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Spark 101: What It Is, What It Does, 
and Why It Matters
In this chapter, we introduce Apache Spark and explore some of the areas in which its 
particular set of capabilities show the most promise. We discuss the relationship to 
other key technologies and provide some helpful pointers, so that you can hit the ground 
running and confidently try Spark for yourself.

What Is Apache Spark?

Spark is a general-purpose distributed data processing engine that is suitable for use in 
a wide range of circumstances. On top of the Spark core data processing engine, there 
are libraries for SQL, machine learning, graph computation, and stream processing, 
which can be used together in an application. Programming languages supported by 
Spark include: Java, Python, Scala, and R. Application developers and data scientists 
incorporate Spark into their applications to rapidly query, analyze, and transform data 
at scale. Tasks most frequently associated with Spark include ETL and SQL batch jobs 
across large data sets, processing of streaming data from sensors, IoT, or financial 
systems, and machine learning tasks. 

Apache Spark

Spark
SQL

Spark
Streaming

MLIib
Machine
Learning

GraphX
Graph

Chapter 1
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History

In order to understand Spark, it helps to understand its history. Before Spark, there was 
MapReduce, a resilient distributed processing framework, which enabled Google to index 
the exploding volume of content on the web, across large clusters of commodity servers. 

There were 3 core concepts to the Google strategy:

1.	 Distribute data: when a data file is uploaded into the cluster, it is split into chunks, 
called data blocks, and distributed amongst the data nodes and replicated across 
the cluster.

2.	 Distribute computation: users specify a map function that processes a key/value pair 
to generate a set of intermediate key/value pairs and a reduce function that merges 
all intermediate values associated with the same intermediate key. Programs written 
in this functional style are automatically parallelized and executed on a large cluster 
of commodity machines in the following way:

•	The mapping process runs on each assigned data node, working only on its block of 
data from a distributed file. 

•	The results from the mapping processes are sent to the reducers in a process called 
“shuffle and sort”: key/value pairs from the mappers are sorted by key, partitioned by 
the number of reducers, and then sent across the network and written to key sorted 
“sequence files” on the reducer nodes.

Node 1

Mapping Process

Node 2

Mapping Process

Node 3

Mapping Process

Node 1

Reducing Process

Node 2

Reducing Process

Node 3

Reducing Process
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•	The reducer process executes on its assigned node and works only on its subset of 
the data (its sequence file). The output from the reducer process are written to an 
output file.

3.	 Tolerate faults: both data and computation can tolerate failures by failing over to 
another node for data or processing.

MapReduce word count execution example:

Some iterative algorithms, like PageRank, which Google used to rank websites in their 
search engine results, require chaining multiple MapReduce jobs together, which causes a 
lot of reading and writing to disk. When multiple MapReduce jobs are chained together, for 
each MapReduce job, data is read from a distributed file block into a map process, written 
to and read from a SequenceFile in between, and then written to an output file from a 
reducer process.

Input Map Shuffle Reduce Output

the, 1

time, 1

and, 1

the, 1

the, 1

and, 1

the, (1,1,1)

and, (1,1)

come, (1)

the, 3

and, 2

come, 1

"The time has 
come," the 
Walrus said, 
"To talk of 
many things: 
Of shoes—
and ships— 
and sealing 
wax— Of 
cabbages— 
and kings— 
And why the 
sea is boiling 
hot—And 
whether pigs 
have wings..."

“The Walrus and 
the Carpenter” 
by Lewis Carroll
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A year after Google published a white paper describing the MapReduce framework 
(2004), Doug Cutting and Mike Cafarella created Apache HadoopTM 

Apache SparkTM began life in 2009 as a project within the AMPLab at the University 
of California, Berkeley. Spark became an incubated project of the Apache Software 
Foundation in 2013, and it was promoted early in 2014 to become one of the Foundation’s 
top-level projects. Spark is currently one of the most active projects managed by the 
Foundation, and the community that has grown up around the project includes both 
prolific individual contributors and well-funded corporate backers, such as Databricks, 
IBM, and China’s Huawei. 

The goal of the Spark project was to keep the benefits of MapReduce’s scalable, 
distributed, fault-tolerant processing framework, while making it more efficient and 
easier to use. The advantages of Spark over MapReduce are:

•	Spark executes much faster by caching data in memory across multiple parallel 
operations, whereas MapReduce involves more reading and writing from disk.

•	Spark runs multi-threaded tasks inside of JVM processes, whereas MapReduce runs 
as heavier weight JVM processes. This gives Spark faster startup, better parallelism, 
and better CPU utilization. 

•	Spark provides a richer functional programming model than MapReduce. 

•	Spark is especially useful for parallel processing of distributed data with  
iterative algorithms. 

http://static.googleusercontent.com/media/research.google.com/en/us/archive/mapreduce-osdi04.pdf
https://mapr.com/products/apache-hadoop/
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How a Spark Application Runs on a Cluster

The diagram below shows a Spark application running on a cluster. 

•	A Spark application runs as independent processes, coordinated by the SparkSession 
object in the driver program.

•	The resource or cluster manager assigns tasks to workers, one task per partition. 

•	A task applies its unit of work to the dataset in its partition and outputs a new partition 
dataset. Because iterative algorithms apply operations repeatedly to data, they benefit 
from caching datasets across iterations.

•	Results are sent back to the driver application or can be saved to disk.

Driver Program
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Spark supports the following resource/cluster managers:

Spark Standalone – a simple cluster manager included with Spark

Apache Mesos – a general cluster manager that can also run Hadoop applications

Apache Hadoop YARN – the resource manager in Hadoop 2

Kubernetes – an open source system for automating deployment, scaling, and 
management of containerized applications 

Spark also has a local mode, where the driver and executors run as threads on your 
computer instead of a cluster, which is useful for developing your applications from a 
personal computer. 

What Does Spark Do?

Spark is capable of handling several petabytes of data at a time, distributed across a 
cluster of thousands of cooperating physical or virtual servers. It has an extensive set 
of developer libraries and APIs and supports languages such as Java, Python, R, and 
Scala; its flexibility makes it well-suited for a range of use cases. Spark is often used with 
distributed data data stores such as MapR-XD, Hadoop’s HDFS, and Amazon’s S3, with 
popular NoSQL databases such as MapR-DB, Apache HBase, Apache Cassandra, and 
MongoDB, and with distributed messaging stores such as MapR-ES and Apache Kafka. 

Typical use cases include: 

Stream processing: From log files to sensor data, application developers are increasingly 
having to cope with “streams” of data. This data arrives in a steady stream, often from 
multiple sources simultaneously. While it is certainly feasible to store these data streams 
on disk and analyze them retrospectively, it can sometimes be sensible or important 
to process and act upon the data as it arrives. Streams of data related to financial 
transactions, for example, can be processed in real time to identify – and refuse – 
potentially fraudulent transactions.

Machine learning: As data volumes grow, machine learning approaches become more 
feasible and increasingly accurate. Software can be trained to identify and act upon 
triggers within well-understood data sets before applying the same solutions to new and 
unknown data. Spark’s ability to store data in memory and rapidly run repeated queries 
makes it a good choice for training machine learning algorithms. Running broadly similar 
queries again and again, at scale, significantly reduces the time required to go through a 
set of possible solutions in order to find the most efficient algorithms.
 



11

Chapter 1: Spark 101: What It Is, What It Does, and Why It Matters

Interactive analytics: Rather than running pre-defined queries to create static dashboards 
of sales or production line productivity or stock prices, business analysts and data 
scientists want to explore their data by asking a question, viewing the result, and then 
either altering the initial question slightly or drilling deeper into results. This interactive 
query process requires systems such as Spark that are able to respond and adapt quickly. 

Data integration: Data produced by different systems across a business is rarely 
clean or consistent enough to simply and easily be combined for reporting or analysis. 
Extract, transform, and load (ETL) processes are often used to pull data from different 
systems, clean and standardize it, and then load it into a separate system for analysis. 
Spark (and Hadoop) are increasingly being used to reduce the cost and time required 
for this ETL process. 

Who Uses Spark?

A wide range of technology vendors have been quick to support Spark, recognizing the 
opportunity to extend their existing big data products into areas where Spark delivers real 
value, such as interactive querying and machine learning. Well-known companies such as 
IBM and Huawei have invested significant sums in the technology, and a growing number 
of startups are building businesses that depend in whole or in part upon Spark. For 
example, in 2013 the Berkeley team responsible for creating Spark founded Databricks, 
which provides a hosted end-to-end data platform powered by Spark. The company is 
well-funded, having received $47 million across two rounds of investment in 2013 and 
2014, and Databricks employees continue to play a prominent role in improving and 
extending the open source code of the Apache Spark project. 

The major Hadoop vendors, including MapR, Cloudera, and Hortonworks, have all moved 
to support YARN-based Spark alongside their existing products, and each vendor is 
working to add value for its customers. Elsewhere, IBM, Huawei, and others have all 
made significant investments in Apache Spark, integrating it into their own products 
and contributing enhancements and extensions back to the Apache project. Web-based 
companies, like Chinese search engine Baidu, e-commerce operation Taobao, and social 
networking company Tencent, all run Spark-based operations at scale, with Tencent’s 800 
million active users reportedly generating over 700 TB of data per day for processing on 
a cluster of more than 8,000 compute nodes. 

In addition to those web-based giants, pharmaceutical company Novartis depends upon 
Spark to reduce the time required to get modeling data into the hands of researchers, 
while ensuring that ethical and contractual safeguards are maintained. 
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What Sets Spark Apart?

There are many reasons to choose Spark, but three are key: 

Simplicity: Spark’s capabilities are accessible via a set of rich APIs, all designed 
specifically for interacting quickly and easily with data at scale. These APIs are well-
documented and structured in a way that makes it straightforward for data scientists 
and application developers to quickly put Spark to work.

Speed: Spark is designed for speed, operating both in memory and on disk. Using Spark, 
a team from Databricks tied for first place with a team from the University of California, 
San Diego, in the 2014 Daytona GraySort benchmarking challenge (https://spark.apache.
org/news/spark-wins-daytona-gray-sort-100tb-benchmark.html). The challenge involves 
processing a static data set; the Databricks team was able to process 100 terabytes of data 
stored on solid-state drives in just 23 minutes, and the previous winner took 72 minutes by 
using Hadoop and a different cluster configuration. Spark can perform even better when 
supporting interactive queries of data stored in memory. In those situations, there are 
claims that Spark can be 100 times faster than Hadoop’s MapReduce.

Support: Spark supports a range of programming languages, including Java, Python, R, 
and Scala. Spark includes support for tight integration with a number of leading storage 
solutions in the Hadoop ecosystem and beyond, including: MapR (file system, database, 
and event store), Apache Hadoop (HDFS), Apache HBase, and Apache Cassandra. 
Furthermore, the Apache Spark community is large, active, and international. A growing 
set of commercial providers, including Databricks, IBM, and all of the main Hadoop 
vendors, deliver comprehensive support for Spark-based solutions. 

The Power of Data Pipelines

Much of Spark’s power lies in its ability to combine very different techniques and 
processes together into a single, coherent whole. Outside Spark, the discrete tasks of 
selecting data, transforming that data in various ways, and analyzing the transformed 
results might easily require a series of separate processing frameworks, such as 
Apache Oozie. Spark, on the other hand, offers the ability to combine these together, 
crossing boundaries between batch, streaming, and interactive workflows in ways that 
make the user more productive.

