02598
2014-08-01 00:00:00	40.7424	-74.0044	B02598
2014-08-01 00:00:00	40.751	-73.9869	B02598
2014-08-01 00:00:00	40.7406	-73.9902	B02598
+-------------------+-------+--------+------+

Define Features Array

In order for the features to be used by a machine learning algorithm, they are transformed
and put into feature vectors, which are vectors of numbers representing the value for
each feature. Below, a VectorAssembler transformer is used to return a new DataFrame
with the input columns lat, lon in a vector features column. The df2 DataFrame with the
features column is cached, since it will be used iteratively by the k-means estimator to
create a model.

+--------------------+-------+--------+------+------------------+
| dt| lat| lon| base| features|
+--------------------+-------+--------+------+------------------+
2014-08-01 07:00:...	40.729	-73.9422	B02598	[40.729,-73.9422]
2014-08-01 07:00:...	40.7476	-73.9871	B02598	[40.7476,-73.9871]
2014-08-01 07:00:...	40.7424	-74.0044	B02598	[40.7424,-74.0044]
2014-08-01 07:00:...	40.751	-73.9869	B02598	[40.751,-73.9869]
2014-08-01 07:00:...	40.7406	-73.9902	B02598	[40.7406,-73.9902]
+--------------------+-------+--------+------+------------------+

DataFrameLoad Data DataFrame +
Features

Transform

VectorAssembler

101

Chapter 6: Cluster Analysis on Uber Event Data to Detect and Visualize Popular Uber Locations

// input column names
val featureCols = Array("lat", "lon")

// create transformer
val assembler = new VectorAssembler()
 .setInputCols(featureCols)
 .setOutputCol("features")

// transform method adds features column
val df2 = assembler.transform(df)

// cache transformed DataFrame
df2.cache

df2.show(5)

result:
+-------------------+-------+---------+-------+------------------+
| dt| lat| lon| base| features|
+-------------------+-------+---------+-------+------------------+
2014-08-01 00:00:00	40.729	-73.9422	B02598	[40.729,-73.9422]
2014-08-01 00:00:00	40.7476	-73.9871	B02598	[40.7476,-73.9871]
2014-08-01 00:00:00	40.7424	-74.0044	B02598	[40.7424,-74.0044]
2014-08-01 00:00:00	40.751	-73.9869	B02598	[40.751,-73.9869]
2014-08-01 00:00:00	40.7406	-73.9902	B02598	[40.7406,-73.9902]
+------------------+--------+---------+-------+------------------+

102

Chapter 6: Cluster Analysis on Uber Event Data to Detect and Visualize Popular Uber Locations

Next, we create a k-means estimator; we set the parameters to define the number of
clusters and the column name for the cluster IDs. Then we use the k-means estimator
fit method, on the VectorAssembler transformed DataFrame, to train and return a
k-means model.

// create the estimator
val kmeans: KMeans = new KMeans()
.setK(20)
.setFeaturesCol(“features”)
.setPredictionCol(“cid”)
.setSeed(1L)

// use the estimator to fit (train) a KMeans model
val model: KMeansModel = kmeans.fit(df2)

// print out the cluster center latitude and longitude
println(“Final Centers: “)
val centers = model.clusterCenters
centers.foreach(println)

result:
Final Centers:
[40.77486503453673,-73.95529530005687]
[40.71471849886388,-74.01021744470336]
[40.77360039001209,-73.86783834670749]
[40.68434684712066,-73.98492349953315]
...

+--------------------+-------+--------+------+------------------+
| dt| lat| lon| base| features|
+--------------------+-------+--------+------+------------------+
2014-08-01 07:00:...	40.729	-73.9422	B02598	[40.729,-73.9422]
2014-08-01 07:00:...	40.7476	-73.9871	B02598	[40.7476,-73.9871]
2014-08-01 07:00:...	40.7424	-74.0044	B02598	[40.7424,-74.0044]
2014-08-01 07:00:...	40.751	-73.9869	B02598	[40.751,-73.9869]
2014-08-01 07:00:...	40.7406	-73.9902	B02598	[40.7406,-73.9902]
+--------------------+-------+--------+------+------------------+

DataFrameLoad Data
K-Means

Model

Transform

VectorAssembler BucketizerDataFrame +
Features

K-Means
Estimator

Input Fit

103

Chapter 6: Cluster Analysis on Uber Event Data to Detect and Visualize Popular Uber Locations

Below, the 20 cluster centers are displayed on a Google Map:

Below, the 20 cluster centers and 5000 trip locations are displayed on a Google Heatmap:

104

Chapter 6: Cluster Analysis on Uber Event Data to Detect and Visualize Popular Uber Locations

We use the k-means model summary and k-means model summary predictions methods,
which return the clusterIDs added as a column in a new DataFrame, in order to further
analyze the clustering. Then we register the DataFrame as a temporary table in order to
run SQL statements on the table.

// get the KMeansModelSummary from the KMeansModel
val summary : KMeansModelSummary = model.summary

// get the cluster centers in a dataframe column from the summary
val clusters : Dataframe = summary.predictions

// register the DataFrame as a temporary table
clusters.createOrReplaceTempView(“uber”)
clusters.show(5)

result:
+-------------------+-------+--------+------+------------------+---+
| dt| lat| lon| base| features|cid|
+-------------------+-------+--------+------+------------------+---+
2014-08-01 00:00:00	40.729	-73.9422	B02598	[40.729,-73.9422]	14
2014-08-01 00:00:00	40.7476	-73.9871	B02598	[40.7476,-73.9871]	10
2014-08-01 00:00:00	40.7424	-74.0044	B02598	[40.7424,-74.0044]	16
2014-08-01 00:00:00	40.751	-73.9869	B02598	[40.751,-73.9869]	10
2014-08-01 00:00:00	40.7406	-73.9902	B02598	[40.7406,-73.9902]	10
+-------------------+-------+--------+------+------------------+---+

Now we can ask questions like:

Which clusters had the highest number of pickups?

clusters.groupBy(“cid”).count().orderBy(desc(“count”)).show(5)

result:
+---+------+
|cid| count|
+---+------+
4	101566
10	95560
11	93224
15	77019
16	75563
+---+------+

105

Chapter 6: Cluster Analysis on Uber Event Data to Detect and Visualize Popular Uber Locations

Below, the top cluster centers are displayed on a Google Map:

Which clusters had the highest number of pickups? (in Spark SQL)

%sql
select cid, count(cid) as count from uber group by cid order by
count desc

106

Chapter 6: Cluster Analysis on Uber Event Data to Detect and Visualize Popular Uber Locations

With a notebook, we can also display query results in bar charts or graphs. Below, the x
axis is the cluster ID, and the y axis is the count.

Which hours of the day had the highest number of pickups?

%sql SELECT hour(uber.dt) as hr,count(cid) as ct FROM uber group By
hour(uber.dt) order by hour(uber.dt)

(Below, the x axis is the hour, and the y axis is the count.)

100,000

80,000

60,000

40,000

20,000

0
114 15 16 1 0 3 14 9 2 13 5 12 18 6 7 19 8 1710

co
un

t

cid

60,000

50,000

40,000

30,000

20,000

10,000

0
20 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 191

co
un

t

20 21 22 23

hour

107

Chapter 6: Cluster Analysis on Uber Event Data to Detect and Visualize Popular Uber Locations

Which hours of the day and which cluster had the highest number of pickups?

clusters.select(hour($”dt”).alias(“hour”), $”cid”)
 .groupBy(“hour”, “cid”).agg(count(“cid”)
 .alias(“count”)).orderBy(desc(“count”),$”hour”).show(5)

result:
+----+---+-----+
|hour|cid|count|
+----+---+-----+
16	11	8563
17	11	8535
17	10	8111
18	11	7833
18	10	7546
+----+---+-----+

in Spark SQL:

%sql SELECT hour(uber.dt) as hr, cid, count(cid) as ct FROM uber
WHERE cid IN (1,4, 10,11,16,15) group By hour(uber.dt), cid order by
hr, cid

(Below, the x axis is the hour, the y axis is the count, and the grouping is the cluster ID.)

9,000
8,000
7,000
6,000
5,000
4,000
3,000
2,000
1,000

0
10 5 7 11 13 17 21 23

hour

co
un

t

1 4 10 11 15 16

3 9 15 19

108

Chapter 6: Cluster Analysis on Uber Event Data to Detect and Visualize Popular Uber Locations

Which clusters had the highest number of pickups during morning rush hour?

%sql SELECT hour(uber.dt) as hr, cid, count(cid) as ct FROM uber
WHERE cid IN (0,1,4,9, 10,11,16,15) and hour(uber.dt) IN (6,7,8,9)
group By hour(uber.dt), cid order by hr, cid

Which clusters had the highest number of pickups during evening rush hour?

%sql SELECT hour(uber.dt) as hr, cid, count(cid) as ct FROM
uber WHERE cid IN (0,1,4,9, 10,11,16,15) and hour(uber.dt) IN
(16,17,18,19) group By hour(uber.dt), cid order by hr, cid

5,000

4,000

3,000

2,000

1,000

0
6 7 8 9

hour

co
un

t

0 4 9 10 11 15 161

9,000

8,000

7,000

6,000

5,000

4,000

3,000

2,000

1,000

0
16 17 18 19

hour

co
un

t

0 4 9 10 11 15 161

109

Chapter 6: Cluster Analysis on Uber Event Data to Detect and Visualize Popular Uber Locations

Save The Model

The model can be persisted to disk as shown below, in order to use later (for example,
with Spark Streaming).

model.write.overwrite().save(modeldir)

The result of saving the model is a JSON file for metadata and a Parquet file for model
data. We can reload the model with the load command; the original and reloaded models
are the same:

val sameModel = KMeansModel.load(savedirectory)

Summary

In this chapter, you learned how to use Spark ML’s k-means clustering for analysis of
Uber event data to detect and visualize popular Uber locations. In the next chapter, we
will use the saved k-means model with streaming data.

110

Chapter 7

Real-Time Analysis of Popular Uber
Locations using Apache APIs: Spark
Structured Streaming, Machine
Learning, Kafka, and MapR-DB
According to Gartner, 20.8 billion connected things will be in use worldwide by 2020.
Examples of connected things include cars and devices as well as applications used
for healthcare, telecom, manufacturing, retail, and finance. Connected vehicles are
projected to generate 25 GB of data per hour, which can be analyzed to provide real-
time monitoring and apps and will lead to new concepts of mobility and vehicle usage.
Leveraging the huge amounts of data coming from these devices requires processing
events in real time, applying machine learning to add value, and providing scalable,
fast storage. Architectures for these types of applications are usually an event-driven
microservices architecture.

https://www.zdnet.com/article/iot-devices-will-outnumber-the-worlds-population-this-year-for-the-first-time/

111

Chapter 7: Real-Time Analysis of Popular Uber Locations using Apache APIs:
Spark Structured Streaming, Machine Learning, Kafka, and MapR-DB

This chapter will discuss using the saved k-means model from the previous chapter with
Apache Spark Structured Streaming in a data processing pipeline for cluster analysis on
Uber event data to detect and visualize popular Uber locations.

We start with a review of several Structured Streaming concepts, then explore the end-
to-end use case. (Note the code in this example is not from Uber, only the data.)

Streaming Concepts

Publish-Subscribe Event Streams with MapR-ES

MapR-ES is a distributed publish-subscribe event streaming system that enables
producers and consumers to exchange events in real time in a parallel and fault-
tolerant manner via the Apache Kafka API.

A stream represents a continuous sequence of events that goes from producers to
consumers, where an event is defined as a key-value pair.

UBER LOCATION

UBER LOCATION

UBER LOCATION

MACHINE
LEARNING

MODEL

SQL

SQL

DATA COLLECT PROCESS STORE ANALYZE

Topic

Stream

MAPR-DB

JSON

Stream of Data

PRODUCERS CONSUMERS

KEY VALUE KEY VALUE KEY VALUE KEY VALUE

https://mapr.com/products/mapr-streams/

112

Chapter 7: Real-Time Analysis of Popular Uber Locations using Apache APIs:
Spark Structured Streaming, Machine Learning, Kafka, and MapR-DB

Topics are a logical stream of events. Topics organize events into categories and decouple
producers from consumers. Topics are partitioned for throughput and scalability. MapR-ES
can scale to very high throughput levels, easily delivering millions of messages per second
using very modest hardware.

KAFKA API KAFKA API

PRODUCERS CONSUMERS

PRODUCERS

PRODUCERS

CONSUMERS

CONSUMERS

PARTITION1: TOPIC-PRESSURE

PARTITION1: TOPIC-TEMPERATURE

PARTITION1: TOPIC-WARNING

PARTITION2: TOPIC-PRESSURE

PARTITION2: TOPIC-TEMPERATURE

PARTITION2: TOPIC-WARNING

PARTITION3: TOPIC-PRESSURE

PARTITION3: TOPIC-TEMPERATURE

PARTITION3: TOPIC-WARNING

113

Chapter 7: Real-Time Analysis of Popular Uber Locations using Apache APIs:
Spark Structured Streaming, Machine Learning, Kafka, and MapR-DB

You can think of a partition like an event log: new events are appended to the end and
are assigned a sequential ID number called the offset.

MAPR CLUSTER

6 5 4 3 2 1

NEW
MESSAGE

OLD
MESSAGE

TOPIC: MERCEDES / SERVER 1

PARTITION
1

6 5 4 3 2 1PRODUCERS CONSUMERS

TOPIC: MERCEDES / SERVER 2

PARTITION
2

3 2 1PRODUCERS CONSUMERS

TOPIC: MERCEDES / SERVER 3

PARTITION
3 5 4 3 2 1PRODUCERS CONSUMERS

114

Chapter 7: Real-Time Analysis of Popular Uber Locations using Apache APIs:
Spark Structured Streaming, Machine Learning, Kafka, and MapR-DB

Like a queue, events are delivered in the order they are received.

Unlike a queue, however, messages are not deleted when read. They remain on the
partition available to other consumers. Messages, once published, are immutable and
can be retained forever.

PRODUCERS
CONSUMER

GROUP

MAPR CLUSTER

6 5 4 3 2 1

READ CURSORS

CONSUMER
GROUP

MAPR CLUSTER (1 SERVER)

PARTITION
1

3 2 1

TOPIC: WARNING

3 2 1

POLLCLIENT
LIBRARY CONSUMER

GET
UNREAD

UNREAD
EVENTS

115

Chapter 7: Real-Time Analysis of Popular Uber Locations using Apache APIs:
Spark Structured Streaming, Machine Learning, Kafka, and MapR-DB

Not deleting messages when they are read allows for high performance at scale and
also for processing of the same messages by different consumers for different purposes
such as multiple views with polyglot persistence.