Spark jobs perform multiple operations consecutively, in memory, and only spilling to 
disk when required by memory limitations. Spark simplifies the management of these 
disparate processes, offering an integrated whole – a data pipeline that is easier to 
configure, easier to run, and easier to maintain. In use cases such as ETL, these pipelines 
can become extremely rich and complex, combining large numbers of inputs and a wide 
range of processing steps into a unified whole that consistently delivers the desired result.

https://spark.apache.org/news/spark-wins-daytona-gray-sort-100tb-benchmark.html
https://spark.apache.org/news/spark-wins-daytona-gray-sort-100tb-benchmark.html
https://spark.apache.org/news/spark-wins-daytona-gray-sort-100tb-benchmark.html
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Datasets, DataFrames, and Spark SQL
A Spark Dataset is a distributed collection of typed objects, which are partitioned across 
multiple nodes in a cluster and can be operated on in parallel. Datasets can be created 
from MapR-XD files, MapR-DB tables, or MapR-ES topics, and can be cached, allowing 
reuse across parallel operations. A Dataset can be manipulated using functional 
transformations (map, flatMap, filter, etc.) and/or Spark SQL. A DataFrame is a Dataset 
of Row objects and represents a table of data with rows and columns. A DataFrame 
consists of partitions, each of which is a range of rows in cache on a data node.

Chapter 2

MAPR NODE

Partition
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Cache
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Partition
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DataFrame is like a partitioned table.

AUCTION ID BID BID TIME BIDDER BIDDER RATE OPEN BID PRICE ITEM DAYS TO LIVE

8213034705 95 2.927373 JAKE7870 0 95 117.5 XBOX 3

8213034705 115 2.943484 DAVIDBRESLER2 1 95 117.5 XBOX 3

8213034705 100 2.951285 GLADIMACOWGIRL 58 95 117.5 XBOX 3

8213034705 117.5 2.998947 DAYSRUS 95 95 117.5 XBOX 3

COLUMNROW AUCTION ID BID BID TIME BIDDER BIDDER RATE OPEN BID PRICE ITEM DAYS TO LIVE

8213034705 95 2.927373 JAKE7870 0 95 117.5 XBOX 3

8213034705 115 2.943484 DAVIDBRESLER2 1 95 117.5 XBOX 3

8213034705 100 2.951285 GLADIMACOWGIRL 58 95 117.5 XBOX 3

8213034705 117.5 2.998947 DAYSRUS 95 95 117.5 XBOX 3

AUCTION ID BID BID TIME BIDDER BIDDER RATE OPEN BID PRICE ITEM DAYS TO LIVE

8213034705 95 2.927373 JAKE7870 0 95 117.5 XBOX 3

8213034705 115 2.943484 DAVIDBRESLER2 1 95 117.5 XBOX 3

8213034705 100 2.951285 GLADIMACOWGIRL 58 95 117.5 XBOX 3

8213034705 117.5 2.998947 DAYSRUS 95 95 117.5 XBOX 3

AUCTION ID BID BID TIME BIDDER BIDDER RATE OPEN BID PRICE ITEM DAYS TO LIVE

8213034705 95 2.927373 JAKE7870 0 95 117.5 XBOX 3

8213034705 115 2.943484 DAVIDBRESLER2 1 95 117.5 XBOX 3

8213034705 100 2.951285 GLADIMACOWGIRL 58 95 117.5 XBOX 3

8213034705 117.5 2.998947 DAYSRUS 95 95 117.5 XBOX 3

AUCTION ID BID BID TIME BIDDER BIDDER RATE OPEN BID PRICE ITEM DAYS TO LIVE

8213034705 95 2.927373 JAKE7870 0 95 117.5 XBOX 3

8213034705 115 2.943484 DAVIDBRESLER2 1 95 117.5 XBOX 3

8213034705 100 2.951285 GLADIMACOWGIRL 58 95 117.5 XBOX 3

8213034705 117.5 2.998947 DAYSRUS 95 95 117.5 XBOX 3

Dataset[Row]
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The SparkSession Object

As discussed before, a Spark application runs as independent processes, coordinated by 
the SparkSession object in the driver program. The entry point to programming in Spark 
is the org.apache.spark.sql.SparkSession class, which you use to create a SparkSession 
object as shown below: 

val spark = SparkSession.builder().appName(“example”).master 
(“local[*]”).getOrCreate()

If you are using the spark-shell or a notebook, the SparkSession object is already created 
and available as the variable Spark. 

Interactive Analysis with the Spark Shell

The Spark shell provides an easy way to learn Spark interactively. You can start the shell 
with the following command: 

$ /[installation path]/bin/spark-shell --master local[2]

You can enter the code from the rest of this chapter into the Spark shell; outputs from the 
shell are prefaced with result.

Exploring U.S. Flight Data with Spark Datasets and DataFrames

To go over some core concepts of Spark Datasets, we will be using some flight information 
from the United States Department of Transportation. Later, we will use this same data 
to predict flight delays, so we want to explore the flight attributes that most contribute to 
flight delays. Using Spark Datasets, we will explore the data to answer questions, like: 
which airline carriers, days of the week, originating airport, and hours of the day have the 
highest number of flight delays, when a delay is greater than 40 minutes.

The flight data is in JSON files, with each flight having the following information:

•	 id: ID composed of carrier, date, origin, destination, flight number

•	dofW: day of week (1=Monday, 7=Sunday) 

•	carrier: carrier code 

•	origin: origin airport code 

•	dest: destination airport code

•	crsdephour: scheduled departure hour 

Chapter 2: Datasets, DataFrames, and Spark SQL

https://www.transtats.bts.gov/DL_SelectFields.asp?Table_ID=236&DB_Short_Name=On-Time
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•	crsdeptime: scheduled departure time 

•	depdelay: departure delay in minutes 

•	crsarrtime: scheduled arrival time 

•	arrdelay: arrival delay minutes 

•	crselapsedtime: elapsed time 

•	dist: distance 

It appears in the following format:

{   
“_id”: “AA_2017-01-01_ATL_LGA_1678”,  
“dofW”: 7,   
“carrier”: “AA”,   
“origin”: “ATL”,   
“dest”: “LGA”,   
“crsdephour”: 17,   
“crsdeptime”: 1700,   
“depdelay”: 0.0,   
“crsarrtime”: 1912,   
“arrdelay”: 0.0,   
“crselapsedtime”: 132.0,   
“dist”: 762.0 
}

(The complete data and code for all examples are available in the GitHub link in  
the appendix.)
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Loading Data from a File into a Dataset

With the SparkSession read method, we can read data from a file into a DataFrame, 
specifying the file type, file path, and input options for the schema. The schema 
can optionally be inferred from the contents of the JSON file, but you will get better 
performance and accuracy by specifying the schema.

Loading data from 
a distributed file  
into a Dataset
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import org.apache.spark.sql.types._
import org.apache.spark.sql._
import org.apache.spark.sql.functions._

val schema = StructType(Array(
    StructField(“_id”, StringType, true),
    StructField(“dofW”, IntegerType, true),
    StructField(“carrier”, StringType, true),
    StructField(“origin”, StringType, true),
    StructField(“dest”, StringType, true),
    StructField(“crsdephour”, IntegerType, true),
    StructField(“crsdeptime”, DoubleType, true),
    StructField(“crsarrtime”, DoubleType, true),
    StructField(“crselapsedtime”, DoubleType, true),
    StructField(“label”, DoubleType, true),
    StructField(“pred_dtree”, DoubleType, true)
  ))
var file = “maprfs:///data/flights.json”

val df = spark.read.format(“json”).option(“inferSchema”, “false”).
schema(schema).load(file)

result: 
df: org.apache.spark.sql.DataFrame = [_id: string, dofW: int ... 
10 more fields]

The take method returns an array with objects from this Dataset, which we see is of  
type Row.

df.take(1)

result: 
Array[org.apache.spark.sql.Row] =
Array([ATL_LGA_2017-01-01_17_AA_1678, 7, AA, ATL, LGA, 17, 1700.0, 
0.0, 1912.0, 0.0, 132.0, 762.0])

 



18

Chapter 2: Datasets, DataFrames, and Spark SQL

If we supply a case class with the as method when loading the data, then the data is 
read into a Dataset of typed objects corresponding to the case class. 

case class Flight(_id: String, dofW: Integer, carrier: String, 
origin: String, dest: String, crsdephour: Integer, crsdeptime: 
Double, depdelay: Double,crsarrtime: Double, arrdelay: Double, 
crselapsedtime: Double, dist: Double) extends Serializable

val df = spark.read.format(“json”).option(“inferSchema”, “false”).
schema(schema).load(file).as[Flight]

result: 
df: org.apache.spark.sql.Dataset[Flight] = [_id: string, dofW: int 
... 10 more fields]

Now the take method returns an array of Flight objects. 

df.take(1)

result: 
Array[Flight] = Array(Flight(ATL_LGA_2017-01-01_17_AA_1678, 
7,AA,ATL,LGA,17,1700.0,0.0,1912.0,0.0,132.0,762.0))
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Transformations and Actions

There are two types of operations you can perform on a Dataset:

•	 transformations: create a new Dataset from the current Dataset

•	actions: trigger computation and return a result to the driver program

Transformations are lazily evaluated, which means they are not computed immediately. 
A transformation is executed only when it is triggered by an action. Once an action has 
run and the value is returned, the Dataset is no longer in memory, unless you call the 
cache method on the Dataset. If you will reuse a Dataset for more than one action, you 
should cache it.

Chapter 2: Datasets, DataFrames, and Spark SQL
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Datasets and Type Safety 

Datasets are composed of typed objects, which means that transformation syntax errors 
(like a typo in the method name) and analysis errors (like an incorrect input variable type) 
can be caught at compile time. DataFrames are composed of untyped Row objects, which 
means that only syntax errors can be caught at compile time. Spark SQL is composed of 
a string, which means that syntax errors and analysis errors are only caught at runtime. 
Datasets save a developer’s time by catching errors sooner, even while typing when using 
an IDE. 

Image reference: Databricks

Dataset Transformations

Here is a list of some commonly used typed transformations, which can be used on 
Datasets of typed objects (Dataset[T]).

map Returns new Dataset with result of applying input function 
to each element

filter Returns new Dataset containing elements where input 
function is true

groupByKey Returns a KeyValueGroupedDataset where the data is 
grouped by the given key function

Syntax 
Errors

Analysis 
Errors

SQL

Runtime

Runtime

DataFrames

Compile Time

Runtime

DataSets

Compile Time

Compile Time

(Image reference: Databricks)

Chapter 2: Datasets, DataFrames, and Spark SQL
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This example filter transformation on the flight Dataset returns a Dataset with flights that 
departed at 10 AM. The take action returns an array of flight objects to the driver program.

df.filter(flight => flight.crsdephour == 10).take(3)

result: 
Array[Flight] = Array(Flight(ORD_DEN_2017-01-01_AA_2300, 7,AA,ORD,
DEN,10,1005.0,5.0,1145.0,3.0,160.0,888.0), Flight(MIA_ORD_2017-01-
01_AA_2439,7,AA,MIA,ORD,10, 1005.0,4.0,1231.0,0.0,206.0,1197.0))

DataFrame Transformations

Here is a list of some commonly used untyped transformations, which can be used on 
Dataframes (Dataset[Row]).

select Selects a set of columns
join Join with another DataFrame, using the given join 

expression
groupBy Groups the DataFrame, using the specified columns

This groupBy transformation example groups the flight Dataset by carrier, then the 
count action counts the number of flights for each carrier. The show action prints out 
the resulting DataFrame rows in tabular format.

df.groupBy(“carrier”).count().show()

result: 
+-------+-----+
|carrier|count|
+-------+-----+
|     UA|18873|
|     AA|10031|
|     DL|10055|
|     WN| 2389|
+-------+-----+
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Here is a list of some commonly used Dataset actions.

show(n) Displays the first n rows in a tabular form
take(n) Returns the first n objects in the Dataset in an array
count Returns the number of rows in the Dataset

Here is an example using typed and untyped transformations and actions to get the 
destinations with the highest number of departure delays, where a delay is greater than 
40 minutes. We count the departure delays greater than 40 minutes by destination and 
sort them with the highest first. 

df.filter($”depdelay” > 40).groupBy(“dest”).count()
.orderBy(desc(“count”)).show(3)

result: 
+----+-----+
|dest|count|
+----+-----+
| SFO|  711|
| EWR|  620|
| ORD|  593|
+----+-----+

Exploring the Flight Dataset with Spark SQL 

Now let’s explore the flight Dataset using Spark SQL and DataFrame transformations. After 
we register the DataFrame as a SQL temporary view, we can use SQL functions on the 
SparkSession to run SQL queries, which will return the results as a DataFrame. We cache 
the DataFrame, since we will reuse it and because Spark can cache DataFrames or Tables 
in columnar format in memory, which can improve memory usage and performance.

// cache DataFrame in columnar format in memory
df.cache

// create Table view of DataFrame for Spark SQL
df.createOrReplaceTempView(“flights”)

// cache flights table in columnar format in memory
spark.catalog.cacheTable(“flights”)
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Below we display information for the top five longest departure delays with Spark SQL and 
with DataFrame transformations (where a delay is considered greater than 40 minutes):

// Spark SQL
spark.sql(“select carrier,origin, dest, depdelay,crsdephour, dist, 
dofW from flights where depdelay > 40 order by depdelay desc limit 
5”).show
    
// same query using DataFrame transformations

df.select($”carrier”,$”origin”,$”dest”,$”depdelay”, $”crsdephour”).
filter($”depdelay” > 40).orderBy(desc( “depdelay” )).show(5)

result:
+-------+------+----+--------+-----------+
|carrier|origin|dest|depdelay|crsdephour |
+-------+------+----+--------+----- -----+
|     AA|   SFO| ORD|  1440.0|          8|
|     DL|   BOS| ATL|  1185.0|         17|
|     UA|   DEN| EWR|  1138.0|         12|
|     DL|   ORD| ATL|  1087.0|         19|
|     UA|   MIA| EWR|  1072.0|         20|
+-------+------+----+--------+-----------+
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Below we display the average departure delay by carrier:

// DataFrame transformations

df.groupBy(“carrier”).agg(avg(“depdelay”)).show

result:
+-------+-------------------+
|carrier|      avg(depdelay)|
+-------+-------------------+
|     UA|  17.477878450696764|
|     AA|   10.45768118831622|
|     DL|  15.316061660865241|
|     WN|  13.491000418585182|
+-------+-------------------+

With a notebook like Zeppelin or Jupyter, you can also display the SQL results in  
graph formats.

// Spark SQL
%sql select carrier, avg(depdelay)
 from flights
 group by carrier
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Let’s explore this data for flight delays, when the departure delay is greater than 40 
minutes. Below we see that United Airlines and Delta have the highest count of flight 
delays for January and February 2017 (the training set).

// Count of Departure Delays by Carrier (where delay=40 minutes)

df.filter($”depdelay” > 40)
.groupBy(“carrier”).count.orderBy(desc( “count”)).show(5)

result:
+-------+-----+
|carrier|count|
+-------+-----+
|     UA| 2420|
|     DL| 1043|
|     AA|  757|
|     WN|  244|
+-------+-----+

// Count of Departure Delays by Carrier (where delay=40 minutes)

%sql
select carrier, count(depdelay)
from flights where depdelay > 40
group by carrier
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In the query below, we see that Monday (1), Tuesday (2), and Sunday (7) have the highest 
count of flight delays.

// Count of Departure Delays by Day of the Week

%sql
select dofW, count(depdelay)
from flights where depdelay > 40
group by dofW
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In the query below, we see that the hours between 13:00-19:00 have the highest count of 
flight delays.

%sql
select crsdephour, count(depdelay)
from flights where depdelay > 40
group by crsdephour order by crsdephour
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In the query below, we see that the originating airports, Chicago and Atlanta, have the 
highest count of flight delays. 

%sql
select origin, count(depdelay)
from flights where depdelay > 40
group by origin
ORDER BY count(depdelay) desc
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In the query below, we see the count of departure delays by origin and destination. The 
routes ORD->SFO and DEN->SFO have the highest delays, maybe because of weather in 
January and February. Adding weather to this Dataset would give better results.

%sql
select origin, dest, count(depdelay)
from flights where depdelay > 40
group by origin, dest
ORDER BY count(depdelay) desc

Summary

You have now learned how to load data into Spark Datasets and DataFrames and how 
to explore tabular data with Spark SQL. These code examples can be reused as the 
foundation to solve many types of business problems. In later chapters, we will use the 
same data with DataFrames for machine learning and graph analysis of flight delays. 
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Chapter 3

How Spark Runs Your Applications
Recall from chapter 1 that your Spark Application runs as a set of parallel tasks. In this 
chapter, we will go over how Spark translates Dataset transformations and actions into 
an execution model. In order to understand how your application runs on a cluster, an 
important thing to know about Dataset transformations is that they fall into two types, 
narrow and wide, which we will discuss first, before explaining the execution model.
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Narrow and Wide Transformations 

As a review, transformations create a new Dataset from an existing one. Narrow 
transformations do not have to move data between partitions when creating a new  
Dataset from an existing one. Some example narrow transformations are “filter” and 
“select,” which are used in the example below to retrieve flight information for the  
carrier “AA”: 

// select and filter are narrow transformations
df.select($”carrier”,$”origin”, $”dest”, $”depdelay”, 
$”crsdephour”).filter($”carrier” === “AA” ).show(2)

result:
+-------+------+----+--------+----------+
|carrier|origin|dest|depdelay|crsdephour|
+-------+------+----+--------+----------+
|     AA|  ATL| LGA|      0.0|        17|
|     AA|  LGA| ATL|      0.0|        13|
+-------+------+----+--------+----------+

Multiple narrow transformations can be performed on a Dataset in memory, in a process 
called pipelining, making narrow transformations very efficient.
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Wide transformations cause data to be moved between partitions when creating a new 
Dataset, in a process called the shuffle. With wide transformation shuffles, data is sent 
across the network to other nodes and written to disk, causing network and disk I/O, and 
making the shuffle a costly operation. Some example wide transformations are “groupBy,” 
“agg,” “sortBy,” and “orderBy.” Below is a wide transformation to count the number of 
flights by carrier. 

df.groupBy(“carrier”).count.show
+-------+-----+
|carrier|count|
+-------+-----+
|     UA|18873|
|     AA|10031|
|     DL|10055|
|     WN| 2389|
+-------+-----+

The Spark Execution Model

The Spark execution model can be defined in three phases: creating the logical plan, 
translating that into a physical plan, and then executing the tasks on a cluster. 

You can view useful information about your Spark jobs in real time in a web browser 
with this URL: http://<driver-node>:4040. For Spark applications that have finished, 
you can use the Spark history server to see this information in a web browser at this 
URL: http://<server-url>:18080. Let’s walk through the three phases and the Spark UI 
information about the phases, with some sample code. 
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The Logical Plan

In the first phase, the logical plan is created. This is the plan that shows which steps will 
be executed when an action gets applied. Recall that when you apply a transformation on a 
Dataset, a new Dataset is created. When this happens, that new Dataset points back to the 
parent, resulting in a lineage or directed acyclic graph (DAG) for how Spark will execute 
these transformations. 

The Physical Plan

Actions trigger the translation of the logical DAG into a physical execution plan. The Spark 
Catalyst query optimizer creates the physical execution plan for DataFrames, as shown in 
the diagram below:

Image reference: Databricks

The physical plan identifies resources, such as memory partitions and compute tasks, that 
will execute the plan.
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Viewing the Logical and Physical Plan

You can see the logical and physical plan for a Dataset by calling the explain(true) method. 
In the code below, we see that the DAG for df2 consists of a FileScan, a Filter on depdelay, 
and a Project (selecting columns). 

import org.apache.spark.sql.types._
import org.apache.spark.sql._
import org.apache.spark.sql.functions._

var file = “maprfs:///data/flights20170102.json”

case class Flight(_id: String, dofW: Long, carrier: String, 
origin: String, dest: String, crsdephour: Long, crsdeptime: 
Double, depdelay: Double,crsarrtime: Double, arrdelay: Double, 
crselapsedtime: Double, dist: Double) extends Serializable 

val df = spark.read.format(“json”).option(“inferSchema”, “true”).
load(file).as[Flight]

val df2 = df.filter($”depdelay” > 40)

df2.take(1)

result: 
Array[Flight] = Array(Flight(MIA_IAH_2017-01-01_AA_2315, 
7,AA,MIA,IAH,20,2045.0,80.0,2238.0,63.0,173.0,964.0))

df2.explain(true)
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result:
== Parsed Logical Plan ==
‘Filter (‘depdelay > 40)
+- Relation[_id#8,arrdelay#9,…] json

== Analyzed Logical Plan ==
_id: string, arrdelay: double…
Filter (depdelay#15 > cast(40 as double))
+- Relation[_id#8,arrdelay#9…] json

== Optimized Logical Plan ==
Filter (isnotnull(depdelay#15) && (depdelay#15 > 40.0))
+- Relation[_id#8,arrdelay#9,…] json

== Physical Plan ==
*Project [_id#8, arrdelay#9,…]
+- *Filter (isnotnull(depdelay#15) && (depdelay#15 > 40.0))
   +- *FileScan json [_id#8,arrdelay#9,…] Batched: false, Format: 
JSON, Location: InMemoryFileIndex[maprfs:///..], 

READ

FILE 
SCAN

FILTER

PROJECT, 
FILTER
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You can see more details about the plan produced by Catalyst on the web UI SQL tab 
(http://<driver-node>:4040/SQL/). Clicking on the query description link displays the DAG 
and details for the query.

DETAILS FOR QUERY 0
Submitted Time: 2018/07/31 1:22:12
Duration: 0.9 s
Succeeded Jobs: 1

WholeStageCodegen
0 ms (0 ms, 0 ms, 0 ms)

Filter
number of output rows: 22

Project

CollectLimit

Scan json
number of output rows: 313
number of files: 1
metadata time (ms): 0
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In the code below, after the explain, we see that the physical plan for df3 consists of a 
FileScan, Filter, Project, HashAggregate, Exchange, and HashAggregate. The Exchange 
is the shuffle caused by the groupBy transformation. Spark performs a hash aggregation 
for each partition before shuffling the data in the Exchange. After the exchange, there is 
a hash aggregation of the previous sub-aggregations. Note that we would have an in-
memory scan instead of a file scan in this DAG, if df2 were cached.

val df3 = df2.groupBy(“carrier”).count

df3.collect

result:
Array[Row] = Array([UA,2420], [AA,757], [DL,1043], [WN,244])

df3.explain

result:
== Physical Plan ==
*HashAggregate(keys=[carrier#124], functions=[count(1)])
+- Exchange hashpartitioning(carrier#124, 200)
   +- *HashAggregate(keys=[carrier#124], functions=[partial_
count(1)])
      +- *Project [carrier#124]
         +- *Filter (isnotnull(depdelay#129) && (depdelay#129 > 
40.0))
            +- *FileScan json [carrier#124,depdelay#129]

FILTERREAD

FILE 
SCAN

PROJECT, 
FILTER

HASH 
AGGREGATE
EXCHANGE

GROUPBY
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Clicking on the SQL tab link for this query displays the DAG below.