KAFKA API KAFKA API

MAPR-DB
HBASE

MAPR-XD

MAPR-DB
JSON

PRODUCERS CONSUMERS

PRODUCERS

PRODUCERS

CONSUMERS

CONSUMERS

PARTITION1: TOPIC-PRESSURE

PARTITION1: TOPIC-TEMPERATURE

PARTITION1: TOPIC-WARNING

PARTITION2: TOPIC-PRESSURE

PARTITION2: TOPIC-TEMPERATURE

PARTITION2: TOPIC-WARNING

PARTITION3: TOPIC-PRESSURE

PARTITION3: TOPIC-TEMPERATURE

PARTITION3: TOPIC-WARNING

https://mapr.com/blog/event-driven-microservices-patterns/

116

Chapter 7: Real-Time Analysis of Popular Uber Locations using Apache APIs:
Spark Structured Streaming, Machine Learning, Kafka, and MapR-DB

Spark Dataset, DataFrame, SQL

A Spark Dataset is a distributed collection of typed objects partitioned across multiple
nodes in a cluster. A Dataset can be manipulated using functional transformations (map,
flatMap, filter, etc.) and/or Spark SQL. A DataFrame is a Dataset of Row objects and
represents a table of data with rows and columns.

Spark Structured Streaming

Structured Streaming is a scalable and fault-tolerant stream processing engine built
on the Spark SQL engine. Structured Streaming enables you to view data published to
Kafka as an unbounded DataFrame and process this data with the same DataFrame,
Dataset, and SQL APIs used for batch processing.

W

EXECUTOR

P4

W

EXECUTOR

P2

W

EXECUTOR

P3P1

AUCTION ID BID BID TIME

8213034705 95 2.927373

8213034705 115 2.943484

8213034705 100 2.951285

8213034705 117.5 2.998947

COLUMNROW PARTITIONED DATAFRAME IS LIKE A TABLE
DATASET[ROW]

PARTITION 1
8213034705, 95, 2.927373,
JAKE7870, 0, 95, 117.5,
XBOX, 3

PARTITION 2
8213034705, 115, 2.943484,
DAVIDBRESLER2, 1, 95,
117.5, XBOX, 3

PARTITION 3
8213034705, 100, 2.951285,
GLADIMACOWGIRL, 58, 95,
117.5, XBOX, 3

PARTITION 4
8213034705, 117.5, 2.998947,
DAYSRUS, 95, 95, 117.5,
XBOX, 3

AUCTION ID BID BID TIME

8213034705 95 2.927373

8213034705 115 2.943484

8213034705 100 2.951285

8213034705 117.5 2.998947

AUCTION ID BID BID TIME

8213034705 95 2.927373

8213034705 115 2.943484

8213034705 100 2.951285

8213034705 117.5 2.998947

AUCTION ID BID BID TIME

8213034705 95 2.927373

8213034705 115 2.943484

8213034705 100 2.951285

8213034705 117.5 2.998947

AUCTION ID BID BID TIME

8213034705 95 2.927373

8213034705 115 2.943484

8213034705 100 2.951285

8213034705 117.5 2.998947

AUCTION ID BID BID TIME BIDDER BIDDER RATE OPEN BID PRICE ITEM DAYS TO LIVE

8213034705 95 2.927373 JAKE7870 0 95 117.5 XBOX 3

8213034705 115 2.943484 DAVIDBRESLER2 1 95 117.5 XBOX 3

8213034705 100 2.951285 GLADIMACOWGIRL 58 95 117.5 XBOX 3

8213034705 117.5 2.998947 DAYSRUS 95 95 117.5 XBOX 3

Data Stream Data Frame

New Rows Appended to an Unbounded Table

117

Chapter 7: Real-Time Analysis of Popular Uber Locations using Apache APIs:
Spark Structured Streaming, Machine Learning, Kafka, and MapR-DB

As streaming data continues to arrive, the Spark SQL engine incrementally and
continuously processes it and updates the final result.

Stream processing of events is useful for real-time ETL, filtering, transforming,
creating counters and aggregations, correlating values, enriching with other data
sources or machine learning, persisting to files or Database, and publishing to a
different topic for pipelines.

SELECT account_id, SUM(amount)
FROM accounts GROUP BY account_id

STREAM
3 2 14

1 {”Id”: ”WillO”, ”Amount”: 100.00}

2 {”Id”: ”BradA”, ”Amount”: 30.00}

3 {”Id”: ”WillO”, ”Amount”: -30.00}

4 {”Id”: ”BradA”, ”Amount”: 20.00}

ACCOUNT ID AMOUNT

WILLO 70.00

BRADA 50.00

CONTINUOUSLY
PROCESSED

StorageStructured StreamingStreams

RAW

ENRICHED

FILTERED

CONTINUOUS:
FILTERING
TRANSFORMATIONS
AGGREGATIONS
ETL
ENRICHMENTS WITH ML, JOINS

MAPR-DB

MAPR-XD

118

Chapter 7: Real-Time Analysis of Popular Uber Locations using Apache APIs:
Spark Structured Streaming, Machine Learning, Kafka, and MapR-DB

Spark Structured Streaming Use Case Example Code

Below is the data processing pipeline for this use case of cluster analysis on Uber event
data to detect popular pickup locations.

1.	 Uber trip data is published to a MapR-ES topic using the Kafka API.

2.	 A Spark Streaming application subscribed to the topic:

•	 Ingests a stream of Uber trip data

•	Uses a deployed machine learning model to enrich the trip data with a cluster ID
and cluster location

•	Stores the transformed and enriched data in MapR-DB JSON

UBER LOCATION

UBER LOCATION

UBER LOCATION

MACHINE
LEARNING

MODEL

SQL

SQL

DATA COLLECT PROCESS STORE ANALYZE

Topic

Stream

MAPR-DB

JSON

2014-08-06T05:29:00.000-07:00, 40.8068,
-73.9548, B02682, 922337050559328

Transform
and Enrich

{
"_id":0_922337050559328,
"dt":"2014-08-01 08:51:00",
"lat":40.6858,
"lon":-73.9923,
"base":"B02682",
"cid":0,
"clat":40.67462874550765,
"clon":-73.98667466026531
}

MACHINE
LEARNING

MODEL

UBER LOCATION Topic

Stream

MAPR-DB

JSON

https://mapr.com/blog/getting-started-sample-programs-mapr-streams/

119

Chapter 7: Real-Time Analysis of Popular Uber Locations using Apache APIs:
Spark Structured Streaming, Machine Learning, Kafka, and MapR-DB

Example Use Case Data

The example data set is Uber trip data from chapter 6. The incoming data is in CSV
format; an example is shown below, with the header:

date/time, latitude, longitude, base, reverse time stamp
2014-08-06T05:29:00.000-07:00, 40.7276, -74.0033, B02682,
9223370505593280605

We enrich this data with the cluster ID and location, then transform it into the following
JSON object:

{
“_id”:0_922337050559328,
“dt”:”2014-08-01 08:51:00”,
“lat”:40.6858,
“lon”:-73.9923,
“base”:”B02682”,
“cid”:0,
“clat”:40.67462874550765,
“clon”:-73.98667466026531
}

2014-08-06T05:29:00.000-07:00, 40.8068,
-73.9548, B02682, 922337050559328

Transform
and Enrich

{
"_id":0_922337050559328,
"dt":"2014-08-01 08:51:00",
"lat":40.6858,
"lon":-73.9923,
"base":"B02682",
"cid":0,
"clat":40.67462874550765,
"clon":-73.98667466026531
}

MACHINE
LEARNING

MODEL

UBER LOCATION Topic

Stream

MAPR-DB

JSON

120

Chapter 7: Real-Time Analysis of Popular Uber Locations using Apache APIs:
Spark Structured Streaming, Machine Learning, Kafka, and MapR-DB

Loading the K-Means Model

The Spark KMeansModel class is used to load a k-means model, which was fitted on
the historical Uber trip data and then saved to the MapR-XD cluster. Next, a Dataset of
Cluster Center IDs and location is created to join later with the Uber trip locations.

// load the saved model from the distributed file system
val model = KMeansModel.load(savedirectory)

// create a Dataset with cluster id and location
case class Center(cid: Integer, clat: Double,
clon: Double)

var ac = new Array[Center](10)
var index: Int = 0
model.clusterCenters.foreach(x => {
 ac(index) = Center(index, x(0), x(1));
 index += 1;
})

val ccdf = spark.createDataset(ac)
ccdf.show(3)

+---+------------------+------------------+
|cid| clat| clon|
+---+------------------+------------------+
0	40.7564201526695	-73.98253669425347
1	40.69774864372469	-74.1746190485833
2	40.65913663371848	-73.77616609142027
+---+------------------+------------------+

https://spark.apache.org/docs/2.0.1/api/scala/index.html#org.apache.spark.ml.clustering.KMeansModel
https://mapr.com/blog/monitoring-real-time-uber-data-using-spark-machine-learning-streaming-and-kafka-api-part-1/
https://mapr.com/blog/monitoring-real-time-uber-data-using-spark-machine-learning-streaming-and-kafka-api-part-1/

121

Chapter 7: Real-Time Analysis of Popular Uber Locations using Apache APIs:
Spark Structured Streaming, Machine Learning, Kafka, and MapR-DB

Below the cluster centers are displayed on a Google Map in a Zeppelin notebook:

(Note: In the previous chapter, we used 20 cluster IDs; in this example, we are using
10. Also, when you run this model, the cluster IDs will be different, but the locations
will be about the same, depending on how many iterations you run. When you save and
reload the same model, the cluster IDs will be the same.)

Reading Data from Kafka Topics

In order to read from Kafka, we must first specify the stream format, topic, and offset
options. For more information on the configuration parameters, see the MapR Streams
documentation.

var topic: String = “/apps/uberstream:ubers”

val df1 = spark.readStream.format(“kafka”)
 .option(“kafka.bootstrap.servers”, “maprdemo:9092”)
 .option(“subscribe”, topic)
 .option(“group.id”, “testgroup”)
 .option(“startingOffsets”, “earliest”)
 .option(“failOnDataLoss”, false)
 .option(“maxOffsetsPerTrigger”, 1000)
 .load()

https://mapr.com/docs/home/MapR_Streams/differences_in_configuration_parameters_for_producers_and_consumers.html
https://mapr.com/docs/home/MapR_Streams/differences_in_configuration_parameters_for_producers_and_consumers.html

122

Chapter 7: Real-Time Analysis of Popular Uber Locations using Apache APIs:
Spark Structured Streaming, Machine Learning, Kafka, and MapR-DB

This returns a DataFrame with the following schema:

df1.printSchema()

result:
root
 |-- key: binary (nullable = true)
 |-- value: binary (nullable = true)
 |-- topic: string (nullable = true)
 |-- partition: integer (nullable = true)
 |-- offset: long (nullable = true)
 |-- timestamp: timestamp (nullable = true)
 |-- timestampType: integer (nullable = true)

The next step is to parse and transform the binary values column into a Dataset of
Uber objects.

Parsing the Message Values into a Dataset of Uber Objects

A Scala Uber case class defines the schema corresponding to the CSV records. The
parseUber function parses a comma separated value string into an Uber object.

case class Uber(dt: String, lat: Double, lon: Double, base: String,
rdt: String)

// Parse string into Uber case class
 def parseUber(str: String): Uber = {
 val p = str.split(“,”)
 Uber(p(0), p(1).toDouble, p(2).toDouble, p(3), p(4))
 }

In the code below, we register a user-defined function (UDF) to deserialize the message
value strings using the parseUber function. Then we use the UDF in a select expression
with a String Cast of the df1 column value, which returns a DataFrame of Uber objects.

import spark.implicits._

spark.udf.register(“deserialize”,
 (message: String) => parseUber(message))

val df2 = df1.selectExpr(“””deserialize(CAST(value as STRING)) AS
message”””).select($”message”.as[Uber])

123

Chapter 7: Real-Time Analysis of Popular Uber Locations using Apache APIs:
Spark Structured Streaming, Machine Learning, Kafka, and MapR-DB

Enriching the Dataset of Uber Objects with Cluster Center IDs and Location

A VectorAssembler is used to transform and return a new DataFrame with the latitude
and longitude feature columns in a vector column.

val featureCols = Array(“lat”, “lon”)

val assembler = new VectorAssembler()
 .setInputCols(featureCols)
 .setOutputCol(“features”)

val df3 = assembler.transform(df2)

The k-means model is used to get the clusters from the features with the model transform
method, which returns a DataFrame with the cluster ID (labeled predictions). This
resulting Dataset is joined with the cluster center Dataset created earlier (ccdf) to create
a Dataset of UberC objects, which contain the trip information combined with the cluster
Center ID and location.

DT LON LAT BASE FEATURES

2014-08-01 00:00:00 40.729 -73.9422 B02598 [40.729,-73.9422]

LOAD DATA DATA FRAME TRANSFORM FEATURES

LOAD DATA DATA FRAME TRANSFORM FEATURES FIT MODEL TRANSFORM PREDICTIONS

DT LON LAT BASE FEATURES PREDICTION

2014-08-01 00:00:00 40.729 -73.9422 B02598 [40.729,-73.9422] 1

124

Chapter 7: Real-Time Analysis of Popular Uber Locations using Apache APIs:
Spark Structured Streaming, Machine Learning, Kafka, and MapR-DB

//use model to get the clusters from the features
val clusters1 = model.transform(df3)

val temp= clusters1.select($”dt”.cast(TimestampType),
 $”lat”, $”lon”, $”base”,$”rdt”, $”prediction”
 .alias(“cid”))

// Uber class with Cluster id,lat lon
case class UberC(dt: java.sql.Timestamp, lat: Double,
 lon: Double, base: String, rdt: String, cid: Integer,
 clat: Double, clon: Double) extends Serializable

val clusters = temp.join(ccdf, Seq(“cid”)).as[UberC]

The final Dataset transformation is to add a unique ID to our objects for storing in MapR-
DB JSON. The createUberwId function creates a unique ID, consisting of the cluster ID
and the reverse timestamp. Since MapR-DB partitions and sorts rows by the ID, the rows
will be sorted by cluster ID with the most recent first. This function is used with a map to
create a Dataset of UberwId objects.