Submitted Time: 2018/07/31 18:51:49
Duration: 5 s
Succeeded Jobs: 2 3 4 5 6

wholestagecodegen
2.4 s (1.1 s, 1.3 s, 1.3  s)

Filter
number of output rows: 4,464

Scan json
number of output rows: 41,348
number of files: 1
metadata time (ms): 0
scan time total (min, med, max):
0 ms (0 ms, 0 ms, 0 ms)

Project

CollectLimit

HashAggregate
number of output rows: 8
peak memory total (min, med, max): 
512.0 KB (256.0 KB, 256.0 KB, 256.0 KB)
spill size total (min, med, max): 
0.0 B (0.0 B, 0.0 B, 0.0 B)
aggregate time total  (min, med, max): 
1.4 s (567 ms, 786 ms, 786 ms)

Exchange
data size total (min, med, max): 
286.0 (143.0 B, 143.0 B, 143.0 B)

HashAggregate
number of output rows: 4
peak memory total (min, med, max): 
82.0 KB (256.0 KB, 256.0 KB, 8.2 MB)
spill size total (min, med, max): 
0.0 B (0.0 B, 0.0 B,0.0 B)
aggregate time total (min, med, max): 
529 ms (0 ms, 0 ms, 44 ms)

Stage 1

Stage 2

Stage 3
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Executing the Tasks on a Cluster

In the third phase, the tasks are scheduled and executed on the cluster. The scheduler 
splits the graph into stages, based on the transformations. The narrow transformations 
(transformations without data movement) will be grouped (pipe-lined) together into a 
single stage. The physical plan for this example has two stages, with everything before the 
exchange in the first stage.

Each stage is comprised of tasks, based on partitions of the Dataset, which will perform 
the same computation in parallel. 
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Task
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Task

Task

Task
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The scheduler submits the stage task set to the task scheduler, which launches tasks 
via a cluster manager. These phases are executed in order and the action is considered 
complete when the final phase in a job completes. This sequence can occur many times 
when new Datasets are created.

Here is a summary of the components of execution:

•	Task: a unit of execution that runs on a single machine

•	Stage: a group of tasks, based on partitions of the input data, which will perform the 
same computation in parallel

•	Job: has one or more stages

•	Pipelining: collapsing of Datasets into a single stage, when Dataset transformations 
can be computed without data movement

•	DAG: Logical graph of Dataset operations
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Exploring the Task Execution on the Web UI

Here is a screen shot of the web UI Jobs tab, after running the code above. The Jobs page 
gives you detailed execution information for active and recently completed Spark jobs. 
It gives you the performance of a job and also the progress of running jobs, stages, and 
tasks. In this example, Job Id 2 is the job that was triggered by the collect action on df3. 

Completed Jobs(3)
Job Id

2

1

0

Description

collect at <console>:43

take at <console>:41

json at <console>:36

Submitted

2018/07/31 20:37:39

2018/07/31 20:37:35

2018/07/31 20:37:31

Duration

4 s

0.3 s

2 s

Stages: Succeeded/Total

2/2

1/1

1/1

Tasks (for all stages): Succeeded/Total

202/202

1/1

2/2
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Clicking the link in the Description column on the Jobs page takes you to the Job Details 
page. This page gives you details on the progress of the job, stages, and tasks. We see this 
job consists of 2 stages, with 2 tasks in the stage before the shuffle and 200 in the stage 
after the shuffle. 

The number of tasks correspond to the partitions: after reading the file in the first stage, 
there are 2 partitions; after a shuffle, the default number of partitions is 200. You can see 
the number of partitions on a Dataset with the rdd.partitions.size method shown below.

df3.rdd.partitions.size
result: Int = 200

df2.rdd.partitions.size
result: Int = 2

DETAILS FOR JOB 2
Status: SUCCEEDED
Completed Stages: 2

Event Timeline
DAG Visualization

WholeStageCodegen

Exchange

Exchange

WholeStageCodegen

maprPartitionsInternal

Stage 2 Stage 3
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127.0.01:4040/Storage/ 

2.2.1-mapr-1803
Jobs       Stages       Storage       Environment       Executors       SQL              Spark shell application

Storage
RDDs

Under the Stages tab, you can see the details for a stage by clicking on its link in the 
description column. 

Here we have summary metrics and aggregated metrics for tasks, and aggregated metrics 
by executor. You can use these metrics to identify problems with an executor or task 
distribution. If your task process time is not balanced, then resources could be wasted. 

The Storage tab provides information about persisted Datasets. The dataset is persisted 
if you called persist or cache on the dataset, followed by an action to compute on that 
Dataset. This page tells you which fraction of the Dataset’s underlying RDD is cached and 
the quantity of data cached in various storage media. Look at this page to see if important 
Datasets are fitting into memory. You can also click on the link to view more details about 
the persisted Dataset. If you no longer need a cached Dataset, you can call Unpersist to 
uncache it.

127.0.01:4040/stages/ 

2.2.1-mapr-1803
Jobs       Stages       Storage       Environment       Executors       SQL              Spark shell application

Stages for All Jobs
Completed Jobs: 4

Completed Stages(4)
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Try caching df2, performing an action, then seeing how this gets persisted on the storage 
tab and how it changes the plan and execution time for df3 on the job details page. Notice 
how the execution time is faster after caching.

df2.cache
df2.count
df3.collect

Notice how the first stage is skipped in job4, when df2 is cached and df3 collect is 
executed again.

DETAILS FOR JOB 2
Status: SUCCEEDED
Completed Stages: 2

Event Timeline
DAG Visualization

WholeStageCodegen

Exchange

Exchange

WholeStageCodegen

maprPartitionsInternal

Stage 2 Stage 3
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The Environment tab lists all the active properties of your Spark application environment. 
Use this page when you want to see which configuration flags are enabled. Only values 
specified through spark-defaults.conf, SparkSession, or the command line will be 
displayed here. For all other configuration properties, the default value is used. 

127.0.01:4040/Environment/ 

2.2.1-mapr-1803
Jobs       Stages       Storage       Environment       Executors       SQL              Spark shell application

Environment
Runtime Information
Name

Java Home

Java Version

Scala Version

Spark Properties
Name

spark.app.id

spark.app.name

spark.driver.host

spark.driver.port

spark.eventLog.dir

Value

/usr/lib/jvm/java-1.80...

1.80_102 (Oracle Co...

version 2.11.8

Value

local-1533071702543

Spark shell

10.0.2.15

43211

maprfs:///apps/spark
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Under the Executors tab, you can see processing and storage for each executor:

•	Shuffle Read Write Columns: shows size of data transferred between stages

•	Storage Memory Column: shows the current used/available memory 

•	Task Time Column: shows task time/garbage collection time 

Use this page to confirm that your application has the amount of resources you were 
expecting. You can look at the thread call stack by clicking on the thread dump link.

Summary

In this chapter, we discussed the Spark execution model, and we explored task execution 
on the Spark Web UI. This understanding of how Spark runs your applications is important 
when debugging, analyzing, and tuning the performance of your applications. 

127.0.01:4040/Executors/ 

2.2.1-mapr-1803
Jobs       Stages       Storage       Environment       Executors       SQL              Spark shell application

Executors
Show Additional Metrics

Summary

RDD
Blocks

Storage 
Memory

Disk
Used Cores

Active
Tasks

Failed
Tasks

Complete
Tasks

Total
Tasks

Tasks Time 
(GC Time) Input Read Write Blacklisted

Active(1) 0 0.0.B / 384.1 
MB

0.0 B 2 0 0 204 204 9 s (0.2 s) 17.2 MB 0.0 B 607 B 0

Dead(0) 0 0.0.B / 0.0.B 0.0 B 0 0 0 0 0 0 ms (0 ms) 0.0 B 0.0 B 0.0 B 0
Total (1) 0 0.0.B / 384.1 

MB
0.0 B 2 0 0 204 204 9 s (0.2 s) 17.2 MB 0.0 B 607 B 0

Executors

Executor
ID Address Status

RDD
Blocks

Storage 
Memory

Disk
Used Cores

Active
Tasks

Failed
Tasks

Complete
Tasks

Total
Tasks

Tasks Time 
(GC Time) Input Read Write

Thread
Dump

driver 10.0.2.15:36610 Active 0 0.0.B / 
384.1 MB

0.0 B 2 0 0 204 204 9 s (0.2 s) 17.2 
MB

0.0 B 607 B Thread
Dump

Show   20            entries

Showing 1 to 1 of 1 entries
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Demystifying AI, Machine Learning, 
and Deep Learning
Deep learning, machine learning, artificial intelligence – all buzzwords and representative 
of the future of analytics. In this chapter, we will explain machine learning and deep 
learning at a high level with some real world use cases. In the next three chapters, we 
will explore some machine learning examples with Apache Spark. The goal is to give you 
a better understanding of what you can do with machine learning. Machine learning is 
becoming more accessible to developers, and data scientists work with domain experts, 
architects, developers, and data engineers, so it is important for everyone to have a better 
understanding of the possibilities. Every piece of information that your business generates 
has potential to add value. This overview is meant to provoke a review of your own data to 
identify new opportunities.

Retail Marketing Healthcare Telco Finance

Demand 
Forecasting

Supply chain 
optimization

Pricing 
optimization

Market 
segmentation  
and targeting

Recommendations

Recommendation 
engines and targeting

Customer 360

Click-stream 
analysis

Social media 
analysis

Ad optimization

Predicting patient 
disease risk

Diagnostics  
and alerts

Fraud

Customer churn

System log analysis

Anomaly detection

Preventive 
maintenance

Smart meter 
analysis

Risk analytics

Customer 360

Fraud

Credit scoring



48

Chapter 4: Demystifying AI, Machine Learning, and Deep Learning

What is Artificial Intelligence?

Throughout the history of AI, the definition has been continuously redefined. AI is an 
umbrella term for an idea that started in the 50s; machine learning is a subset of AI; and 
deep learning is a subset of ML. 

In the late 80s, when I was a student interning at the NSA, AI was also a very hot topic. At 
the NSA, I took an MIT video (VCR) class on AI, which was about expert systems. Expert 
systems capture an expert’s knowledge in a rules engine.
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Rules engines have wide use in industries such as finance and healthcare, and more 
recently for event processing, but when data is changing, rules can become difficult to 
update and maintain. Machine learning has the advantage that it learns from the data, and 
it can give finer grained data-driven probabilistic predictions. 

According to Ted Dunning, it is better to use precise terminology, like machine learning or 
deep learning, instead of the word AI, because before we get something to work well, we 
call it AI; afterwards, we always call it something else. AI is better used as a word for the 
next frontier.

How Has Analytics Changed in the Last 10 Years?

According to Thomas Davenport’s update to the Competing on Analytics book, analytical 
technology has changed dramatically over the last decade, with more powerful and less 
expensive distributed computing across commodity servers, streaming analytics, and 
improved machine learning technologies, enabling companies to store and analyze both 
far more data and many different types of it.

Traditionally, data was stored on a RAID system, sent to a multi-core server for processing, 
and sent back for storage, which was expensive and caused a bottleneck on data transfer. 
With file and table storage like MapR-XD and MapR-DB, data is distributed across a cluster.

Data distributed 
across cluster

Result Driver sends 
program tasks
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https://mapr.com/blog/better-complex-event-processing-scale-using-microservices-based-streaming-architecture-part-1/
https://www.forbes.com/sites/teradata/2015/12/15/data-science-machine-learning-vs-rules-based-systems/#27ec39242119
https://www.foxbusiness.com/features/7-tips-for-machine-learning-success
https://hbr.org/2017/06/how-analytics-has-changed-in-the-last-10-years-and-how-its-stayed-the-same
https://hbr.org/2017/06/how-analytics-has-changed-in-the-last-10-years-and-how-its-stayed-the-same
https://mapr.com/products/mapr-xd/
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Technologies like Apache Spark speed up parallel processing of distributed data with 
iterative algorithms by caching data in memory across iterations and using lighter 
weight threads.