// Uber with unique Id and Cluster id and cluster lat lon
case class UberwId(_id: String, dt: java.sql.Timestamp,
 base: String, cid: Integer,
 clat: Double, clon: Double)

// enrich with unique id for Mapr-DB
def createUberwId(uber: UberC): UberwId = {
 val id = uber.cid + “_” + uber.rdt
 UberwId(id, uber.dt, uber.lat, uber.lon, uber.base,
 uber.cid , uber.clat, uber.clon)
}
val cdf: Dataset[UberwId] = clusters.map(uber =>
createUberwId(uber))

125

Chapter 7: Real-Time Analysis of Popular Uber Locations using Apache APIs:
Spark Structured Streaming, Machine Learning, Kafka, and MapR-DB

Writing to a Memory Sink

We have now set up the enrichments and transformations on the streaming data. Next,
for debugging purposes, we can start receiving data and storing the data in memory as
an in-memory table, which can then be queried.

val streamingquery = cdf
 .writeStream
 .queryName(“uber”)
 .format(“memory”)
 .outputMode(“append”)
 .start

Here is example output from %sql select * from Uber limit 10:

Now we can query the streaming data to ask questions, like: which hours and clusters
have the highest number of pickups? (Output is shown in a Zeppelin notebook.)

%sql
SELECT hour(uber.dt) as hr,cid, count(cid) as ct FROM uber group By
hour(uber.dt), cid

_ID DT LAT LON BASE CID CLAT CLON

0_9223370505601502336 2014-08-01 00:00:00 40.7476 -73.9871 B02598 0 40.7564201526695 -73.98253669425347

3_9223370505601500625 2014-08-01 00:00:00 40.7424 -74.0044 B02598 3 40.727167721391965 -73.99996932251409

0_9223370505601500564 2014-08-01 00:00:00 40.751 -73.9869 B02598 0 40.7564201526695 -73.98253669425347

948

800

600

400

200

0
20 5 8 11 14 17 20 23

hour

co
un

t(c
id

)

Grouped Stacked 0 1 2 3 4 5 6 7 8 9

126

Chapter 7: Real-Time Analysis of Popular Uber Locations using Apache APIs:
Spark Structured Streaming, Machine Learning, Kafka, and MapR-DB

Spark Streaming Writing to MapR-DB

The MapR-DB Connector for Apache Spark enables you to use MapR-DB as a sink for
Spark Structured Streaming or Spark Streaming.

One of the challenges when you are processing lots of streaming data is: where do
you want to store it? For this application, MapR-DB JSON, a high performance NoSQL
database, was chosen for its scalability and flexible ease of use with JSON.

2014-08-06T05:29:00.000-07:00, 40.8068,
-73.9548, B02682, 922337050559328

Transform
and Enrich

{
"_id":0_922337050559328,
"dt":"2014-08-01 08:51:00",
"lat":40.6858,
"lon":-73.9923,
"base":"B02682",
"cid":0,
"clat":40.67462874550765,
"clon":-73.98667466026531
}

MACHINE
LEARNING

MODEL

UBER LOCATION Topic

Stream

MAPR-DB

JSON

MAPR-DB OJAI
CONNECTOR
FOR APACHE

SPARK

Application

MAPR-ES

MAPR-DB

JSON

https://mapr.com/docs/home/MapR-DB/developing_client_applications_for_mapr_db.html

127

Chapter 7: Real-Time Analysis of Popular Uber Locations using Apache APIs:
Spark Structured Streaming, Machine Learning, Kafka, and MapR-DB

JSON Schema Flexibility

MapR-DB supports JSON documents as a native data store. MapR-DB makes it easy to
store, query, and build applications with JSON documents. The Spark connector makes
it easy to build real-time or batch pipelines between your JSON data and MapR-DB and
leverage Spark within the pipeline.

With MapR-DB, a table is automatically partitioned into tablets across a cluster by key
range, providing for scalable and fast reads and writes by row key. In this use case,
the row key, the _id, consists of the cluster ID and reverse timestamp, so the table is
automatically partitioned and sorted by cluster ID with the most recent first.

 {
“_id:0_922337050559328,
”dt”: “2014-08-01-08:51:00”,
“lat”: 40.6858,
“lon”: -73.9923,
“base”: B02682”,
“cid”: 0,
“clat”: 40.67462874550765,
“clon”: -73.98667466026531
}

FIELDS

DATE

DOUBLE

STRING TYPES

Table Is Partitioned by Row Key,
Which Is a Unique ID, and
Primary Index

KEY coIB coIC

XXX Val Val

XXX Val Val

KEY RANGE

XXXX

XXXX

Data is
Automatically
Partitioned by
Key Range

Fast Reads
and Writes
by Key

KEY coIB coIC

XXX Val Val

XXX Val Val

KEY RANGE

XXXX

XXXX

KEY coIB coIC

XXX Val Val

XXX Val Val

KEY RANGE

XXXX

XXXX

https://mapr.com/products/mapr-db/
https://mapr.com/products/mapr-db/

128

Chapter 7: Real-Time Analysis of Popular Uber Locations using Apache APIs:
Spark Structured Streaming, Machine Learning, Kafka, and MapR-DB

The Spark MapR-DB Connector leverages the Spark DataSource API. The connector
architecture has a connection object in every Spark Executor, allowing for distributed
parallel writes, reads, or scans with MapR-DB tablets (partitions).

Writing to a MapR-DB Sink

To write a Spark Stream to MapR-DB, specify the format with the tablePath, idFieldPath,
createTable, bulkMode, and sampleSize parameters. The following example writes out
the cdf DataFrame to MapR-DB and starts the stream.

import com.mapr.db.spark.impl._
import com.mapr.db.spark.streaming._
import com.mapr.db.spark.sql._
import com.mapr.db.spark.streaming.MapRDBSourceConfig

var tableName: String = “/apps/ubertable”
val writedb = cdf.writeStream
 .format(MapRDBSourceConfig.Format)
 .option(MapRDBSourceConfig.TablePathOption, tableName)
 .option(MapRDBSourceConfig.IdFieldPathOption, “_id”)
 .option(MapRDBSourceConfig.CreateTableOption, false)
 .option(“checkpointLocation”, “/tmp/uberdb”)
 .option(MapRDBSourceConfig.BulkModeOption, true)
 .option(MapRDBSourceConfig.SampleSizeOption, 1000)

writedb.start()

Connection in Every Spark Executor
Allowing for Distributed Parallel Writes,
Reads, or Scans

Spark Driver Program
Application and Config

SparkContext

Cluster
Manager

SPARK EXECUTOR

MAPR SERVER

Task

Connection

Task

KEY coIB coIC

XXX Val Val

XXX Val Val

SPARK EXECUTOR

MAPR SERVER

Task

Connection

Task

KEY coIB coIC

XXX Val Val

XXX Val Val

https://databricks.com/blog/2015/01/09/spark-sql-data-sources-api-unified-data-access-for-the-spark-platform.html
https://mapr.com/docs/home/Spark/StructuredSparkStreaming.html
https://mapr.com/docs/home/Spark/StructuredSparkStreaming.html

129

Chapter 7: Real-Time Analysis of Popular Uber Locations using Apache APIs:
Spark Structured Streaming, Machine Learning, Kafka, and MapR-DB

Querying MapR-DB JSON with Spark SQL

The Spark MapR-DB Connector enables users to perform complex SQL queries and
updates on top of MapR-DB using a Spark Dataset, while applying critical techniques
such as projection and filter pushdown, custom partitioning, and data locality.

Data Is Rapidly
Available for
Complex Ad Hoc
Analytics

STREAMING
DATASET

MAPR-DB
TABLETS

STREAMING
DATASET

Transformed

STREAM

TOPIC

STREAM

TOPIC

STREAM

TOPIC

MAPR-DB OJAI
CONNECTOR
FOR APACHE

SPARK

Application

MAPR-DB OJAI
CONNECTOR
FOR APACHE

SPARK

SQL

JSON

MAPR-DB

MAPR-XD

JSON

MAPR-DB

130

Chapter 7: Real-Time Analysis of Popular Uber Locations using Apache APIs:
Spark Structured Streaming, Machine Learning, Kafka, and MapR-DB

Loading Data from MapR-DB into a Spark Dataset

To load data from a MapR-DB JSON table into an Apache Spark Dataset, we invoke the
loadFromMapRDB method on a SparkSession object, providing the tableName, schema,
and case class. This returns a Dataset of UberwId objects:

case class UberwId(_id: String, dt: java.sql.Timestamp,
 lat: Double, lon: Double, base: String,cid: Integer,
 clat: Double, clon: Double) extends Serializable

val schema = StructType(Array(
 StructField(“_id”, StringType, true),
 StructField(“dt”, TimestampType, true),
 StructField(“lat”, DoubleType, true),
 StructField(“lon”, DoubleType, true),
 StructField(“base”, StringType, true),
 StructField(“cid”, IntegerType, true),
 StructField(“clat”, DoubleType, true),
 StructField(“clon”, DoubleType, true)
))

var tableName: String = “/apps/ubertable”
val df: Dataset[UberwId] = spark
 .loadFromMapRDB[UberwId](tableName, schema)
 .as[UberwId]

df.createOrReplaceTempView(“uber”)

Explore and Query the Uber Data with Spark SQL

Now we can query the data that is continuously streaming into MapR-DB to ask
questions with the Spark DataFrames domain-specific language or with Spark SQL.

Below, we use the DataFrames show method to display the first rows in tabular format.
(Note how the rows are partitioned and sorted by the _id, which is composed of the
cluster ID and reverse timestamp; the reverse timestamp sorts most recent first.)

df.show

+--------------------+---------------------+-------+--------+------+---+----------------+------------------+
| _id| dt| lat| lon| base|cid| clat| clon|
+--------------------+---------------------+-------+--------+------+---+----------------+------------------+
0_922337050559328...	2014-08-06 05:28 0:00	40.7663	-73.9915	B02598	0	40.7564201526695	-73.98253669425347
0_922337050559328...	2014-08-06 05:27 0:00	40.7674	-73.9848	B02682	0	40.7564201526695	-73.98253669425347
0_922337050559328...	2014-08-06 05:27 0:00	40.7564	-73.9975	B02617	0	40.7564201526695	-73.98253669425347
0_922337050559328...	2014-08-06 05:26 0:00	40.768	-73.9833	B02617	0	40.7564201526695	-73.98253669425347
0_922337050559328...	2014-08-06 05:26 0:00	40.7656	-73.9636	B02598	0	40.7564201526695	-73.98253669425347
0_922337050559328...	2014-08-06 05:25 0:00	40.7499	-73.9895	B02764	0	40.7564201526695	-73.98253669425347

https://mapr.com/docs/home/Spark/LoadDataFromMapRDBasDataset.html

131

Chapter 7: Real-Time Analysis of Popular Uber Locations using Apache APIs:
Spark Structured Streaming, Machine Learning, Kafka, and MapR-DB

What are the top 5 pickup cluster locations?

df.groupBy(“cid”).count().orderBy(desc(“count”)).show(5)

result:
+---+-----+
|cid|count|
+---+-----+
3	43544
0	43301
9	15182
6	8411
7	8324
+---+-----+

or with Spark SQL:

%sql SELECT COUNT(cid), cid FROM uber GROUP BY cid ORDER BY
COUNT(cid) DESC

24,222

20,000

15,000

10,000

5,000

0
10 2 3 4 5 6 7 8

Grouped Stacked cnt

9

cid

co
un

t

132

Chapter 7: Real-Time Analysis of Popular Uber Locations using Apache APIs:
Spark Structured Streaming, Machine Learning, Kafka, and MapR-DB

With Angular and Google Maps script in a Zeppelin notebook, we can display cluster center
markers and the latest 5000 trip locations on a map, which shows that the most popular
locations – 0, 3, and 9 – are in Manhattan.

Which hours have the highest number of pickups for cluster 0?

df.filter($”_id” <= “1”)
 .select(hour($”dt”).alias(“hour”), $”cid”)
 .groupBy(“hour”,”cid”).agg(count(“cid”)
 .alias(“count”)).show

133

Chapter 7: Real-Time Analysis of Popular Uber Locations using Apache APIs:
Spark Structured Streaming, Machine Learning, Kafka, and MapR-DB

Which hours of the day and which cluster had the highest number of pickups?

%sql SELECT hour(uber.dt), cid, count(cid) FROM uber GROUP BY
hour(uber.dt), cid

4,063

3,000

2,000

1,000

0
20 5 8 11 14 17 20

Grouped Stacked cnt

23

hour

co
un

t

hour

co
un

t(c
id

)

Grouped Stacked 0 1 2 3 4 5 6 7 8 9

1,432
1,200
1,000

800
600
400
200

0

10 5 7 11 13 17 21 233 9 15 19

134

Chapter 7: Real-Time Analysis of Popular Uber Locations using Apache APIs:
Spark Structured Streaming, Machine Learning, Kafka, and MapR-DB

Display cluster counts for Uber trips by datetime:

%sql select cid, dt, count(cid) as count from uber group by dt, cid
order by dt, cid limit 100

Summary

In this chapter, you learned how to use the following:

•	A Spark machine learning model in a Spark Structured Streaming application

•	Spark Structured Streaming with MapR-ES to ingest messages using the Kafka API

•	Spark Structured Streaming to persist to MapR-DB for continuously and rapidly
available SQL analysis

All of the components of the use case architecture we just discussed can run on the
same cluster with the MapR Data Platform.

14

12

10

8

6

4

2

0

2014-08-01 00:00:00.0 2014-08-01 00:04:00.0 2014-08-01 00:06:00.0 2014-08-01 00:08:00.0 2014-08-01 00:10:00.0 2014-08-01 00:012:00.0 2014-08-01 00:14:00.0 2014-08-01 00:

Stacked Stream Expanded 0 1 2 3 4 5 6 7 8 9

datetime

co
un

t(c
id

)

135

Chapter 8

Predicting Forest Fire Locations with
K-Means in Spark
Contributed by: Ian Downard

Every summer, wildfires become front-of-mind for thousands of people who live in the
Western United States. In recent years, the business of firefighting has been setting
records. Wildland fire suppression costs exceeded $2 billion in 2017, making it the most
expensive year on record for the United States Forest Service. The Forest Service is the
primary agency of the United States government responsible for wildfire management.
Part of their mission is to provide the public with a wide variety of information about past
and current wildfires. This includes datasets that describe wildfires which have occurred
in Canada and the United States since the year 2000. That data can be downloaded from
https://fsapps.nwcg.gov/gisdata.php.

Anytime you have lat/long coordinates, you have an opportunity to do data science with
k-means clustering and visualization on a map. Let’s look at one small way in which
k-means could be applied within the context of wildland firefighting to reduce costs and
incident response time.

https://www.usda.gov/media/press-releases/2017/09/14/forest-service-wildland-fire-suppression-costs-exceed-2-billion
https://fsapps.nwcg.gov/gisdata.php

136

Chapter 8: Predicting Forest Fire Locations with K-Means in Spark

Problem Statement

Fires have a tendency to explode in size. It’s not unusual for fires to grow by 40,000 acres
in one day when winds are high and the terrain is steep. This is why it’s so important to
respond to fires as quickly as possible when they start. However, the logistics of moving
firefighting equipment is one of the major factors limiting incident response time. By
strategically staging equipment where fires are prone to occur, it may be possible to
improve incident response time, but how do we pinpoint those locations?

The Solution

One way to estimate where wildfires are prone to occur is to partition the locations of
past burns into clusters. The centroids for those clusters could conceivably help wildland
management agencies optimally place heavy wildfire suppression equipment, such as
water tanks, as near as possible to where fires are likely to occur. The k-means clustering
algorithm is perfectly suited for this purpose.

K-Means Clusters (> 5% of population)

137

Chapter 8: Predicting Forest Fire Locations with K-Means in Spark

The first step in solving this problem is to download the dataset containing locations for
past burns. Here is how to do that with Bash:

mkdir -p data/fires
cd data/fires
curl -s --remote-name https://fsapps.nwcg.gov/afm/data/fireptdata/
modis_fire_2016_365_conus_shapefile.zip
curl -s --remote-name https://fsapps.nwcg.gov/afm/data/fireptdata/
modis_fire_2015_365_conus_shapefile.zip
curl -s --remote-name https://fsapps.nwcg.gov/afm/data/fireptdata/
modis_fire_2014_365_conus_shapefile.zip
curl -s --remote-name https://fsapps.nwcg.gov/afm/data/fireptdata/
modis_fire_2013_365_conus_shapefile.zip
curl -s --remote-name https://fsapps.nwcg.gov/afm/data/fireptdata/
modis_fire_2012_366_conus_shapefile.zip
curl -s --remote-name https://fsapps.nwcg.gov/afm/data/fireptdata/
modis_fire_2011_365_conus_shapefile.zip
curl -s --remote-name https://fsapps.nwcg.gov/afm/data/fireptdata/
modis_fire_2010_365_conus_shapefile.zip
curl -s --remote-name https://fsapps.nwcg.gov/afm/data/fireptdata/
modis_fire_2009_365_conus_shapefile.zip
curl -s --remote-name https://fsapps.nwcg.gov/afm/data/fireptdata/
mcd14ml_2008_005_01_conus_shp.zip
curl -s --remote-name https://fsapps.nwcg.gov/afm/data/fireptdata/
mcd14ml_2007_005_01_conus_shp.zip
curl -s --remote-name https://fsapps.nwcg.gov/afm/data/fireptdata/
mcd14ml_2006_005_01_conus_shp.zip
curl -s --remote-name https://fsapps.nwcg.gov/afm/data/fireptdata/
mcd14ml_2005_005_01_conus_shp.zip
curl -s --remote-name https://fsapps.nwcg.gov/afm/data/fireptdata/
mcd14ml_2004_005_01_conus_shp.zip
curl -s --remote-name https://fsapps.nwcg.gov/afm/data/fireptdata/
mcd14ml_2003_005_01_conus_shp.zip
curl -s --remote-name https://fsapps.nwcg.gov/afm/data/fireptdata/
mcd14ml_2002_005_01_conus_shp.zip
curl -s --remote-name https://fsapps.nwcg.gov/afm/data/fireptdata/
mcd14ml_2001_005_01_conus_shp.zip
find modis*.zip | xargs -I {} unzip {} modis*.dbf
find mcd*.zip | xargs -I {} unzip {} mcd*.dbf

138

Chapter 8: Predicting Forest Fire Locations with K-Means in Spark

Raw data is hardly ever suitable for machine learning without cleansing. The process
of cleaning and unifying messy datasets is called “data wrangling,” and it frequently
comprises the bulk of the effort involved in real-world machine learning.

The dataset used for this study also requires a bit of wrangling. It’s provided in an
inconvenient shapefile format, which we’ll transform into CSV in order to make it more
easily usable in Spark. Also, the records after 2008 have a different schema than prior
years, so after converting the shapefiles to CSV, they’ll need to be ingested into Spark
using separate user-defined schemas.

The following Python code will reformat shapefiles into CSV:

%python
import csv
from dbfpy import dbf
import os
import sys
DATADIR=’data/fires/’

for filename in os.listdir(DATADIR):

 if filename.endswith(‘.dbf’):
 print “Converting %s to csv” % filename
 csv_fn = DATADIR+filename[:-4]+ “.csv”
 with open(csv_fn,’wb’) as csvfile:
 in_db = dbf.Dbf(DATADIR+filename)
 out_csv = csv.writer(csvfile)
 names = []
 for field in in_db.header.fields:
 names.append(field.name)
 out_csv.writerow(names)
 for rec in in_db:
 out_csv.writerow(rec.fieldData)
 in_db.close()
 print “Done...”

http://doc.arcgis.com/en/arcgis-online/reference/shapefiles.htm

139

Chapter 8: Predicting Forest Fire Locations with K-Means in Spark

The following Spark Scala code will ingest the CSV files and train a k-means model with
Spark libraries:

import org.apache.spark._
import org.apache.spark.rdd.RDD
import org.apache.spark.sql.types._
import org.apache.spark.sql.functions._
import org.apache.spark.sql._
import org.apache.spark._
import org.apache.spark.ml.feature.StringIndexer
import org.apache.spark.ml.feature.VectorAssembler
import org.apache.spark.ml.clustering.KMeans
import org.apache.spark.ml.clustering.KMeansModel
import org.apache.spark.mllib.linalg.Vectors
import sqlContext.implicits._
import sqlContext._

val schema = StructType(Array(
 StructField(“area”, DoubleType, true),
 StructField(“perimeter”, DoubleType, true),
 StructField(“firenum”, DoubleType, true),
 StructField(“fire_id”, DoubleType, true),
 StructField(“lat”, DoubleType, true),
 StructField(“lon”, DoubleType, true),
 StructField(“date”, TimestampType, true),
 StructField(“julian”, IntegerType, true),
 StructField(“gmt”, IntegerType, true),
 StructField(“temp”, DoubleType, true),
 StructField(“spix”, DoubleType, true),
 StructField(“tpix”, DoubleType, true),
 StructField(“src”, StringType, true),
 StructField(“sat_src”, StringType, true),
 StructField(“conf”, IntegerType, true),
 StructField(“frp”, DoubleType, true)
))
val df_all = sqlContext.read.format(“com.databricks.spark.csv”).
option(“header”, “true”).schema(schema).load(“data/fires/modis*.csv”)
// Include only fires with coordinates in the Pacific Northwest
val df = df_all.filter($”lat” > 42).filter($”lat” < 50).filter($”lon” >
-124).filter($”lon” < -110)
val featureCols = Array(“lat”, “lon”)
val assembler = new VectorAssembler().setInputCols(featureCols).
setOutputCol(“features”)
val df2 = assembler.transform(df)
val Array(trainingData, testData) = df2.randomSplit(Array(0.7, 0.3), 5043)
val kmeans = new KMeans().setK(400).setFeaturesCol(“features”).setMaxIter(5)
val model = kmeans.fit(trainingData)
println(“Final Centers: “)
model.clusterCenters.foreach(println)
// Save the model to disk
model.write.overwrite().save(“data/save_fire_model”)

140

Chapter 8: Predicting Forest Fire Locations with K-Means in Spark

The resulting cluster centers are shown below. Where would you stage fire
fighting equipment?

These centroids were calculated by analyzing the locations for fires that have occurred
in the past. These points can be used to help stage fire fighting equipment as near as
possible to regions prone to burn, but how do we know which staging area should respond
when a new forest fire starts? We can use our previously saved model to answer that
question. The Scala code for that would look like this:

val test_coordinate = Seq((42.3,-112.2)).toDF(“latitude”,
“longitude”)
val df3 = assembler.transform(test_coordinate)
val categories = model.transform(df3)
val centroid_id = categories.select(“prediction”).rdd.map(r =>
r(0)).collect()(0).asInstanceOf[Int]
println(model.clusterCenters(centroid_id))

141

Chapter 8: Predicting Forest Fire Locations with K-Means in Spark

Data scientists have embraced web-based notebooks, such as Apache Zeppelin, because
they allow you to interactively transform and visually explore datasets without the burden
of compiling and running a full program. To view the processes described above for data
wrangling, k-means modeling, and centroid visualization on a map, see the following
Zeppelin notebook:

https://www.zepl.com/viewer/notebooks/bm90ZTovL2lhbmRvdy8zNmNjMmU1ODJk
NGQ0ZWRmYjg5MzI4MzUzYTBjNmViYi9ub3RlLmpzb24

Operationalizing This Model as a Real-Time “Fire Response” App

The previous code excerpt shows how the model we developed could be used to identify
which fire station (i.e., centroid) should be assigned to a given wildfire. We could
operationalize this as a real-time fire response application with the following ML pipeline:

FIRE POSITION
(LAT. LONG)

RESPONSEMODEL

Streams ensure requests
and responses are saved,
replicated, and replayable.

https://www.zepl.com/viewer/notebooks/bm90ZTovL2lhbmRvdy8zNmNjMmU1ODJkNGQ0ZWRmYjg5MzI4MzUzYTBjNmViYi9ub3RlLmpzb24
https://www.zepl.com/viewer/notebooks/bm90ZTovL2lhbmRvdy8zNmNjMmU1ODJkNGQ0ZWRmYjg5MzI4MzUzYTBjNmViYi9ub3RlLmpzb24

142

Chapter 8: Predicting Forest Fire Locations with K-Means in Spark

Most machine learning applications are initially architected with a synchronous pipeline
like the one shown above, but there are limitations to this simplistic approach. Since it is
only architected for a single model, your options are limited when it comes to the following:

•	How do you A/B test different versions of your model?

•	How do you load balance inference requests?

•	How do you process inference requests with multiple models optimized for different
objectives (e.g., speed versus accuracy)?

In order to do these things, the model must be a modular component in the pipeline, and
model results should rendezvous at a point where they can be compared, monitored,
and selected based upon user-defined criteria. This design pattern can be achieved with
an architecture called the rendezvous architecture.

The Rendezvous Architecture

The rendezvous architecture is a machine learning pipeline that allows multiple models
to process inference requests and rendezvous at a point where user-defined logic can
be applied to choose which ML result to return to the requester. Such logic could say,
“Give me the fastest result,” or “give me the highest confidence score after waiting 10
seconds.” The rendezvous point also gives us a point where models can be monitored and
requests can be captured when model results significantly disagree with each other.

REQUEST MODEL A

Everyone gets their own
persisted, replicated, and
replayable request queue.

RESPONSE

MODEL B

(Scores, tracable
recorded ID)

Capture model
disagreements.

(ML result,
provenance,
perf metrics)

RENDEZVOUS

143

Chapter 8: Predicting Forest Fire Locations with K-Means in Spark

Note the emphasis on streams. Streams buffer requests in an infinite, resilient, and
replayable queue. This makes it easy to hot swap models and scale ML executors in
a microservices fashion. It also guarantees traceability for every inference request
and response.

If you’d like to learn more about the rendezvous architecture, read the highly recommended
Machine Learning Logistics by Ted Dunning and Ellen Friedman, which is available as a
free downloadable ebook.

Conclusion

This was a story about how I used geolocation data with k-means clustering that
relates to a topic which deeply affects a lot of people – wildfires! Anytime you have lat/
long coordinates, you have an opportunity to do data science with k-means clustering
and visualization on a map. I hope this example illustrates the basics of k-means
clustering and also gives some perspective on how machine learning models can be
operationalized in production scenarios using streaming interfaces.

https://mapr.com/ebook/machine-learning-logistics/

144

Chapter 9

Using Apache Spark GraphFrames to
Analyze Flight Delays and Distances
This chapter will help you get started using Apache Spark GraphFrames. We will begin
with an overview of Graph and GraphFrames concepts, then we will analyze the flight
dataset from previous chapters for flight distances and delays.

Graphs provide a powerful way to analyze the connections in a Dataset. GraphX is the
Apache Spark component for graph-parallel and data-parallel computations, built upon a
branch of mathematics called graph theory. It is a distributed graph processing framework
that sits on top of the Spark core. GraphX brings the speed and scalability of parallel,
iterative processing to graphs for big datasets. It partitions graphs that are too large to fit
in the memory of a single computer among multiple computers in a cluster. In addition,
GraphX partitions vertices independently of edges, which avoids the load imbalance often
suffered when putting all the edges for a vertex onto a single machine.

GraphFrames extends Spark GraphX to provide the DataFrame API, making the analysis
easier to use and, for some queries, more efficient with the Spark SQL Catalyst optimizer.

145

Chapter 9: Using Apache Spark GraphFrames to Analyze Flight Delays and Distances

Overview of Some Graph Concepts

A graph is a mathematical structure used to model relations between objects. A graph
is made up of vertices and edges that connect them. The vertices are the objects, and
the edges are the relationships between them.

A regular graph is a graph where each vertex has the same number of edges. An example
of a regular graph is Facebook friends. If Ted is a friend of Carol, then Carol is also a friend
of Ted.

A directed graph is a graph where the edges have a direction associated with them.
An example of a directed graph is a Twitter follower. Carol can follow Oprah without
implying that Oprah follows Carol.

edge
vertex

Ted

Carol

Relationship
Facebook friends

Relationship
follows

1

3

2

6

edge

vertex

Oprah

Carol

146

Chapter 9: Using Apache Spark GraphFrames to Analyze Flight Delays and Distances

Graph Examples

Examples of connected data that can be represented by graphs include:

Websites: The breakthrough for the creators of the Google search engine was to create
the PageRank graph algorithm, which represents pages as nodes and links as edges and
measures the importance of each page by the number of links to a page and the number
of links to each of the linking pages.

Recommendation Engines: Recommendation algorithms can use graphs where the
nodes are the users and products, and their respective attributes and the edges are the
ratings or purchases of the products by users. Graph algorithms can calculate weights
for how similar users rated or purchased similar products.