MAPR NODE

Partition Task

Partition Task

Executor

Cache
Data

Data

Disk

MAPR NODE

Partition Task

Partition Task

Executor

Cache
Data

Data

Disk

https://mapr.com/products/apache-spark/
https://mapr.com/blog/parallel-and-iterative-processing-machine-learning-recommendations-spark/
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Streaming

Collect Data Stream Processing

Batch Processing

Data Sources

Weather and 
Event Data

Web 
Clickstream

Application 
Web Logs

Topic

Stream

Topic

Stream

Derive
Features

Streaming  Models

Model

Serve Data

Personalized
Offers

Feature 
Extraction

Update
Models

Machine
Learning

Product
Recommendations

Predictive
Logistics

Predictive
Analytics

Process
MAPR-DB

MAPR-DB

MAPR-XD

MapR Event Streams, a distributed messaging system for streaming event data at scale, 
combined with stream processing like Apache Spark Streaming, speed up parallel 
processing of real-time events with machine learning models.

Event Streams and Machine Learning Logistics

Combining event streams with machine learning can handle the logistics of machine 
learning in a flexible way by:

•	Making input and output data available to independent consumers

•	Managing and evaluating multiple models and easily deploying new models

Input

Stream

Archive

Stream

Scores

Stream

PRODUCER DATA PREDICTIONS RESULTS

Decoy

Consumer
with ML
Model 2

Consumer
with ML
Model 3

Consumer

Consumer

Consumer
with ML
Model 1

MAPR-DB

https://mapr.com/products/mapr-streams/
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Architectures for these types of applications are discussed in more detail in the ebooks 
Machine Learning Logistics, Streaming Architecture, and Microservices and Containers.

Graphical Processing Units (GPUs) have sped up multi-core servers for parallel 
processing. A GPU has a massively parallel architecture consisting of thousands of 
smaller, more efficient cores designed for handling multiple tasks simultaneously, 
whereas a CPU consists of a few cores optimized for sequential serial processing. In 
terms of potential performance, the evolution from the Cray-1 to today’s clusters with  
lots of GPUs is roughly a million times what was once the fastest computer on the planet 
at a tiny fraction of the cost.

Image reference: http://www.nvidia.com/object/what-is-gpu-computing.html

Improved technologies for parallel processing of distributed data, streaming analytics, and 
machine learning have enabled faster machine learning predictions and recommendations, 
even approaching real time in many cases.

CPU Multiple 
Cores

CPU Thousands 
of Cores

Image reference: https://www.maketecheasier.com/difference-between-cpu-and-gpu/
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https://mapr.com/ebooks/
https://www.kdnuggets.com/2017/06/deep-learning-demystifying-tensors.html
https://www.kdnuggets.com/2017/06/deep-learning-demystifying-tensors.html
https://www.kdnuggets.com/2017/06/deep-learning-demystifying-tensors.html
https://www.kdnuggets.com/2017/06/deep-learning-demystifying-tensors.html
http://www.nvidia.com/object/what-is-gpu-computing.html
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What is Machine Learning? 

Machine learning uses algorithms to find patterns in data, and then uses a model that 
recognizes those patterns to make predictions on new data.

In general, machine learning may be broken down into two types: supervised, unsupervised, 
and in between those two. Supervised learning algorithms use labeled data; unsupervised 
learning algorithms find patterns in unlabeled data. Semi-supervised learning uses 
a mixture of labeled and unlabeled data. Reinforcement learning trains algorithms to 
maximize rewards based on feedback. 
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Three Common Categories of Techniques for Machine Learning

Three common categories of machine learning techniques are Classification, Clustering, 
and Collaborative Filtering.

Classification

Clustering

Collaborative Filtering
(Recommendation)

in: spam

Email Mr. Norman Accept My Donation 
Lending Simple Loans 
election time Please Help My Campaign 
Hi friend Limited time offer 
confirm Confirmation Needed Now 

search: Pharmacy

Business
Technology
Entertainment
Heath
Sports
Science

Lorem ipsum dolor sit amet, consectetuer qui 
adipiscing elit, sed diam nonummy nibh euismod 
tincidunt ut laoreet dolore magna dignissim blandit  

Veniam, quis nostrud exerci tation ullamcorper 
suscipit lobortis nisl ut aliquip ex ea commodo 
consequat. Duis autem vel eum iriure dolor in 

Vulputate velit esse molestie consequat, vel illum dolore eu 
feugiat nulla facilisis at vero eros et accumsan et iusto odio 

Customers who bought this book also bought 

Book 1 Book 2 Book 3 Book 4
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Classification: Gmail uses a machine learning technique called classification to 
designate if an email is spam or not, based on the data of an email: the sender, 
recipients, subject, and message body. Classification takes a set of data with known 
labels and learns how to label new records based on that information.

Clustering: Google News uses a technique called clustering to group news articles 
into different categories, based on title and content. Clustering algorithms discover 
groupings that occur in collections of data.

Collaborative Filtering: Amazon uses a machine learning technique called collaborative 
filtering (commonly referred to as recommendation) to determine which products users 
will like, based on their history and similarity to other users.

Supervised Learning: Classification and Regression

Supervised algorithms use labeled data in which both the input and target outcome, or 
label, are provided to the algorithm.

Data

New Data

Build Model

Use Model Predictive

Features

Features

X1, X2

X1, X2

Y
ƒ(X1, X2) = Y
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Supervised Learning is also called predictive modeling or predictive analytics, because 
you build a model that is capable of making predictions. 

Some examples of predictive modeling are classification and regression. Classification 
identifies which category an item belongs to (e.g., whether a transaction is fraud or not 
fraud), based on labeled examples of known items (e.g., transactions known to be fraud 
or not). Logistic regression predicts a probability (e.g., the probability of fraud). Linear 
regression predicts a numeric value (e.g., the amount of fraud). 

CREDIT CARD FRAUD 
LOGISTIC REGRESSION 
CLASSIFICATION EXAMPLE

1

.5

0

Label 
Probability of fraud

X

Fraud

Not 
fraud

Features 
Transaction amount, 
merchant type, time 
location, and time 
difference since last 
transaction.

CAR INSURANCE FRAUD 
REGRESSION EXAMPLE

Y

Label 
Amount 
of fraud

X

Data Point
Fraud amount, 
claimed amount

Feature 
Claimed amount

AmntFraud = intercept + 
coefficient x claimedAmnt
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Classification and Regression Example

Classification and Regression take a set of data with known labels and pre-determined 
features and learns how to label new records based on that information. Features are 
the “if questions” that you ask. The label is the answer to those questions. 

If it walks/swims/quacks like a duck ... then it must be a duck.

Features FeaturesFeatures

Walks

Swims

Quacks

Walks

Swims

Quacks
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Regression Example

Let’s go through an example of car insurance fraud:

What are we trying to predict?

•	This is the Label: Amount of fraud

What are the “if questions” or properties that you can use to predict?

•	These are the Features: to build a classifier model, you extract the features of interest 
that most contribute to the classification.

•	 In this simple example, we will use the claimed amount.

Linear regression models the relationship between the Y “Label” and the X “Feature,” 
in this case the relationship between the amount of fraud and the claimed amount. The 
coefficient measures the impact of the feature, the claimed amount, on the label, the 
fraud amount.

Y

Label 
Amount 
of fraud

Data Point
Fraud amount, 
claimed amount

AmntFraud = intercept + coefficient x claimedAmnt

X Feature 
Claimed amount
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Multiple linear regression models the relationship between two or more “Features” and 
a response “Label.” For example, if we wanted to model the relationship between the 
amount of fraud and the age of the claimant, the claimed amount, and the severity of the 
accident, the multiple linear regression function would look like this:

Yi = β0 + β1X1 + β2X2 + · · · + βp Xp + Ɛ

Amount Fraud = intercept + (coefficient1 * age) + (coefficient2 * claimed Amount) + 
(coefficient3 * severity) + error.

The coefficients measure the impact on the fraud amount of each of the features.

Some examples of linear regression include:

•	Given historical car insurance fraudulent claims and features of the claims, such as 
age of the claimant, claimed amount, and severity of the accident, predict the amount 
of fraud. 

•	Given historical real estate sales prices and features of houses (square feet, number 
of bedrooms, location, etc.), predict a house’s price. 

•	Given historical neighborhood crime statistics, predict crime rate.

Classification Example

Let’s go through an example of Debit Card Fraud:

What are we trying to predict?

•	This is the Label: Probability of fraud

What are the “if questions” or properties that you can use to make predictions?

•	 Is the amount spent today > historical average? 

•	Are there transactions in multiple countries today? 

•	Are the number of transactions today > historical average? 

•	Are the number of new merchant types today high compared to the last 3 months? 

•	Are there multiple purchases today from merchants with a category code of risk?

•	 Is there unusual signing activity today, compared to historically using pin?

•	Are there new state purchases compared to the last 3 months? 

•	Are there foreign purchases today compared to the last 3 months?
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To build a classifier model, you extract the features of interest that most contribute to 
the classification.

Logistic regression measures the relationship between the Y “Label” and the X “Features” 
by estimating probabilities using a logistic function. The model predicts a probability, which 
is used to predict the label class.

Some examples of Classification include:

•	Given historical car insurance fraudulent claims and features of the claims, such 
as age of the claimant, claimed amount, and severity of the accident, predict the 
probability of fraud. 

•	Given patient characteristics, predict the probability of congestive heart failure. 

•	Credit card fraud detection (fraud, not fraud)

•	Credit card application (good credit, bad credit)

•	Email spam detection (spam, not spam)

•	Text sentiment analysis (happy, not happy)

•	Predicting patient risk (high risk patient, low risk patient)

•	Classifying a tumor (malignant, not malignant)

1

.5

0

Label 
Probability of fraud

X

Fraud

Not 
fraud

Features 
Transaction amount, merchant type, time location, 
and time difference since last transaction.

https://en.wikipedia.org/wiki/Logistic_function
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Spark Supervised Algorithms Summary

Unsupervised Learning

Unsupervised learning, also sometimes called descriptive analytics, does not have 
labeled data provided in advance. These algorithms discover similarities, or regularities, 
in the input data. An example of unsupervised learning is grouping similar customers, 
based on purchase data.

Classification

•	Logistic regression

•	Decision tree classifier

•	Random forest classifier

•	Gradient-boosted tree classifier

•	Multilayer perception classifier

•	Linear Support Vector Machine

•	Naive Bayes

Regression

•	Linear regression

•	Generalized linear regression

•	Decision tree regression

•	Random forest regression

•	Gradient-boosted tree regression

•	Survival regression

•	 Isotonic regression

Similar Customer 
Group

Customer 
Groups

CONTAINS
PATTERNS

Customer 
Purchase Data

New Customer 
Purchase Data

FINDS
PATTERNS

Train 
Algorithm

RECOGNIZES
PATTERNS
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Clustering

In clustering, an algorithm classifies inputs into categories by analyzing similarities 
between input examples. Some clustering use cases include:

•	Search results grouping

•	Grouping similar customers

•	Grouping similar patients

•	Text categorization 

•	Network Security Anomaly detection (anomalies find what is not similar, which means 
the outliers from clusters)
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0
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-1,000

-15,000

-5,000                 0                5,000            10,000           15,000           20,000



63

Chapter 4: Demystifying AI, Machine Learning, and Deep Learning

The k-means algorithm groups observations into k clusters in which each observation 
belongs to the cluster with the nearest mean from its cluster center.
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An example of clustering is a company that wants to segment its customers in order to 
better tailor products and offerings. Customers could be grouped on features such as 
demographics and purchase histories. Clustering with unsupervised learning is often 
combined with supervised learning in order to get more valuable results. For example, in 
this banking customer 360 use case, customers were first clustered based on answers to 
a survey. The customer groups were analyzed and then labeled with customer personas. 
Next, the persona labels were linked by customer ID with customer features, such as types 
of accounts and purchases. Finally, supervised machine learning was applied and tested 
with the labeled customers, allowing it to link the survey customer personas with their 
banking actions and provide insights.