A
0.26

B
0.17

D
0.17

E
0.16

C
0.23

Ted

Carol

Bob

USERS

B

A

C

RATINGS MOVIE

Rating 4

Rating 5

Rating 3

Rating 5

147

Chapter 9: Using Apache Spark GraphFrames to Analyze Flight Delays and Distances

Fraud: Graphs are useful for fraud detection algorithms in banking, healthcare, and
network security. In healthcare, graph algorithms can explore the connections between
patients, doctors, and pharmacy prescriptions. In banking, graph algorithms can explore
the relationship between credit card applicants and phone numbers and addresses or
between credit cards customers and merchant transactions. In network security, graph
algorithms can explore data breaches.

These are just some examples of the uses of graphs. Next, we will look at a specific
example, using Spark GraphFrames.

Narcotic
Abuse

148

Chapter 9: Using Apache Spark GraphFrames to Analyze Flight Delays and Distances

GraphFrame Property Graph

Spark GraphX supports graph computation with a distributed property graph. A property
graph is a directed multigraph, which can have multiple edges in parallel. Every edge and
vertex has user defined properties associated with it. The parallel edges allow multiple
relationships between the same vertices.

With GraphFrames, vertices and edges are represented as DataFrames, which adds the
advantages of querying with Spark SQL and support for DataFrame data sources like
Parquet, JSON, and CSV.

Flight 123

SJC

Flight 1002

LAX

149

Chapter 9: Using Apache Spark GraphFrames to Analyze Flight Delays and Distances

Example Flight Scenario

As a starting simple example, we will analyze 3 flights; for each flight, we have the
following information:

Originating Airport Destination Airport Distance
SFO ORD 1800 miles
ORD DFW 800 miles
DFW SFO 1400 miles

In this scenario, we are going to represent the airports as vertices and flight routes as
edges. For our graph, we will have three vertices, each representing an airport. The
vertices each have the airport code as the ID, and the city as a property:

Vertex Table for Airports

id city
SFO San Francisco
ORD Chicago
DFW Texas

The edges have the Source ID, the Destination ID, and the distance as a property.

vertex

edge

ORD

DFW

SFO
1800 miles

800 miles1400 miles

150

Chapter 9: Using Apache Spark GraphFrames to Analyze Flight Delays and Distances

Edges Table for Routes

src dst distance delay
SFO ORD 1800 40
ORD DFW 800 0
DFW SFO 1400 10

Launching the Spark Interactive Shell with GraphFrames

Because GraphFrames is a separate package from Spark, start the Spark shell,
specifying the GraphFrames package as shown below:

$SPARK_HOME/bin/spark-shell --packages
graphframes:graphframes:0.6.0-spark2.3-s_2.11

Define Vertices

First, we will import the DataFrames, GraphX, and GraphFrames packages.

import org.apache.spark._
import org.apache.spark.graphx._
import org.apache.spark.sql._
import org.apache.spark.sql.functions._
import org.apache.spark.sql.types._
import org.apache.spark.sql.types.StructType
import org.graphframes._
import spark.implicits._

We define airports as vertices. A vertex DataFrame must have an ID column and may
have multiple attribute columns. In this example, each airport vertex consists of:

•	Vertex ID → id

•	Vertex Property → city

Vertex Table for Airports

id city
SFO San Francisco

151

Chapter 9: Using Apache Spark GraphFrames to Analyze Flight Delays and Distances

We define a DataFrame with the above properties, which will be used for the vertices in
the GraphFrame.

// create vertices with ID and Name
case class Airport(id: String, city: String) extends
Serializable

val airports=Array(Airport(“SFO”,”San
Francisco”),Airport(“ORD”,”Chicago”),Airport(“DFW”,”Dallas Fort
Worth”))

val vertices = spark.createDataset(airports).toDF
vertices.show

result:
+---+-----------------+
| id| city|
+---+-----------------+
SFO	San Francisco
ORD	Chicago
DFW	Dallas Fort Worth
+---+-----------------+

Define Edges

Edges are the flights between airports. An edge DataFrame must have src and
dst columns and may have multiple relationship columns. In our example, an
edge consists of:

•	Edge origin ID → src

•	Edge destination ID → dst

•	Edge property distance → dist

•	Edge property delay→ delay

Edges Table for Flights

id src src src delay
AA_2017-01-
01_SFO_ORD

SFO SFO SFO 40

152

Chapter 9: Using Apache Spark GraphFrames to Analyze Flight Delays and Distances

We define a DataFrame with the above properties, which will be used for the edges in
the GraphFrame.

// create flights with srcid, destid, distance
case class Flight(id: String, src: String,dst: String, dist:
Double, delay: Double)

val flights=Array(Flight(“SFO_ORD_2017-01-01_AA”,”SFO”,”ORD”,1800,
40),Flight(“ORD_DFW_2017-01-01_UA”,”ORD”,”DFW”,800,
0),Flight(“DFW_SFO_2017-01-01_DL”,”DFW”,”SFO”,1400, 10))

val edges = spark.createDataset(flights).toDF
edges.show

result:
+--------------------+---+---+------+-----+
| id|src|dst| dist|delay|
+--------------------+---+---+------+-----+
SFO_ORD_2017-01-0...	SFO	ORD	1800.0	40.0
ORD_DFW_2017-01-0...	ORD	DFW	800.0	0.0
DFW_SFO_2017-01-0...	DFW	SFO	1400.0	10.0
+--------------------+---+---+------+-----+

153

Chapter 9: Using Apache Spark GraphFrames to Analyze Flight Delays and Distances

Create the GraphFrame

Below, we create a GraphFrame by supplying a vertex DataFrame and an edge DataFrame.
It is also possible to create a GraphFrame with just an edge DataFrame; then the vertices
will be inferred.

// define the graph
val graph = GraphFrame(vertices, edges)

// show graph vertices
graph.vertices.show

+---+-----------------+
| id| name|
+---+-----------------+
SFO	San Francisco
ORD	Chicago
DFW	Dallas Fort Worth
+---+-----------------+

// show graph edges
graph.edges.show

result:
+--------------------+---+---+------+-----+
| id|src|dst| dist|delay|
+--------------------+---+---+------+-----+
SFO_ORD_2017-01-0...	SFO	ORD	1800.0	40.0
ORD_DFW_2017-01-0...	ORD	DFW	800.0	0.0
DFW_SFO_2017-01-0...	DFW	SFO	1400.0	10.0
+--------------------+---+---+------+-----+

154

Chapter 9: Using Apache Spark GraphFrames to Analyze Flight Delays and Distances

Querying the GraphFrame

Now we can query the GraphFrame to answer the following questions:

How many airports are there?

// How many airports?
graph.vertices.count

result: Long = 3

How many flights are there between airports?

// How many flights?
graph.edges.count

result: = 3

Which flight routes are greater than 1000 miles in distance?

// routes > 1000 miles distance?
graph.edges.filter(“dist > 800”).show

+--------------------+---+---+------+-----+
| id|src|dst| dist|delay|
+--------------------+---+---+------+-----+
|SFO_ORD_2017-01-0...|SFO|ORD|1800.0| 40.0|
|DFW_SFO_2017-01-0...|DFW|SFO|1400.0| 10.0|
+--------------------+---+---+------+-----+

155

Chapter 9: Using Apache Spark GraphFrames to Analyze Flight Delays and Distances

The GraphFrames triplets put all of the edge, src, and dst columns together in a
DataFrame.

// triplets
graph.triplets.show

result:

+--------------------+--------------------+--------------------+
| src| edge| dst|
+--------------------+--------------------+--------------------+
[SFO,San Francisco]	[SFO_ORD_2017-01-...	[ORD,Chicago]
[ORD,Chicago]	[ORD_DFW_2017-01-...	[DFW,Dallas Fort ...
[DFW,Dallas Fort ...	[DFW_SFO_2017-01-...	[SFO,San Francisco]
+--------------------+--------------------+--------------------+

What are the longest distance routes?

// print out longest routes
graph.edges
 .groupBy(“src”, “dst”)
 .max(“dist”)
 .sort(desc(“max(dist)”)).show

+---+---+---------+
|src|dst|max(dist)|
+---+---+---------+
SFO	ORD	1800.0
DFW	SFO	1400.0
ORD	DFW	800.0
+---+---+---------+

156

Chapter 9: Using Apache Spark GraphFrames to Analyze Flight Delays and Distances

Analyze Real Flight Data with GraphFrames Scenario

Now, we will analyze flight delays and distances, using the real flight data that we
explored in chapter 2. For each airport, we have the following information:

Vertex Table for Airports

id city state
SFO San Francisco CA

For each flight, we have the following information

Edges Table for Flights

id src dst dist dist
AA_2017-01-
01_SFO_ORD

SFO ORD 1800 1800

Again, in this scenario, we are going to represent the airports as vertices and flights
as edges. We are interested in analyzing airports and flights to determine the busiest
airports, their flight delays, and distances.

First, we will import the needed packages.

import org.apache.spark._
import org.apache.spark.graphx._
import org.apache.spark.sql._
import org.apache.spark.sql.functions._
import org.apache.spark.sql.types._
import org.apache.spark.sql.types.StructType
import org.graphframes._
import spark.implicits._

157

Chapter 9: Using Apache Spark GraphFrames to Analyze Flight Delays and Distances

Below, we define the flight schema, corresponding to the JSON data file.

// define the Flight Schema
val schema = StructType(Array(
 StructField(“_id”, StringType, true),
 StructField(“dofW”, IntegerType, true),
 StructField(“carrier”, StringType, true),
 StructField(“origin”, StringType, true),
 StructField(“dest”, StringType, true),
 StructField(“crsdephour”, IntegerType, true),
 StructField(“crsdeptime”, DoubleType, true),
 StructField(“depdelay”, DoubleType, true),
 StructField(“crsarrtime”, DoubleType, true),
 StructField(“arrdelay”, DoubleType, true),
 StructField(“crselapsedtime”, DoubleType, true),
 StructField(“dist”, DoubleType, true)
))

case class Flight(_id: String, dofW: Integer, carrier: String,
origin: String, dest: String, crsdephour: Integer, crsdeptime:
Double, depdelay: Double,crsarrtime: Double, arrdelay: Double,
crselapsedtime: Double, dist: Double) extends Serializable

Define Edges

Edges are the flights between airports. An edge must have src and dst columns and can
have multiple relationship columns. In our example, an edge consists of:

id src dst dist delay carrier crsdephour
AA_2017-01-
01_SFO_ORD

SFO ORD 1800 40 AA 17

158

Chapter 9: Using Apache Spark GraphFrames to Analyze Flight Delays and Distances

Below, we load the flights data from a JSON file into a DataFrame. Then we select the
columns that we will use for the flight edge DataFrame. The required column names are
id, src, and dst, so we rename those columns in the select statement.

var file = “maprfs:///data/flights20170102.json”

val df = spark.read.option(“inferSchema”, “false”).
schema(schema).json(file).as[Flight]

val flights = df.withColumnRenamed(“_id”, “id”)
.withColumnRenamed(“origin”, “src”)
.withColumnRenamed(“dest”, “dst”)
.withColumnRenamed(“depdelay”, “delay”)

flights.show

result:
+--------------------+---+---+-----+-----+-------+----------+
| id|src|dst|delay| dist|carrier|crsdephour|
+--------------------+---+---+-----+-----+-------+----------+
ATL_BOS_2017-01-0...	ATL	BOS	30.0	946.0	DL	9
ATL_BOS_2017-01-0...	ATL	BOS	0.0	946.0	DL	11
ATL_BOS_2017-01-0...	ATL	BOS	0.0	946.0	WN	13
+--------------------+---+---+-----+-----+-------+----------+

159

Chapter 9: Using Apache Spark GraphFrames to Analyze Flight Delays and Distances

Define Vertices

We define airports as vertices. Vertices can have properties or attributes associated
with them. For each airport, we have the following information:

Vertex Table for Airports

id city state
SFO San Francisco CA

Note that our dataset contains only a subset of the airports in the USA; below are the
airports in our dataset shown on a map.

DEN

ATL

IAH

ORD

BOS

SFO

MIA

LGA

EWR

160

Chapter 9: Using Apache Spark GraphFrames to Analyze Flight Delays and Distances

Below, we read the airports information into a DataFrame from a JSON file.

// create airports DataFrame

val airports = spark.read.json(“maprfs:///data/airports.json”)
airports.createOrReplaceTempView(“airports”)
airports.show

result:
+-------------+-------+-----+---+
| City|Country|State| id|
+-------------+-------+-----+---+
Houston	USA	TX	IAH
New York	USA	NY	LGA
Boston	USA	MA	BOS
Newark	USA	NJ	EWR
Denver	USA	CO	DEN
Miami	USA	FL	MIA
San Francisco	USA	CA	SFO
Atlanta	USA	GA	ATL
Chicago	USA	IL	ORD
+-------------+-------+-----+---+

161

Chapter 9: Using Apache Spark GraphFrames to Analyze Flight Delays and Distances

Create the Property Graph

Below, we create a GraphFrame by supplying a vertex DataFrame and an edge DataFrame.

// define the graphframe
val graph = GraphFrame(airports, flights)

// show graph vertices
graph.vertices.show(2)

result:
+--------+-------+-----+---+
| City|Country|State| id|
+--------+-------+-----+---+
| Houston| USA| TX|IAH|
|New York| USA| NY|LGA|
+--------+-------+-----+---+

// show graph edges
graph.edges.show(2)

result:
+--------------------+---+---+-----+-----+-------+----------+
| id|src|dst|delay| dist|carrier|crsdephour|
+--------------------+---+---+-----+-----+-------+----------+
|ATL_BOS_2017-01-0...|ATL|BOS| 30.0|946.0| DL| 9|
|ATL_BOS_2017-01-0...|ATL|BOS| 0.0|946.0| DL| 11|
+--------------------+---+---+-----+-----+-------+----------+

Querying the GraphFrame

Now we can query the GraphFrame to answer the following questions:

How many airports are there?

// How many airports?
val numairports = graph.vertices.count

result:
 Long = 9

162

Chapter 9: Using Apache Spark GraphFrames to Analyze Flight Delays and Distances

How many flights are there?

// How many flights?
val numflights = graph.edges.count

result:
// Long = 41348

Which flight routes have the longest distance?

// show the longest distance routes
graph.edges
.groupBy(“src”, “dst”)
.max(“dist”)
.sort(desc(“max(dist)”)).show(4)

result:
+---+---+---------+
|src|dst|max(dist)|
+---+---+---------+
SFO	BOS	2704.0
BOS	SFO	2704.0
SFO	MIA	2585.0
MIA	SFO	2585.0
+---+---+---------+

163

Chapter 9: Using Apache Spark GraphFrames to Analyze Flight Delays and Distances

Which flight routes have the highest average delays?

graph.edges
.groupBy(“src”, “dst”)
.avg(“delay”)
.sort(desc(“avg(delay)”)).show(5)

result:
+---+---+------------------+
|src|dst| avg(delay)|
+---+---+------------------+
ATL	SFO	33.505
MIA	SFO	32.30797101449275
SFO	BOS	26.77319587628866
DEN	SFO	26.45375
IAH	SFO	26.002141327623125
+---+---+------------------+

Which flight hours have the highest average delays?

graph.edges
.groupBy(“crsdephour”)
.avg(“delay”)
.sort(desc(“avg(delay)”)).show(5)

result:
+----------+------------------+
|crsdephour| avg(delay)|
+----------+------------------+
18	24.24118415324336
19	23.348782771535582
21	19.617375231053604
16	19.30346232179226
17	18.77857142857143
+----------+------------------+

164

Chapter 9: Using Apache Spark GraphFrames to Analyze Flight Delays and Distances

Which flight routes have the most delays over 40 minutes?

graph.edges
.filter(“ delay > 40”)
.groupBy(“src”, “dst”)
.agg(count(“delay”).as(“flightcount”))
.sort(desc(“flightcount”)).show(5)

result:
+---+---+-----------+
|src|dst|flightcount|
+---+---+-----------+
DEN	SFO	172
ORD	SFO	168
ATL	LGA	155
ATL	EWR	141
SFO	DEN	134
+---+---+-----------+

200

150

100

50

0
DEN, SFO

src, dst

fli
gh

tc
ou

nt

ORD, SFO ATL, LGA ATL, EWR SFO, DEN

165

Chapter 9: Using Apache Spark GraphFrames to Analyze Flight Delays and Distances

What are the longest delays for flights that are greater than 1500 miles in distance?

// flights > 1500 miles distance ordered by delay

graph.edges.filter(“dist > 1500”)
.orderBy(desc(“delay”)).show(3)

result:
+--------------------+---+---+------+------+-------+----------+
| id|src|dst| delay| dist|carrier|crsdephour|
+--------------------+---+---+------+------+-------+----------+
SFO_ORD_2017-02-2...	SFO	ORD	1440.0	1846.0	AA	8
DEN_EWR_2017-02-2...	DEN	EWR	1138.0	1605.0	UA	12
DEN_LGA_2017-02-2...	DEN	LGA	1004.0	1620.0	DL	16
+--------------------+---+---+------+------+-------+----------+

What are the worst hours for delayed flights departing from Atlanta?

graph.edges.filter(“src = ‘ATL’ and delay > 1”).
groupBy(“crsdephour”).avg(“delay”).sort(desc(“avg(delay)”)).
show(5)

result:
+----------+------------------+
|crsdephour| avg(delay)|
+----------+------------------+
19	60.15021459227468
20	56.816901408450704
18	55.5187969924812
22	48.61971830985915
17	47.5125
+----------+------------------+

166

Chapter 9: Using Apache Spark GraphFrames to Analyze Flight Delays and Distances

What are the four most frequent flight routes in the data set?

graph.edges.groupBy(“src”, “dst”).count().orderBy(desc(“count”)).
show(4)

result:
+---+---+-----+
|src|dst|count|
+---+---+-----+
ATL	LGA	1271
LGA	ATL	1268
LGA	ORD	1107
ORD	LGA	1070
+---+---+-----+

1,300

1,200

1,000

800

600

400

200

0
ATL, LGA

src, dst

fli
gh

tc
ou

nt

LGA, ATL LGA, ORD ORD, LGA

167

Chapter 9: Using Apache Spark GraphFrames to Analyze Flight Delays and Distances

Vertex Degrees

The degree of a vertex is the number of edges that touch the vertex. The degree of a
graph vertex v of a graph G is the number of graph edges that touch v.

GraphFrames provides vertex inDegree, outDegree, and degree queries, which
determine the number of incoming edges, outgoing edges, and total edges. Using
GraphFrames degree queries, we can answer the following questions.

Which airports have the most incoming flights?

// get top 3
graph.inDegrees.orderBy(desc(“inDegree”)).show(3)

+---+--------+
| id|inDegree|
+---+--------+
ORD	6212
ATL	6012
LGA	4974
+---+--------+

Which airports have the most outgoing flights?

// which airport has the most outgoing flights?
graph.outDegrees.orderBy(desc(“outDegree”)).show(3)

+---+---------+
| id|outDegree|
+---+---------+
ORD	6300
ATL	5971
LGA	4992
+---+---------+

168

Chapter 9: Using Apache Spark GraphFrames to Analyze Flight Delays and Distances

Which airports have the most incoming and outgoing flights?

// Define a reduce operation to compute the highest degree vertex
graph.degrees.orderBy(desc(“degree”)).show()

result:
+---+------+
| id|degree|
+---+------+
ORD	12512
ATL	11983
LGA	9966
MIA	8864
DEN	8486
EWR	8428
SFO	7623
BOS	7423
IAH	7411
+---+------+

14,000

12,000

10,000

8,000

6,000

4,000

2,000

0
ORD

id

de
gr

ee

ATL LGA MIA DEN EWR SFO BOS IAH

169

Chapter 9: Using Apache Spark GraphFrames to Analyze Flight Delays and Distances

PageRank

Another GraphFrames query is PageRank, which is based on the Google PageRank
algorithm. PageRank measures the importance of each vertex in a graph, by determining
which vertices have the most edges with other vertices. In our example, we can use
PageRank to determine which airports are the most important, by measuring which
airports have the most connections to other airports. We have to specify the probability
tolerance, which is the measure of convergence.

What are the most important airports, according to PageRank?

// use pageRank
val ranks = graph.pageRank.resetProbability(0.15).maxIter(10).
run()

ranks.vertices.orderBy($”pagerank”.desc).show()

result:
+-------------+-------+-----+---+------------------+
| City|Country|State| id| pagerank|
+-------------+-------+-----+---+------------------+
Chicago	USA	IL	ORD	1.3093391746898806
Atlanta	USA	GA	ATL	1.2643315314643224
New York	USA	NY	LGA	1.0647854334640885
Miami	USA	FL	MIA	0.9682949340363207
Newark	USA	NJ	EWR	0.9322291015836434
Denver	USA	CO	DEN	0.9318184799701961
San Francisco	USA	CA	SFO	0.8558792499530605
Houston	USA	TX	IAH	0.8397625821927315
Boston	USA	MA	BOS	0.8335595126457567
+-------------+-------+-----+---+------------------+

170

Message Passing via AggregateMessages

Many important graph algorithms are iterative algorithms, since properties of vertices
depend on properties of their neighbors, which depend on properties of their neighbors.
Pregel is an iterative graph processing model, developed at Google, which uses a
sequence of iterations of messages passing between vertices in a graph. GraphFrames
provides aggregateMessages, which implements an aggregation message-passing API,
based on the Pregel model. GraphFrames aggregateMessages sends messages between
vertices and aggregates message values from the neighboring edges and vertices of
each vertex.

Chapter 9: Using Apache Spark GraphFrames to Analyze Flight Delays and Distances

Initial message received at each vertex

Message computed at each vertex

Sum of message received at each vertex

Message computed at each vertex

Sum of message received at each vertex

Message computed at each vertex

Super step 1

Super step 2

Super step n

Loop until
no messages
left or max
iterations

1.4

1.2

1

0.8

0.6

0.4

0.2

0
ORD

id

pa
ge

ra
nk

ATL LGA MIA EWR DEN SFO IAH BOS

171

Chapter 9: Using Apache Spark GraphFrames to Analyze Flight Delays and Distances

The code below shows how to use aggregateMessages to compute the average flight
delay by the originating airport. The flight delay for each flight is sent to the src vertex,
then the average is calculated for the vertices.

import org.graphframes.lib.AggregateMessages

val AM = AggregateMessages
val msgToSrc = AM.edge(“delay”)
val agg = { graph.aggregateMessages
 .sendToSrc(msgToSrc)
 .agg(avg(AM.msg).as(“avgdelay”))
 .orderBy(desc(“avgdelay”))
 .limit(5) }
agg.show()

result:
+---+------------------+
| id| avgdelay|
+---+------------------+
SFO	20.306176084099867
EWR	16.317373785257170
DEN	16.167720777699696
IAH	15.925946093111898
ORD	14.880476190476191
+---+------------------+

Summary

GraphFrames provides a scalable and easy way to query and process large graph datasets,
which can be used to solve many types of analysis problems. In this chapter, we gave
an overview of the GraphFrames graph processing APIs. We encourage you to try out
GraphFrames in more depth on some of your own projects.

172

Chapter 10

Tips and Best Practices to Take
Advantage of Spark 2.x
With Apache Spark 2.0 and later versions, big improvements were implemented to enable
Spark to execute faster, making lot of earlier tips and best practices obsolete. This chapter
will first give a quick overview of what changes were made and then some tips to take
advantage of these changes.

Project Tungsten

Tungsten is the code name for the Spark project that makes changes to Apache Spark’s
execution engine, focusing on improvements to the efficiency of memory and CPU
usage. Tungsten builds upon ideas from modern compilers and massively parallel
processing (MPP) technologies, such as Apache Drill, Presto, and Apache Arrow. Spark 2.x
improvements include:
•	To reduce JVM object memory size, creation, and garbage collection processing, Spark

explicitly manages memory and converts most operations to operate directly against
binary data.

•	Columnar layout for memory data avoids unnecessary I/O and accelerates analytical
processing performance on modern CPUs and GPUs.

Logical Table
Representation

a b

a1 b1 c1

a2 b2 c2

a3 b3 c3

a4 b4 c4

a5 b5 c5

c a1 b1 c1

Row
Layout

a2 b2 c2 a3 b3 c3 a4 b4 c4 a5 b5 c5

a1 a2 a3

Column
Layout

a4 a5 b1 b2 b3 b4 b5 c1 c2 c3 c4 c5

https://databricks.com/glossary/tungsten
https://mapr.com/blog/apache-drill-architecture-ultimate-guide/
https://prestodb.io/docs/current/overview/concepts.html#query-execution-model
https://arrow.apache.org/
https://arrow.apache.org/

173

•	Vectorization allows the CPU to operate on vectors, which are arrays of column values
from multiple records. This takes advantage of modern CPU designs, by keeping all
pipelines full to achieve efficiency.

•	To improve the speed of data processing through more effective use of L1/ L2/L3 CPU
caches, Spark algorithms and data structures exploit memory hierarchy with cache-
aware computation.

•	Spark SQL’s Catalyst Optimizer underpins all the major new APIs in Spark 2.0
and later versions, from DataFrames and Datasets to Structured Streaming. The
Catalyst optimizer handles: analysis, logical optimization, physical planning, and code
generation to compile parts of queries to Java bytecode. Catalyst now supports both
rule-based and cost-based optimization.

Image reference: Databricks

Id Name

101 abc 22

102 def 37

104 ghi 45

105 jkl 25

108 mno 31

Age

112 pqr 27

114 owx 35

CPU

Vectorized
Record
Batches

Unresolved
Logical Plan

SQL

Dataset

DataFrame

Logical Plan

Metadata
Catalog

Optimized
Logical Plan

Selected
Physical

Plans
RDDs

Co
st

 M
od

el

Parser Analyzer Optimizer Planner Query
Execution

Physical
Plans

(Image reference Databricks)

Cache
Manager

Chapter 10: Tips and Best Practices to Take Advantage of Spark 2.x

https://databricks.com/glossary/what-are-dataframes
https://databricks.com/glossary/what-are-datasets

174

Chapter 10: Tips and Best Practices to Take Advantage of Spark 2.x

•	Spark SQL “Whole-Stage Java Code Generation” optimizes CPU usage by generating
a single optimized function in bytecode for the set of operators in a SQL query (when
possible), instead of generating iterator code for each operator.

Tips for Taking Advantage of Spark 2.x Improvements

Use Dataset, DataFrames, Spark SQL

In order to take advantage of Spark 2.x, you should be using Datasets, DataFrames, and
Spark SQL, instead of RDDs. Datasets, DataFrames and Spark SQL provide the following
advantages:
•	Compact columnar memory format

•	Direct memory access

•	Reduced garbage collection processing overhead

•	Catalyst query optimization

•	Whole-stage code generation

DETAILS FOR QUERY 0
Submitted Time: 2018/07/31 1:22:12
Duration: 0.9 s
Succeeded Jobs: 1

WholeStageCodegen
0 ms (0 ms, 0 ms, 0 ms)

Filter
number of output rows: 22

Project

CollectLimit

Scan json
number of output rows: 313
number of files: 1
metadata time (ms): 0

175

Chapter 10: Tips and Best Practices to Take Advantage of Spark 2.x

When possible, use Spark SQL functions – for example, to_date(), hour() – instead of
custom UDFs in order to benefit from the advantages above.

Datasets provide the advantage of compile time type safety over DataFrames. However,
Dataset functional transformations (like map) will not take advantage of query
optimization, whole-stage code generation, and reduced GC. To learn more about
Datasets, DataFrames, and Spark SQL, refer to chapters 2 and 3.

Use the Best Data Store for Your Use Case

Spark supports several data formats, including CSV, JSON, ORC, and Parquet, and
several data sources or connectors, including distributed file stores such as MapR XD,
Hadoop’s HDFS, and Amazon’s S3, popular NoSQL databases such as MapR Database
and Apache HBase, and distributed messaging stores such as Apache Kafka and MapR
Event Store for Kafka.

But just because Spark supports a given data storage or format doesn’t mean you’ll get
the same performance with all of them. Typically, data pipelines will involve multiple data
sources and sinks and multiple formats to support different use cases and different read/
write latency requirements. Here are some guidelines:
•	File data stores are good for write once (append only), read many use cases. CVS

and JSON data formats give excellent write path performance but are slower for
reading; these formats are good candidates for collecting raw data for example logs,
which require high throughput writes. Parquet is slower for writing but gives the best
performance for reading; this format is good for BI and analytics, which require low
latency reads.