A   B   C   D  < “Attitude” Personas A   B   C   D
Cash Reserve
Flex Equity
Auto
Flex Fixed

“
”

“

”

“

Credit Card/Bank A
Credit Card/Bank B
Credit Card/Bank C

Cable Company
Phone Company
“
”
“

Fitness Club A

Products Payees

https://mapr.com/blog/how-use-data-science-and-machine-learning-revolutionize-360-customer-views-part-2/
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Frequent Pattern Mining, Association, Co-Occurrence, Market Basket 
Recommendations

Frequent pattern or association rule mining finds frequent co-occurring associations 
among a collection of items, such as products often purchased together. A famous story 
about association rule mining is the “beer and diaper” story. An analysis of behavior of 
grocery shoppers discovered that men who buy diapers often also buy beer.

Walmart mined their massive retail transaction database to see what their customers 
really wanted to buy prior to the arrival of a hurricane. They found one particular item 
which had an increase in sales by a factor of 7 over normal shopping days, a huge lift 
factor for a real-world case. The item was not bottled water, batteries, beer, flashlights, 
generators, or any of the usual things that you might imagine: it was strawberry pop tarts! 

2018

2018

2018

2018

2018

2018

https://www.nytimes.com/2004/11/14/business/yourmoney/what-walmart-knows-about-customers-habits.html
https://mapr.com/blog/association-rule-mining-not-your-typical-data-science-algorithm/
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Another example is from Target, which analyzed that when a woman starts buying scent-
free lotion, vitamin supplements, and a combination of some other items, it signals she 
could be pregnant. Unfortunately, Target sent a coupon for baby items to a teenager 
whose father questioned why she was receiving such coupons.

Co-occurrence analysis is useful for:

•	Store layouts

•	Determining which products to put on specials, promotions, coupons, etc.

•	 Identifying healthcare patients, like mine cohorts 

20% OFF
your next purchase of all baby products

This is the fine print. Only baby products 20% off. We appreciate your business. Come 
back soon. One coupon per item per person.  This offer is good until January 31, 2018.
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Collaborative Filtering

Collaborative filtering algorithms recommend items (this is the filtering part) based on 
preference information from many users (this is the collaborative part). The collaborative 
filtering approach is based on similarity; people who liked similar items in the past will 
like similar items in the future. The goal of a collaborative filtering algorithm is to take 
preferences data from users and create a model that can be used for recommendations or 
predictions. Ted likes movies A, B, and C. Carol likes movies B and C. We take this data and 
run it through an algorithm to build a model. Then, when we have new data, such as Bob 
likes movie B, we use the model to predict that C is a possible recommendation for Bob.

Spark Unsupervised Algorithms Summary

Clustering 

•	k-means

•	Latent Dirichlet allocation (LDA)

•	Gaussian mixture model (GMM)

Collaborative Filtering

•	Alternating least squares (ALS)

Frequent Pattern Mining

•	FP-Growth Algorithm

Ted and Carol like movies B and C.
Training 

Data Algorithm Model

Bob likes movie B; what else might he like?
New
Data Model Predictions

Bob likes movie B, so predict movie C.

4 5 5

5 5

5 ?

Ted

Carol

Bob

User item rating matrix

A  B  C
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Deep Learning

Deep learning is the name for multilayered neural networks, which are networks 
composed of several “hidden layers” of nodes between the input and output. There are 
many variations of neural networks, which you can learn more about on this neural 
network cheat sheet. Improved algorithms, GPUs, and massively parallel processing 
(MPP) have given rise to networks with thousands of layers. Each node takes input data 
and a weight and outputs a confidence score to the nodes in the next layer, until the 
output layer is reached, where the error of the score is calculated. 

Inputs Threshold Binary Output

No * Weight Yes 

http://www.asimovinstitute.org/neural-network-zoo/
http://www.asimovinstitute.org/neural-network-zoo/
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With backpropagation inside of a process called gradient descent, the errors are sent 
back through the network again and the weights are adjusted, improving the model. This 
process is repeated thousands of times, adjusting a model’s weights in response to the 
error it produces, until the error can’t be reduced any more.

During this process the layers learn the optimal features for the model, which has 
the advantage that features do not need to be predetermined. However, this has the 
disadvantage that the model’s decisions are not explainable. Because explaining the 
decisions can be important, researchers are developing new ways to understand the 
black box of deep learning.

Train Errors

ü

ü

ü

ü

Ñ

Features
(eyes, feet)

Deploy

ü

Features
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https://en.wikipedia.org/wiki/Backpropagation
https://en.wikipedia.org/wiki/Gradient_descent
http://www.sciencemag.org/news/2017/07/how-ai-detectives-are-cracking-open-black-box-deep-learning
http://www.sciencemag.org/news/2017/07/how-ai-detectives-are-cracking-open-black-box-deep-learning
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There are different variations of deep learning algorithms, which can be used with 
the Distributed Deep Learning Quick Start Solution from MapR to build data-driven 
applications, such as the following:

Deep Neural Networks for improved traditional algorithms
•	Finance: enhanced fraud detection through identification of more complex patterns

•	Manufacturing: enhanced identification of defects, based on deeper anomaly detection

Convolutional Neural Networks for images
•	Retail: in-store activity analysis of video to measure traffic

•	Satellite images: labeling terrain, classifying objects

•	Automotive: recognition of roadways and obstacles

•	Healthcare: diagnostic opportunities from x-rays, scans, etc.

•	 Insurance: estimating claim severity, based on photographs

Recurrent Neural Networks for sequenced data
•	Customer satisfaction: transcription of voice data to text for NLP analysis

•	Social media: real-time translation of social and product forum posts

•	Photo captioning: search archives of images for new insights

•	Finance: Predicting behavior based on time series analysis (also enhanced 
recommendation systems)

Deep Learning with Spark 

Deep learning libraries or frameworks that can be leveraged with Spark include:

Summary

A confluence of several different technology shifts have dramatically changed machine 
learning applications. The combination of distributed computing, streaming analytics, 
and machine learning is accelerating the development of next-generation intelligent 
applications, which are taking advantage of modern computational paradigms, powered 
by modern computational infrastructure. The MapR Data Platform integrates global 
event streaming, real-time database capabilities, and scalable enterprise storage with 
a collection of data processing and analytical engines to power this new generation of 
data processing pipelines and intelligent applications.

BigDL
Spark Deep Learning 
Pipelines

TensorFlowOnSpark
dist-keras
H2O Sparkling Water

PyTorch
Caffe
MXNet

https://mapr.com/solutions/quickstart/deep-learning-quick-start/
https://mapr.com/blog/what-is-next-gen-app/
https://mapr.com/blog/what-is-next-gen-app/
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Predicting Flight Delays Using 
Apache Spark Machine Learning
Because flight delays create problems in scheduling, passenger inconvenience, and 
economic losses, there is growing interest in predicting flight delays beforehand in order 
to optimize operations and improve customer satisfaction. Google Flights uses historic 
flight status data with machine learning algorithms to find common patterns in late 
departures in order to predict flight delays and share the reasons for those delays. In 
this chapter, we will go over using Apache Spark’s ML pipelines with a Random Forest 
Classifier to predict flight delays. 

Classification

Classification is a family of supervised machine learning algorithms that identify which 
category an item belongs to, based on labeled examples of known items. Classification 
takes a set of data with known labels and pre-determined features and learns how to label 
new records, based on that information. Features are the “if questions” or properties that 
you can use to make predictions. To build a classifier model, you explore and extract the 
features that most contribute to the classification. 

https://www.google.com/flights/#flt=/m/0d6lp..2018-10-13*./m/0d6lp.2018-10-17;c:USD;e:1;ls:1w;sd:0;t:h
https://spark.apache.org/docs/latest/ml-pipeline.html
http://spark.apache.org/docs/latest/ml-classification-regression.html
http://spark.apache.org/docs/latest/ml-classification-regression.html
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Let’s go through an example for flight delays:

What are we trying to predict?

•	Whether a flight will be delayed or not.

•	Delayed is the Label: True or False

What are the “if questions” or properties that you can use to make predictions?

•	What is the originating airport?

•	What is the destination airport?

•	What is the scheduled time of departure?

•	What is the scheduled time of arrival?

•	What is the day of the week?

•	What is the airline carrier?

Data

New Data

Build Model

Use Model Predictive

Features

Features

X1, X2

X1, X2

Y
ƒ(X1, X2) = Y

Y
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Decision Trees

Decision trees create a model that predicts the label (or class) by evaluating a set of rules 
that follow an if-then-else pattern. The if-then-else feature questions are the nodes, and 
the answers “true” or “false” are the branches in the tree to the child nodes. A decision 
tree model estimates the minimum number of true/false questions needed to assess the 
probability of making a correct decision. Below is an example of a simplified decision tree 
for flight delays:

Q1: If the scheduled departure time is < 10:15 AM
TQ2: If the originating airport is in the set {ORD, ATL, SFO} 

T:Q3: If the day of the week is in the set {Monday, Sunday}
•	T: Delayed=1
•	F: Delayed=0

F: Q3: If the destination airport is in the set {SFO, ORD, EWR} 
•	T: Delayed=1
•	F: Delayed=0

F: Q2: If the originating airport is not in the set {BOS, MIA} 
T:Q3: If the day of the week is in the set {Monday, Sunday}

•	T: Delayed=1
•	F: Delayed=0

F: Q3: If the destination airport is not in the set {BOS, MIA} 
•	T: Delayed=1
•	F: Delayed=0 

Chapter 5: Predicting Flight Delays using Apache Spark Machine Learning

If crsdepTime < 10:15

If origin in {ORD, ATL, SFO}

If dofW in {Mon, Sun}

Delayed = 1

Delayed = 0

If origin not in {BOS, MIA}

If dofW in {Mon, Sun}

Delayed = 1

Delayed = 0

T F

T

F

F F

If dest in {SFO, ORD, EWR}

Delayed = 1

Delayed = 0

If dest not in {BOS, MIA}

Delayed = 1

Delayed = 0
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Random Forests

Ensemble learning algorithms combine multiple machine learning algorithms to obtain 
a better model. Random Forest is a popular ensemble learning method for classification 
and regression. The algorithm builds a model consisting of multiple decision trees, based 
on different subsets of data at the training stage. Predictions are made by combining 
the output from all of the trees, which reduces the variance and improves the predictive 
accuracy. For Random Forest classification, each tree’s prediction is counted as a vote for 
one class. The label is predicted to be the class which receives the most votes.

All Data

Subset Subset Subset

Tree Tree Tree
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http://spark.apache.org/docs/latest/mllib-ensembles.html
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Typical Machine Learning Workflow

Using machine learning in order to better understand your data and make predictions is 
an iterative process, which involves:

1.	 Data discovery and model creation:

•	Analysis of historical data

•	 Identifying new data sources, which traditional analytics or databases are not 
using, due to the format, size, or structure

•	Collecting, correlating, and analyzing data across multiple data sources

•	Knowing and applying the right kind of machine learning algorithms to get value 
out of the data

•	Training, testing, and evaluating the results of machine learning algorithms to build 
a model. 

2.	 Using the model in production to make predictions

3.	 Data discovery and updating the model with new data

Topic

StreamProduction

Data 
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Model 
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Predictions
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Test Model 
Predictions

Deployed
Model Insights
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Results

Chapter 5: Predicting Flight Delays using Apache Spark Machine Learning



76

Data Exploration and Feature Extraction

We will be using the Flight Data set that we explored in chapter 2. To build a classifier 
model, you extract the features that most contribute to the classification. In this scenario, 
we will build a tree to predict the label of delayed or not, based on the following features: 

Label → delayed = 0 

•	Delayed = 1 if delay > 40 minutes

Features → {day of the week, scheduled departure time, scheduled arrival time, 
carrier, scheduled elapsed time, origin, destination, distance}

In order for the features to be used by a machine learning algorithm, they must be 
transformed and put into feature vectors, which are vectors of numbers representing 
the value for each feature.