•	Apache HBase and MapR Database are good for random read/write use cases. MapR
Database supports consistent, predictable, high throughput, fast reads and writes with
efficient updates, automatic partitioning, and sorting. MapR Database is multi-model:
wide-column, key-value with the HBase API or JSON (document) with the OJAI API.
MapR Database is good for real-time analytics on changing data use cases.

•	Apache Kafka and MapR Event Store for Kafka are good for scalable reading and writing
of real-time streaming data. MapR Event Store is good for data pipelines with stream-
first architecture patterns and kappa or lambda architectures.

176

Chapter 10: Tips and Best Practices to Take Advantage of Spark 2.x

CSV and JSON Tips and Best Practices

When persisting and compressing CSV and JSON files, make sure they are splittable,
give high speeds, and yield reasonable compression. ZIP compression is not splittable,
whereas Snappy is splittable; Snappy also gives reasonable compression with high
speed. When reading CSV and JSON files, you will get better performance by specifying
the schema, instead of using inference; specifying the schema reduces errors for
data types and is recommended for production code. See chapter two for examples of
specifying the schema on read.

Data
Acquisition

Batch
Sources
(External
Legacy)

Streaming
Sources

(Op Apps,
RDBMS)

Stream
Processing

ETL/RT
Analytics

ETL

ETL

Files

MapR
Database

MapR Event
Store for Kafka

Batch
Analytics/ML

Converged
Analytics

Converged
Applications

BI/Ad Hoc
Queries

Analytic
Applications

Operational
Applications

Text File Formats
CVS
JSON

a b

a1 b1 c1

a2 b2 c2

a3 b3 c3

c

177

Chapter 10: Tips and Best Practices to Take Advantage of Spark 2.x

Parquet Tips and Best Practices

Apache Parquet gives the fastest read performance with Spark. Parquet arranges data
in columns, putting related values in close proximity to each other to optimize query
performance, minimize I/O, and facilitate compression. Parquet detects and encodes the
same or similar data, using a technique that conserves resources. Parquet also stores
column metadata and statistics, which can be pushed down to filter columns (discussed
below). Spark 2.x has a vectorized Parquet reader that does decompression and decoding
in column batches, providing ~ 10x faster read performance.

Parquet files are immutable; modifications require a rewrite of the dataset. For streaming
data, you can stream to a fast read/write data store, such as MapR Database, then extract
data to Parquet files for specific analytic use cases, or stream new datasets to a new
partition (see partitioning below).

Parquet Partitioning

Spark table partitioning optimizes reads by storing files in a hierarchy of directories based
on partitioning columns. For example, a directory structure could be organized by location,
such as state/city, or by date, such as year/month, shown below:

Parquet Columnar Format

a1 a2 a3 b1 b2 b3 c1 c2 c3

file directory
 year=2018

 month=01
 data1.parquet
 month=02
 data2.parquet
 ...
 year=2017

 month=01
 data1.parquet
 month=02
 data1.parquet
 ...

178

Chapter 10: Tips and Best Practices to Take Advantage of Spark 2.x

DataFrames can be saved as persistent tables into a Hive metastore, using the saveAsTable
command. If you do not have Hive setup, Spark will create a default local Hive metastore
(using Derby). Persistent tables have several optimization benefits: partition and statistic
metadata, and they can be bucketed (discussed later).

As an example with the flight dataset (used in chapters 2, 3, 5, and 9), a lot of queries about
departure delays are organized around the originating airport (the src column), so this
could make a good partitioning column. Here is a JSON row from this Dataset:

{
“id”: “ATL_LGA_2017-01-01_AA_1678”,
“dofW”: 7,
“carrier”: “AA”,
“src”: “ATL”,
“dst”: “LGA”,
“crsdephour”: 17,
“crsdeptime”: 1700,
“depdelay”: 0.0,
“crsarrtime”: 1912,
“arrdelay”: 0.0,
“crselapsedtime”: 132.0,
“dist”: 762.0
}

Here is the code to persist a flights DataFrame as a table consisting of Parquet files
partitioned by the src column:

df.write.format(“parquet”)
.partitionBy(“src”)
.option(“path”, “/user/mapr/data/flights”)
.saveAsTable(“flights”)

https://spark.apache.org/docs/latest/sql-data-sources-load-save-functions.html

179

Chapter 10: Tips and Best Practices to Take Advantage of Spark 2.x

Below is the resulting directory structure as shown by a Hadoop list files command:

hadoop fs -ls /user/mapr/data/flights

 /user/mapr/data/flights/src=ATL
 /user/mapr/data/flights/src=BOS
 /user/mapr/data/flights/src=CLT
 /user/mapr/data/flights/src=DEN
 /user/mapr/data/flights/src=DFW
 /user/mapr/data/flights/src=EWR
 /user/mapr/data/flights/src=IAH
 /user/mapr/data/flights/src=LAX
 /user/mapr/data/flights/src=LGA
 /user/mapr/data/flights/src=MIA
 /user/mapr/data/flights/src=ORD
 /user/mapr/data/flights/src=SEA
 /user/mapr/data/flights/src=SFO

Below, we see that the src=DEN subdirectory contains two Parquet files:

hadoop fs -ls /user/mapr/data/flights/src=DEN

/user/mapr/data/flights/src=DEN/part-00000-deb4a3d4-d8c3-4983-8756-
ad7e0b29e780.c000.snappy.parquet
/user/mapr/data/flights/src=DEN/part-00001-deb4a3d4-d8c3-4983-8756-
ad7e0b29e780.c000.snappy.parquet

Partition Pruning and Predicate Pushdown

Partition pruning is a performance optimization that limits the number of files and
partitions that Spark reads when querying. After partitioning the data, queries that
match certain partition filter criteria improve performance by allowing Spark to only
read a subset of the directories and files. When partition filters are present, the catalyst
optimizer pushes down the partition filters. The scan reads only the directories that
match the partition filters, thus reducing disk I/O. For example, the following query
reads only the files in the src=DEN partition directory in order to query the average
departure delay for flights originating from Denver.

180

Chapter 10: Tips and Best Practices to Take Advantage of Spark 2.x

df.filter(“src = ‘DEN’ and depdelay > 1”)
.groupBy(“src”, “dst”).avg(“depdelay”)
.sort(desc(“avg(depdelay)”)).show()

result:
+---+---+------------------+
|src|dst| avg(depdelay)|
+---+---+------------------+
DEN	EWR	54.352020860495436
DEN	MIA	48.95263157894737
DEN	SFO	47.189473684210526
DEN	ORD	46.47721518987342
DEN	DFW	44.473118279569896
DEN	CLT	37.097744360902254
DEN	LAX	36.398936170212764
DEN	LGA	34.59444444444444
DEN	BOS	33.633187772925766
DEN	IAH	32.10775862068966
DEN	SEA	30.532345013477087
DEN	ATL	29.29113924050633
+---+---+------------------+

Or in SQL:

%sql
select src, dst, avg(depdelay)
from flights where src=’DEN’ and depdelay > 1
group by src, dst
ORDER BY src

You can see the physical plan for a DataFrame query in the Spark web UI SQL tab
(discussed in chapter 3) or by calling the explain method shown below. Here in red, we see
partition filter push down, which means that the src=DEN filter is pushed down into the
Parquet file scan. This minimizes the files and data scanned and reduces the amount of
data passed back to the Spark engine for the aggregation average on the departure delay.

181

Chapter 10: Tips and Best Practices to Take Advantage of Spark 2.x

df.filter(“src = ‘DEN’ and depdelay > 1”)
.groupBy(“src”, “dst”).avg(“depdelay”)
.sort(desc(“avg(depdelay)”)).explain

== Physical Plan ==
TakeOrderedAndProject(limit=1001, orderBy=[avg(depdelay)#304 DESC
NULLS LAST], output=[src#157,dst#149,avg(depdelay)#314])

+- *(2) HashAggregate(keys=[src#157, dst#149],
 functions=[avg(depdelay#152)],
 output=[src#157, dst#149, avg(depdelay)#304])

 +- Exchange hashpartitioning(src#157, dst#149, 200)

 +- *(1) HashAggregate(keys=[src#157, dst#149],
 functions=[partial_avg(depdelay#152)],
output=[src#157, dst#149,
 sum#321, count#322L])

 +- *(1) Project [dst#149, depdelay#152, src#157]

 +- *(1) Filter (isnotnull(depdelay#152) && (depdelay#152 >
1.0))

 +- *(1) FileScan parquet default.
flights[dst#149,depdelay#152,src#157] Batched: true, Format:
Parquet, Location: PrunedInMemoryFileIndex[maprfs:/user/mapr/
data/flights/src=DEN], PartitionCount: 1, PartitionFilters:
[isnotnull(src#157), (src#157 = DEN)], PushedFilters:
[IsNotNull(depdelay), GreaterThan(depdelay,1.0)], ReadSchema:
struct<dst:string,depdelay:double>

The physical plan is read from the bottom up, whereas the DAG is read from the top
down. Note: the Exchange means a shuffle occurred between stages.

182

Chapter 10: Tips and Best Practices to Take Advantage of Spark 2.x

Duration: 1 s
Succeeded Jobs: 7

WholeStageCodegen
218 ms (82 ms, 136 ms, 136 ms)

Filter
number of output rows: 8,373

Project

HashAggregate
aggregate time total (min, med, max):
172 ms (65 ms, 107 ms, 107 ms)
peak memory total (min, med, max):
512.0 KB (256.0 KB, 256.0 KB, 256.0 KB)
number of output rows: 24

Scan parquet default.flights
number of output rows: 23,410, scan time
total (min, med, max):
150 ms (54 ms, 96 ms, 96 ms)

Exchange
data size total (min, med, max): 1342.0 B
(671.0 B, 671.0 B, 671.0 B)

WholeStageCodegen
21 ms (0 ms, 0 ms, 33 ms)

HashAggregate
aggregate time total (min, med, max):
0 ms (0 ms, 0 ms, 0 ms)
peak memory total (min, med, max):
242.0 MB (256.0 KB, 256.0 KB, 16.2 MB)
number of output rows: 12 avg hash
probe (min, med, max): (1, 1, 1,)

TakeOrderedAndProject

183

Chapter 10: Tips and Best Practices to Take Advantage of Spark 2.x

Partitioning Tips

The partition columns should be used frequently in queries for filtering and should
have a small range of values with enough corresponding data to distribute the files in
the directories. You want to avoid too many small files, which make scans less efficient
with excessive parallelism. You also want to avoid having too few large files, which can
hurt parallelism.

Coalesce and Repartition

Before or when writing a DataFrame, you can use dataframe.coalesce(N) to reduce the
number of partitions in a DataFrame, without shuffling, or df.repartition(N) to reorder
and either increase or decrease the number of partitions with shuffling data across the
network to achieve even load balancing.

df.write.format(“parquet”)
.repartition(13)
.partitionBy(“src”)
.option(“path”, “/user/mapr/data/flights”)
.saveAsTable(“flights”)

Bucketing

Bucketing is another data organization technique that groups data with the same
bucket value across a fixed number of “buckets.” This can improve performance in
wide transformations and joins by avoiding “shuffles.” Recall from chapter 3, with wide
transformation shuffles, data is sent across the network to other nodes and written to
disk, causing network and disk I/O, and making the shuffle a costly operation. Below
is a shuffle caused by a df.groupBy(“carrier”).count; if this dataset were bucketed by
“carrier,” then the shuffle could be avoided.

WIDE

AA UA
DL

AA UA
DL

AA UA
DL

AA AA
AA AA

DL DL
DL DL

UA UA
UA UA

AA UA
DL

184

Chapter 10: Tips and Best Practices to Take Advantage of Spark 2.x

Bucketing is similar to partitioning, but partitioning creates a directory for each partition,
whereas bucketing distributes data across a fixed number of buckets by a hash on the
bucket value. Tables can be bucketed on more than one value and bucketing can be used
with or without partitioning.

As an example with the flight dataset, here is the code to persist a flights DataFrame as
a table, consisting of Parquet files partitioned by the src column and bucketed by the dst
and carrier columns (sorting by the id will sort by the src, dst, flightdate, and carrier, since
that is what the id is made up of):

df.write.format(“parquet”)
.sortBy(“id”)
.partitionBy(“src”)
.bucketBy(4,”dst”,”carrier”)
.option(“path”, “/user/mapr/data/flightsbkdc”)
.saveAsTable(“flightsbkdc”)

The resulting directory structure is the same as before, with the files in the src directories
bucketed by dst and carrier. The code below computes statistics on the table, which can
then be used by the Catalyst optimizer. Next, the partitioned and bucketed table is
read into a new DataFrame df2.

spark.sql(“ANALYZE TABLE flightsbkdc COMPUTE STATISTICS”)
val df2 = spark.table(“flightsbkdc”)

Next, let’s look at the optimizations for the following query:

df2.filter(“src = ‘DEN’ and depdelay > 1”)
.groupBy(“src”, “dst”,”carrier”)
.avg(“depdelay”)
.sort(desc(“avg(depdelay)”)).show()

result:
+---+---+-------+------------------+
|src|dst|carrier| avg(depdelay)|
+---+---+-------+------------------+
DEN	EWR	UA	60.95841209829867
DEN	LAX	DL	59.849624060150376
DEN	SFO	UA	59.058282208588956
. . .

185

Chapter 10: Tips and Best Practices to Take Advantage of Spark 2.x

Here again, we see partition filter and filter pushdown, but we also see that there is
no “Exchange” like there was before bucketing, which means there was no shuffle to
aggregate by src, dst, and carrier.

== Physical Plan ==
TakeOrderedAndProject(limit=1001, orderBy=[avg(depdelay)#491 DESC
NULLS LAST], output=[src#460,dst#452,carrier#451,avg(depdelay)#504])

+- *(1) HashAggregate(keys=[src#460, dst#452, carrier#451],
functions=[avg(depdelay#455)], output=[src#460, dst#452,
carrier#451, avg(depdelay)#491])
 +- *(1) HashAggregate(keys=[src#460, dst#452, carrier#451],
functions=[partial_avg(depdelay#455)], output=[src#460, dst#452,
carrier#451, sum#512, count#513L])

 +- *(1) Project [carrier#451, dst#452, depdelay#455, src#460]

 +- *(1) Filter (isnotnull(depdelay#455) && (depdelay#455 > 1.0))

 +- *(1) FileScan parquet default.flightsbkdc
 [carrier#451,dst#452,depdelay#455,src#460]
 Batched: true, Format: Parquet, Location:
PrunedInMemoryFileIndex
 [maprfs:/user/mapr/data/flightsbkdc/src=DEN],
 PartitionCount: 1, PartitionFilters: [isnotnull(src#460),
(src#460 = DEN)],
 PushedFilters: [IsNotNull(depdelay),
GreaterThan(depdelay,1.0)],
 ReadSchema:
struct<carrier:string,dst:string,depdelay:double>

In the DAG below, we see that there is no exchange shuffle, and we see “Whole-Stage
Java Code Generation,” which optimizes CPU usage by generating a single optimized
function in bytecode.

186

Chapter 10: Tips and Best Practices to Take Advantage of Spark 2.x

Duration: 0.2 s
Succeeded Jobs: 11

WholeStageCodegen
272 ms (35 ms, 65 ms, 135 ms)

Filter
number of output rows: 8,373

Project

HashAggregate
aggregate time total (min, med, max):
96 ms (11 ms, 25 ms, 49 ms)
peak memory total (min, med, max):
1024.0 KB (256.0 KB, 256.0 KB, 256.0 KB)
number of output rows: 28

Scan parquet default.flightsbkdc
number of output rows: 23,410
scan time total (min, med, max):
83 ms (8 ms, 21 ms, 45 ms)

TakeOrderedAndProject

HashAggregate
aggregate time total (min, med, max):
97 ms (11 ms, 25 ms, 50 ms)
peak memory total (min, med, max):
65.0 MB (16.2 MB, 16.2 MB, 16.2 MB)
number of output rows: 28
avg hash probe (min, med, max): (1, 1, 1)

187

Chapter 10: Tips and Best Practices to Take Advantage of Spark 2.x

Bucketing Tips

Partitioning should only be used with columns that have a limited number of values;
bucketing works well when the number of unique values is large. Columns which are
used often in queries and provide high selectivity are good choices for bucketing. Spark
tables that are bucketed store metadata about how they are bucketed and sorted, which
optimizes:
•	Queries on bucketed values (Spark 2.4 supports bucket pruning)

•	Aggregations on bucketed values (wide transformations)

•	Joins on bucketed values

MapR Database, Data Modeling, Partitioning, and Filter Pushdown

Partitioning and Row Key Design

With MapR Database, a table is automatically partitioned into tablets across a cluster by
key range, providing for scalable and fast reads and writes by row key.

KEY coIB coIC

XXX Val Val

XXX Val Val

KEY RANGE

XXXX

XXXX

Data is
Automatically
Partitioned by
Key Range

Fast Reads
and Writes
by Key

KEY coIB coIC

XXX Val Val

XXX Val Val

KEY RANGE

XXXX

XXXX

KEY coIB coIC

XXX Val Val

XXX Val Val

KEY RANGE

XXXX

XXXX

https://mapr.com/products/mapr-db/

188

Chapter 10: Tips and Best Practices to Take Advantage of Spark 2.x

In this use case, the row key (the id) starts with the origin (destination airport codes),
followed by the flightdate and carrier, so the table is automatically partitioned and
sorted by the src, dst, date, and carrier.

MapR Database Data Modeling: Avoiding JOINS with Nested Entities

If your tables exist in a one-to-many relationship, it’s possible to model it as a single
document; this can avoid expensive JOINS. In the one-to-many relationship example
below, we have an order table, which has a one-to-many relationship with an order
items table.

Table is automatically
partitioned and sorted
by id row key

 {
 “id”:“ATL_LGA_2017-01-01_AA_1678”,
 “dofW”:7,
 “carrier”:”AA”,
 “src”:”ATL”,
 “dst”:”LGA”,
 “crsdehour”:17,
 “crsdeptime”:1700,
 “depdelay”:0.0,
 “crsarrtime”:1912,
 ”arrdelay”:0.0,
 “crselapsedtime”:132.0,
 ”dist”:762.0
 }

ORDER_ID ORDER_DATE SHIP_STATUS TOTAL

123 2012-07-11 SHIPPED 39.45

124 2012-07-12 BACKORDER 29.37

125 2012-07-13 SHIPPED 42.47

ORDER_ID ITEM_ID PRICE

123 83924893 10.00

123 563344893 20.00

123 343978893 9.45

124 83924893 29.37

125 563344893 20.00

125 343978893 22.47

Primary Key Foreign Key

Table: SALES_ITEMS Table: ORDER_ITEMS

189

Chapter 10: Tips and Best Practices to Take Advantage of Spark 2.x

Here is a nested entity example of this one-to-many relationship in a document database.
In this example, the order and related line items are stored together and can be read
together with a find on the row key (_id). This makes the reads a lot faster than joining
tables together.

{
 “id”: “123”,
 “date”: “10/10/2017”,
 “ship_status”:”backordered”
 “orderitems”: [
 {
 “itemid”: “4348”,
 “price”: 10.00
 },
 {
 “itemid”: “5648”,
 “price”: 15.00
 }]
}

See Data Modeling Guidelines for NoSQL JSON Document Databases and Guidelines for
HBase Schema Design for more information on designing your MapR Database schema.
(Nested Entities are also possible with JSON and Parquet files.)

Projection and Filter Pushdown into MapR Database

Below, we see the physical plan for a DataFrame query, with projection and filter
pushdown highlighted in red. This means that the scanning of the src, dst, and depdelay
columns and the filter on the depdelay column are pushed down into MapR Database,
meaning that the scanning and filtering will take place in MapR Database before returning
the data to Spark. Projection pushdown minimizes data transfer between MapR Database
and the Spark engine by omitting unnecessary fields from table scans. It is especially
beneficial when a table contains many columns. Filter pushdown improves performance by
reducing the amount of data passed between MapR Database and the Spark engine when
filtering data.

https://mapr.com/blog/data-modeling-guidelines-nosql-json-document-databases/
https://mapr.com/blog/guidelines-hbase-schema-design/
https://mapr.com/blog/guidelines-hbase-schema-design/

190

Chapter 10: Tips and Best Practices to Take Advantage of Spark 2.x

df.filter(“src = ‘ATL’ and depdelay > 1”)
.groupBy(“src”, “dst”)
.avg(“depdelay”).sort(desc(“avg(depdelay)”)).explain

== Physical Plan ==
*(3) Sort [avg(depdelay)#273 DESC NULLS LAST], true, 0
+- Exchange rangepartitioning(avg(depdelay)#273 DESC NULLS LAST,
200)
 +- *(2) HashAggregate(keys=[src#5, dst#6],
 functions=[avg(depdelay#9)])
 +- Exchange hashpartitioning(src#5, dst#6, 200)
 +- *(1) HashAggregate(keys=[src#5, dst#6],
 functions=[partial_avg(depdelay#9)])
 +- *(1) Filter (((isnotnull(src#5) &&
 isnotnull(depdelay#9)) &&
 (src#5 = ATL)) && (depdelay#9 > 1.0))
 +- *(1) Scan MapRDBRelation(/user/mapr/flighttable
[src#5,dst#6,depdelay#9] PushedFilters: [IsNotNull(src),
IsNotNull(depdelay), EqualTo(src,ATL), GreaterThan(depdelay,1.0)]

Spark Web UI and SQL Tips

Read or review chapter 3 in order to understand how to use the Spark Web UI to explore
your task jobs, storage, and SQL query plan. Here is a summary of tips and what to look for:

SQL Tab

You can see details about the query plan produced by Catalyst on the web UI SQL tab. In
the query plan details, you can check and see:
•	The amount of time for each stage.

•	 If partition filters, projection, and filter pushdown are occurring.

•	Shuffles between stages (Exchange), and the amount of data shuffled. If joins or
aggregations are shuffling a lot of data, consider bucketing. You can set the number of
partitions to use when shuffling with the spark.sql.shuffle.partitions option.

•	The join algorithm being used. Broadcast join should be used when one table is small;
sort-merge join should be used for large tables. You can use broadcast hint to guide
Spark to broadcast a table in a join. For faster joins with large tables using the sort-
merge join algorithm, you can use bucketing to pre-sort and group tables; this will
avoid shuffling in the sort merge.

Use the Spark SQL “ANALYZE TABLE tablename COMPUTE STATISTICS” to take advantage
of cost-based optimization in the Catalyst Planner.

191

Chapter 10: Tips and Best Practices to Take Advantage of Spark 2.x

Stages Tab

You can use the stage detail metrics to identify problems with an executor or task
distribution. Things to look for:
•	Tasks that are taking longer and/or killed tasks. If your task process time is not

balanced, then resources could be wasted.

•	Shuffle read size that is not balanced.

•	 If your partitions/tasks are not balanced, then consider repartition as described
under partitioning.

Storage Tab

Caching Datasets can make execution faster if the data will be reused. You can use the
storage tab to see if important Datasets are fitting into memory.

Executors Tab

You can use the executors tab to confirm that your application has the amount of
resources needed.
•	Shuffle Read Write Columns: shows size of data transferred between stages

•	Storage Memory Column: shows the current used/available memory

•	Task Time Column: shows task time/garbage collection time

References and More Information

Project Tungsten: Bringing Apache Spark Closer to Bare Metal
Apache Spark as a Compiler
Apache Drill Architecture
MapR Spark Troubleshooting Hub
Apache Spark SQL Performance Tuning
Spark Summit Session Optimizing Apache Spark SQL Joins
Diving into Spark and Parquet Workloads, by Example
Spark Summit Hive Bucketing in Apache Spark
Lessons from the Field, Episode II: Applying Best Practices to Your Apache Spark Applications
Why You Should Care about Data Layout in the Filesystem
Spark + Parquet In Depth
Apache Spark: Config Cheatsheet
Spark Configuration
Projection and Filter Pushdown with Apache Spark DataFrames and Datasets
Apache Spark: Debugging and Logging Best Practices

https://databricks.com/blog/2015/04/28/project-tungsten-bringing-spark-closer-to-bare-metal.html
https://databricks.com/blog/2016/05/23/apache-spark-as-a-compiler-joining-a-billion-rows-per-second-on-a-laptop.html
https://mapr.com/blog/apache-drill-architecture-ultimate-guide/
https://mapr.com/support/s/article/Spark-Troubleshooting-Guide-Master-list-with-hyperlinks-to-detailed-articles?language=en_US
https://spark.apache.org/docs/latest/sql-performance-tuning.html
https://databricks.com/session/optimizing-apache-spark-sql-joins
https://db-blog.web.cern.ch/blog/luca-canali/2017-06-diving-spark-and-parquet-workloads-example
https://databricks.com/session/hive-bucketing-in-apache-spark
https://databricks.com/session/lessons-from-the-field-episode-ii-applying-best-practices-to-your-apache-spark-applications
https://databricks.com/session/why-you-should-care-about-data-layout-in-the-filesystem
https://databricks.com/session/spark-parquet-in-depth
http://c2fo.io/c2fo/spark/aws/emr/2016/07/06/apache-spark-config-cheatsheet/
https://spark.apache.org/docs/latest/configuration.html
https://mapr.com/docs/home/Spark/ProjectionFilterPushdownDataFramesDatasets.html
https://dzone.com/articles/talend-and-apache-spark-debugging-and-logging-best

192

Appendix

Appendix
We have covered a lot of ground in this book. By no means, however, does it cover
everything to be experienced with Spark. Spark is constantly growing and adding
functionality to make Spark programs easier to program, use less memory, execute faster,
run more predictably, and work with new machine learning libraries or frameworks.

Code

You can download the code, data, and instructions to run the examples in the book from
here: https://github.com/mapr-demos/mapr-spark2-ebook

Running the Code

All of the components of the examples discussed in this book can run on the same
cluster with the MapR Data Platform.

ON-PREMISES, MULTI-CLOUD, IoT EDGE

COMMODITY
SERVER

VIRTUAL
MACHINE

IoT & Edge

MAPR DATA PLATFORM

APIs: NFS, POSIX, REST, S3, HDFS, HBASE, JSON, KAFKA

https://github.com/mapr-demos/mapr-spark2-ebook

193

Appendix

•	MapR Sandbox is a single node MapR cluster, available as a VMware or VirtualBox VM
that lets you get started quickly with MapR and Spark.

•	MapR Container for Developers is a Docker container that enables you to create a single
node MapR cluster. The container is lightweight and designed to run on your laptop.

•	MapR Data Science Refinery is an easy-to-deploy and scalable data science toolkit
with native access to all platform assets and superior out-of-the-box security.

•	Find out more at Get Started with MapR.

Additional Resources

•	MapR Developer Portal

•	MapR Spark Documentation

•	Spark SQL, DataFrames, and Datasets Guide

•	Structured Streaming Programming Guide

•	Spark GraphX Guide

•	Spark Machine Learning Library (MLlib) Guide

•	Streaming Architecture ebook

•	Machine Learning Logistics ebook

•	Event-Driven Microservices Patterns

•	Free On-Demand Training: Apache Spark

•	MapR and Spark

•	Spark: The Definitive Guide - O’Reilly Media

•	Spark documentation including deployment and configuration:
https://spark.apache.org/docs/latest/

About the Authors

Carol McDonald

Ian Downard

About the Reviewers

Rachel Silver

Jim Scott

https://mapr.com/products/mapr-sandbox-hadoop/
https://mapr.com/docs/home/MapRContainerDevelopers/MapRContainerDevelopersOverview.html
https://mapr.com/products/data-science-refinery/
https://mapr.com/get-started-with-mapr/
https://mapr.com/developer-portal/
https://mapr.com/docs/home/Spark/Spark.html
https://spark.apache.org/docs/latest/sql-programming-guide.html
https://spark.apache.org/docs/latest/structured-streaming-programming-guide.html
https://spark.apache.org/docs/latest/graphx-programming-guide.html
https://spark.apache.org/docs/latest/ml-guide.html
https://mapr.com/streaming-architecture-using-apache-kafka-mapr-streams/
https://mapr.com/ebook/machine-learning-logistics/
https://mapr.com/blog/event-driven-microservices-patterns/
http://learn.mapr.com/
https://mapr.com/products/apache-spark/
http://shop.oreilly.com/product/0636920034957.do
http://shop.oreilly.com/product/0636920034957.do
http://shop.oreilly.com/product/0636920034957.do
https://mapr.com/blog/author/carol-mcdonald/
https://mapr.com/blog/author/ian-downard/
https://mapr.com/blog/author/rachel-silver/
https://mapr.com/blog/author/jim-scott/

MAPR INSTRUCTOR-LED
& ON-DEMAND TRAINING
LEADS TO GREAT THINGS

ADMINISTRATORS

Start today at mapr.com/training

DATA ANALYSTS

DEVELOPERS

t r a i n i n g