Reference: Learning Spark

delayed dofW crsdepTime crsArrTime carrier elapTime orign dest dist

1.0/0.0 1 1015 1230 AA 385.0 JFK LAX 2475.0

Training Data Feature Vectors Model Best Model

(Reference Learning Spark)

Day of 
the Week

Scheduled 
Departure

Originating 
Airport

Carrier

Featurization Training Model Evaluation
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Using The Spark ML Package

Spark ML provides a uniform set of high-level APIs, built on top of DataFrames with 
the goal of making machine learning scalable and easy. Having ML APIs built on top of 
DataFrames provides the scalability of partitioned data processing with the ease of SQL 
for data manipulation.
We will use an ML Pipeline to pass the data through transformers in order to extract the 

features and an estimator to produce the model. 

Transformer: A transformer is an algorithm that transforms one DataFrame into another 
DataFrame. We will use transformers to get a DataFrame with a features vector column.

Estimator: An estimator is an algorithm that can be fit on a DataFrame to produce a 
transformer. We will use a an estimator to train a model, which can transform input data 
to get predictions. 

Pipeline: A pipeline chains multiple transformers and estimators together to specify an 
ML workflow.

DataFrame

Transformer

Estimator

Evaluator

Training Testing

Load Data

Extract Features

Train Model

Evaluate

Load Data

Extract Features

Predict Using Model

Evaluate
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Load the Data from a File into a DataFrame

The first step is to load our data into a DataFrame, like we did in chapter 2. We use a Scala 
case class and StructType to define the schema, corresponding to a line in the JSON data 
file. Below, we specify the data source, schema, and class to load into a Dataset. We load 
the data from January and February, which we will use for training and testing the model. 
(Note that specifying the schema when loading data into a DataFrame will give better 
performance than schema inference.)

+--------------------+----+-------+------+----+----------+----------+--------+----------+--------+--------------+------+
|                 _id|dofW|carrier|origin|dest|crsdephour|crsdeptime|depdelay|crsarrtime|arrdelay|crselapsedtime|  dist|
+--------------------+----+-------+------+----+----------+----------+--------+---=------+--------+--------------+------+
|AA_2017-01-01_ATL...|   7|     AA|   ATL| LGA|        17|    1700.0|     0.0|    1912.0|     0.0|         132.0| 762.0|
|AA_2017-01-01_LGA...|   7|     AA|   LGA| ATL|        13|    1343.0|     0.0|    1620.0|     0.0|         157.0| 762.0|
|AA_2017-01-01_MIA...|   7|     AA|   MIA| ATL|         9|     939.0|     0.0|    1137.0|    10.0|         118.0| 594.0|

DataFrameLoad Data
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import org.apache.spark.sql.functions._
import org.apache.spark.sql.types._
import org.apache.spark.sql._
import org.apache.spark.ml._
import org.apache.spark.ml.feature._
import org.apache.spark.ml.classification._
import org.apache.spark.ml.evaluation._
import org.apache.spark.ml.tuning._
val schema = StructType(Array(
    StructField(“_id”, StringType, true),
    StructField(“dofW”, IntegerType, true),
    StructField(“carrier”, StringType, true),
    StructField(“origin”, StringType, true),
    StructField(“dest”, StringType, true),
    StructField(“crsdephour”, IntegerType, true),
    StructField(“crsdeptime”, DoubleType, true),
    StructField(“depdelay”, DoubleType, true),
    StructField(“crsarrtime”, DoubleType, true),
    StructField(“arrdelay”, DoubleType, true),
    StructField(“crselapsedtime”, DoubleType, true),
    StructField(“dist”, DoubleType, true)
  ))

case class Flight(_id: String, dofW: Integer, carrier: String, 
origin: String, dest: String, crsdephour: Integer, crsdeptime: 
Double, depdelay: Double,crsarrtime: Double, arrdelay: Double, 
crselapsedtime: Double, dist: Double) extends Serializable

var file =”/path/flights20170102.json”

val df = spark.read.format(“json”).option(“inferSchema”, “false”).
schema(schema).load(file).as[Flight]

df.createOrReplaceTempView(“flights”)
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The DataFrame show method displays the first 20 rows or the specified number of rows:

In the code below, using the DataFrame with column transformation, we add a column 
“orig_dest” for the origination->destination, in order to use this as a feature. Then we 
query to get the count of departure delays by origin_destination. The routes ORD->SFO and 
DEN->SFO have the highest delays, possibly because of weather in January and February. 
Adding weather to this Dataset would give better results. 

import org.apache.spark.sql.functions.{concat, lit}

val df1 = df.withColumn(“orig_dest”, concat($”origin”,lit(“_”), 
$”dest”)) 

df1.select($”orig_dest”, $”depdelay”)
.filter($”depdelay” > 40)
.groupBy(“orig_dest”)
.count
.orderBy(desc(“count” )).show(5)

result:
+---------+-----+
|orig_dest|count|
+---------+-----+
|  DEN_SFO|  172|
|  ORD_SFO|  168|
|  ATL_LGA|  155|
|  ATL_EWR|  141|
|  SFO_DEN|  134|
+---------+-----+

scala> df.show(3)

+--------------------+----+-------+------+----+----------+----------+--------+----------+--------+--------------+-----+
|                 _id|dofW|carrier|origin|dest|crsdephour|crsdeptime|depdelay|crsarrtime|arrdelay|crselapsedtime| dist|
+--------------------+----+-------+------+----+----------+----------+--------+----------+--------+--------------+-----+
|ATL_BOS_2017-01-01..|   7|     DL|   ATL| BOS|         9|     859.0|    30.0|    1127.0|    11.0|         148.0|946.0|
|ATL_BOS_2017-01-01..|   7|     DL|   ATL| BOS|        11|    1141.0|     0.0|    1409.0|     0.0|         148.0|946.0|
|ATL_BOS_2017-01-01..|   7|     WN|   ATL| BOS|        13|    1335.0|     0.0|    1600.0|     0.0|         145.0|946.0|
+--------------------+----+-------+------+----+----------+----------+--------+----------+--------+--------------+-----+
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Summary Statistics

Spark DataFrames include some built-in functions for statistical processing. The 
describe() function performs summary statistics calculations on all numeric columns 
and returns them as a DataFrame.

df.describe(“dist”,”depdelay”, “arrdelay”, “crselapsedtime”).show

result:
+-------+------------------+------------------+------------------+
|summary|          depdelay|          arrdelay|    crselapsedtime|
+-------+------------------+------------------+------------------+
|  count|             41348|             41348|             41348|
|   mean|15.018719164167553|14.806907226468027|186.26264873754474|
| stddev|44.529632044361385|44.223705132666396| 68.38149648990024|
|    min|               0.0|               0.0|              64.0|
|    max|            1440.0|            1442.0|             423.0|
+-------+------------------+------------------+------------------+

In the code below, a Spark Bucketizer is used to split the Dataset into delayed and not 
delayed flights with a delayed 0/1 column. Then the resulting total counts are displayed. 
Grouping the data by the delayed field and counting the number of instances in each group 
shows that there are roughly 8 times as many not delayed samples as delayed samples.

val delaybucketizer = new Bucketizer().setInputCol(“depdelay”)
    .setOutputCol(“delayed”).setSplits(Array( 0.0, 15.0 , Double.
PositiveInfinity))

val df2 = delaybucketizer.transform(df1)

df2.createOrReplaceTempView(“flights”)

df2.groupBy(“delayed”).count.show

result:
+-------+-----+
|delayed|count|
+-------+-----+
|    0.0|36790|
|    1.0| 4558|
+-------+-----+
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In the query below we see the count of not delayed (0=dark blue) and delayed  
(1= tourquoise) flights by departure hour.

%sql select crsdephour, delayed, count(delayed) from flights group by 
crsdephour, delayed order by crsdephour
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Stratified Sampling

In order to ensure that our model is sensitive to the delayed samples, we can put the two 
sample types on the same footing using stratified sampling. The DataFrames sampleBy() 
function does this when provided with fractions of each sample type to be returned. Here, 
we’re keeping all instances of delayed, but downsampling the not delayed instances to 
13%, then displaying the results.

val fractions = Map(0.0 -> .13, 1.0 -> 1.0)  
val strain = df2.stat.sampleBy(“delayed”, fractions, 36L)
val Array(trainingData, testData) = strain
   .randomSplit(Array(0.7, 0.3), 5043)

strain.groupBy(“delayed”).count.show

result:
+-------+-----+
|delayed|count|
+-------+-----+
|    0.0| 4766|
|    1.0| 4558|
+-------+-----+

Feature Extraction and Pipelining 

The ML package needs the label and feature vector to be added as columns to the 
input DataFrame. We set up a pipeline to pass the data through transformers in order 
to extract the features and label. We will use Spark StringIndexers in the pipeline to 
encode a column of string values to a column of number indices for those values (the 
indices are proportional to the occurrence of the values in the dataset). An example of 
StringIndexing, encoding a column of string values to a column of number indices for 
carrier, is shown below:

+-------+--------------+
|carrier|carrierIndexed|
+-------+--------------+
|     UA|           0.0|
|     DL|           1.0|
|     WN|           3.0|
|     AA|           2.0|
+-------+--------------+
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The code below sets up StringIndexers for all of the categorical columns. Later, we will 
put these StringIndexers in the pipeline.

// column names for string types
val categoricalColumns = Array(“carrier”, “origin”, “dest”, “dofW”, 
“orig_dest”)

// used to encode string columns to number indices
// Indices are fit to dataset
val stringIndexers = categoricalColumns.map { colName =>
      new StringIndexer()
        .setInputCol(colName)
        .setOutputCol(colName + “Indexed”)
        .fit(strain)
}

A Bucketizer will be used in the pipeline to add a label of delayed 0/1, with 0 for delays 
less than 40 minutes and 1 for delays greater than 40 minutes.

// add a label column based on departure delay
 val labeler = new Bucketizer().setInputCol(“depdelay”)
     .setOutputCol(“label”)
     .setSplits(Array(0.0, 40.0, Double.PositiveInfinity)

The VectorAssembler is used in the pipeline to combine a given list of columns into a 
single feature vector column.

// list of feature columns
val featureCols = Array(“carrierIndexed”, “destIndexed”,
 “originIndexed”,”dofWIndexed”,”orig_destIndexed”, 
  “crsdephour”, “crsdeptime”, “crsarrtime”, 
  “crselapsedtime”,”dist” )

// combines a list of feature columns into a vector column
 val assembler = new VectorAssembler()
      .setInputCols(featureCols)
      .setOutputCol(“features”)
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The result of running these transformers in a pipeline will be to add a label and features 
column to the dataset as shown below.

The final element in our pipeline is an estimator (a Random Forest Classifier), which will 
train on the vector of labels and features and return a (transformer) model. 

val rf = new RandomForestClassifier()
      .setLabelCol(“label”)
      .setFeaturesCol(“features”)
)

Below, we put the StringIndexers, VectorAssembler, and Random Forest Classifier in an 
pipeline. A pipeline chains multiple transformers and estimators together to specify an 
ML workflow for training and using a model.

val steps = stringIndexers ++ Array(labeler, assembler, rf)

val pipeline = new Pipeline().setStages(steps)

+--------------+-------------+----------+-----+--------------------+
|carrierIndexed|originIndexed|crsdephour|label|features            |
+--------------+-------------+----------+-----+--------------------+
|           2.0|          1.0|        17|  0.0|[2.0,3.0,1.0,2.0,...|  
|           2.0|          1.0|        10|  0.0|[2.0,0.0,1.0,2.0,...| 
|           2.0|          3.0|        17|  0.0|[2.0,0.0,3.0,2.0,...|  

DataFrameLoad Data
DataFrame +

Label and 
Features

Transformers

StringIndexer BucketizerBucketizer VectorAssembler

Random Forest

Transformers

StringIndexer BucketizerBucketizer VectorAssembler

Pipeline

Estimator
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Train The Model

We would like to determine which parameter values of the Random Forest Classifier 
produce the best model. A common technique for model selection is k-fold cross-
validation, where the data is randomly split into k partitions. Each partition is used 
once as the testing data set, while the rest are used for training. Models are then 
generated using the training sets and evaluated with the testing sets, resulting in k 
model performance measurements. The model parameters leading to the highest 
performance metric produce the best model.

Spark ML supports k-fold cross-validation with a transformation/estimation pipeline to 
try out different combinations of parameters, using a process called grid search, where 
you set up the parameters to test and a cross validation evaluator to construct a model 
selection workflow.
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Below, we use a ParamGridBuilder to construct the parameter grid for the model 
training. We define an evaluator, which will evaluate the model by comparing the 
test label column with the test prediction column. We use a CrossValidator for 
model selection. The CrossValidator uses the pipeline, the parameter grid, and the 
classification evaluator to fit the training data set and returns a model.

val paramGrid = new ParamGridBuilder()
     .addGrid(rf.maxBins, Array(100, 200))
     .addGrid(rf.maxDepth, Array(2, 4, 10))
     .addGrid(rf.numTrees, Array(5, 20))
     .addGrid(rf.impurity, Array(“entropy”, “gini”))
     .build()

val evaluator = new BinaryClassificationEvaluator()

 // Set up 3-fold cross validation with paramGrid
 val crossvalidator = new CrossValidator()
      .setEstimator(pipeline)
      .setEvaluator(evaluator)
      .setEstimatorParamMaps(paramGrid).setNumFolds(3)

// fit the training data set and return a model
val pipelineModel = crossvalidator.fit(trainingData)

The CrossValidator uses the ParamGridBuilder to iterate through the maxDepth, maxBins, 
and numbTrees parameters of the Random Forest Classifier and to evaluate the models, 
repeating 3 times per parameter value for reliable results.

EvaluatorParameter 
Grid

Pipeline

CrossValidator

Pipeline Model

Fit Fit a model to the data with 
provided parameter grid

val cvModel = crossval.fit(ntrain)
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Next, we can get the best model, in order to print out the feature importances. The 
results show that the scheduled departure time and the orig->dest are the most 
important features. 

val featureImportances = pipelineModel
      .bestModel.asInstanceOf[PipelineModel]
      .stages(stringIndexers.size + 2)
      .asInstanceOf[RandomForestClassificationModel]
      .featureImportances 

assembler.getInputCols
      .zip(featureImportances.toArray)
      .sortBy(-_._2)
      .foreach { case (feat, imp) => 
      println(s”feature: $feat, importance: $imp”) }

result:
feature: crsdeptime, importance: 0.2954321019748874
feature: orig_destIndexed, importance: 0.21540676913162476
feature: crsarrtime, importance: 0.1594826730807351
feature: crsdephour, importance: 0.11232750835024508
feature: destIndexed, importance: 0.07068851952515658
feature: carrierIndexed, importance: 0.03737067561393635
feature: dist, importance: 0.03675114205144413
feature: dofWIndexed, importance: 0.030118527912782744
feature: originIndexed, importance: 0.022401521272697823
feature: crselapsedtime, importance: 0.020020561086490113

We find that the best random forest model produced, using the cross-validation process, 
is one with a depth of 4, 20 trees and 100 bins.

val bestEstimatorParamMap = pipelineModel
      .getEstimatorParamMaps
      .zip(cvModel.avgMetrics)
      .maxBy(_._2)
      ._1
println(s”Best params:\n$bestEstimatorParamMap”)

result:
Best params: { 
rfc-impurity: gini, 
rfc-maxBins: 100, 
rfc-maxDepth: 4, 
rfc-numTrees: 20 }
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Predictions and Model Evaluation

The performance of the model can be determined using the test data set that has 
not been used for any training or cross-validation activities. We transform the test 
DataFrame with the pipeline model, which will pass the test data, according to the 
pipeline steps, through the feature extraction stage, estimate with the random forest 
model chosen by model tuning, and then return the label predictions in a column of a 
new DataFrame.

val predictions = pipelineModel.transform(testData)
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The BinaryClassificationEvaluator provides a metric to measure how well a fitted model 
does on the test data. The default metric for this evaluator is the area under the ROC 
curve. The area measures the ability of the test to correctly classify true positives from 
false positives. A random predictor would have .5. The closer the value is to 1, the better 
its predictions are.
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Below, we pass the predictions DataFrame (which has a predictions column and a label 
column) to the BinaryClassificationEvaluator, which returns .69 as the area under 
the ROC curve. We could get better flight delay predictions with more data sources, 
such as weather, holidays, incoming flight information, and current or incoming airport 
operations problems.

val areaUnderROC = evaluator.evaluate(predictions)

result: 0.69

+-----+--------------------+----------+
|label|            features|prediction|
+-----+--------------------+----------+
|  1.0|[117.0,0.0,0.0,18...|       1.0|     
|  0.0|[65.0,0.0,0.0,129...|       0.0|

DataFrame Accuracy

Transform

Model Pipeline BucketizerDataFrame +
Predictions Evaluator

Evaluate

val predictions = cvModel.transfrom (test)
val accuracy = evaluator.evaluate(predictions)
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Below, we calculate some more metrics. The number of false/true positives and 
negative predictions is also useful:

•	True positives are how often the model correctly predicted delayed flights.

•	False positives are how often the model incorrectly predicted delayed flights.

•	True negatives indicate how often the model correctly predicted not delayed flights.

•	False negatives indicate how often the model incorrectly predicted not delayed flights.

val lp = predictions.select(“label”, “prediction”)
val counttotal = predictions.count()
val correct = lp.filter($”label” === $”prediction”).count()
val wrong = lp.filter(not($”label” === $”prediction”)).count()
val ratioWrong = wrong.toDouble / counttotal.toDouble
val ratioCorrect = correct.toDouble / counttotal.toDouble

val truep = lp.filter($”prediction” === 0.0)
 .filter($”label” === $”prediction”).count() /
 counttotal.toDouble

val truen = lp.filter($”prediction” === 1.0)
  .filter($”label” === $”prediction”).count() /  
   counttotal.toDouble

val falsep = lp.filter($”prediction” === 0.0)
  .filter(not($”label” === $”prediction”)).count() / 
  counttotal.toDouble

val falsen = lp.filter($”prediction” === 1.0)
  .filter(not($”label” === $”prediction”)).count() / 
  counttotal.toDouble

Results:
counttotal: Long = 2744
correct: Long = 1736
wrong: Long = 1008
ratioWrong: Double = 0.3673469387755102
ratioCorrect: Double = 0.6326530612244898
truep: Double = 0.3079446064139942
truen: Double = 0.32470845481049565
falsep: Double = 0.15998542274052477
falsen: Double = 0.20736151603498543
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Save The Model

We can now save our fitted pipeline model to the distributed file store for later use in 
production. This saves both the feature extraction stage and the random forest model 
chosen by model tuning.

pipelineModel.write.overwrite().save(modeldir)

The result of saving the pipeline model is a JSON file for metadata and a Parquet for 
model data. We can reload the model with the load command; the original and reloaded 
models are the same:

val sameModel = CrossValidatorModel.load(“modeldir”)

Summary

There are plenty of great tools to build classification models. Apache Spark provides an 
excellent framework for building solutions to business problems that can extract value 
from massive, distributed datasets.

Machine learning algorithms cannot answer all questions perfectly. But they do provide 
evidence for humans to consider when interpreting results, assuming the right question 
is asked in the first place. In this example, we could get better flight delay predictions 
with more timely information, such as weather, holidays, incoming flight delays, and 
airport problems.

All of the data and code to train the models and make your own conclusions, using 
Apache Spark, are located in GitHub. Refer to the Appendix for the links to the GitHub 
and more information about running the code.
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Chapter 6

Cluster Analysis on Uber Event  
Data to Detect and Visualize  
Popular Uber Locations
According to Bernard Marr, one of the 10 major areas in which big data is being used to 
excellent advantage is in improving cities. The analysis of location and behavior patterns 
within cities allows optimization of traffic, better planning decisions, and smarter 
advertising. For example, the analysis of GPS car data can allow cities to optimize traffic 
flows based on real-time traffic information. Telecom companies are using mobile 
phone location data to provide insights, by identifying and predicting the location activity 
trends and patterns of a population in a large metropolitan area. The application of 
machine learning to geolocation data is being used in telecom, travel, marketing, and 
manufacturing to identify patterns and trends, for services such as recommendations, 
anomaly detection, and fraud.

https://www.bernardmarr.com/default.asp?contentID=1076
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Chapter 6: Cluster Analysis on Uber Event Data to Detect and Visualize Popular Uber Locations

Uber is using Apache Spark and big data to perfect its processes, from calculating Uber’s 
“surge pricing” to finding the optimal positioning of cars to maximize profits. In this 
chapter, we are going to use public Uber trip data to discuss cluster analysis on Uber event 
data to detect and visualize popular Uber locations. We start with a review of clustering 
and the k-means algorithm and then explore the use case. In the next chapter, we will use 
the saved k-means model with streaming data. (Note the code in this example is not from 
Uber, only the data.)
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Chapter 6: Cluster Analysis on Uber Event Data to Detect and Visualize Popular Uber Locations

Clustering

Clustering is a family of unsupervised machine learning algorithms that discover groupings 
that occur in collections of data by analyzing similarities between input examples. Some 
examples of clustering uses include customer segmentation and text categorization.

K-means is one of the most commonly used clustering algorithms that clusters the data 
points into a predefined number of clusters (k). Clustering using the k-means algorithm 
begins by initializing all the coordinates to k number of centroids. 
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Chapter 6: Cluster Analysis on Uber Event Data to Detect and Visualize Popular Uber Locations

With every pass of the algorithm, each point is assigned to its nearest centroid, based on 
some distance metric, usually Euclidean distance. The centroids are then updated to be 
the “centers” of all the points assigned to it in that pass.

This repeats until there is a minimum change in the centers.
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Chapter 6: Cluster Analysis on Uber Event Data to Detect and Visualize Popular Uber Locations

Example Use Case Dataset

The example Dataset is Uber trip data, which FiveThirtyEight obtained from the NYC Taxi & 
Limousine Commission. In this example, we will discover the clusters of Uber data based 
on the longitude and latitude, then we will analyze the cluster centers by date/time, using 
Spark SQL. The Dataset has the following schema: 

Field Definition
Date/Time The date and time of the Uber pickup
Lat The latitude of the Uber pickup
Lon The longitude of the Uber pickup
Base The TLC base company code affiliated with the Uber pickup

The Data Records are in CSV format; an example line is shown below:

2014-08-01 00:00:00,40.729,-73.9422,B02598

Load the Data from a File into a DataFrame

First, we import the packages needed for Spark ML clustering and SQL.

import org.apache.spark.sql.functions._
import org.apache.spark.sql.types._
import org.apache.spark.sql._
import org.apache.spark.ml.clustering._
import org.apache.spark.ml._
import org.apache.spark.ml.feature._

We specify the schema with a Spark StructType and a Scala case class.

case class Uber(dt: java.sql.Timestamp, lat: Double, 
  lon: Double, base: String) extends Serializable

val schema = StructType(Array(
    StructField(“dt”, TimestampType, true),
    StructField(“lat”, DoubleType, true),
    StructField(“lon”, DoubleType, true),
    StructField(“base”, StringType, true)
))

http://data.beta.nyc/dataset/uber-trip-data-foiled-apr-sep-2014
http://www.nyc.gov/html/tlc/html/home/home.shtml
http://www.nyc.gov/html/tlc/html/home/home.shtml
http://spark.apache.org/docs/latest/sql-programming-guide.html#programmatically-specifying-the-schema
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Next we load the data from a CSV file into a Spark DataFrame, specifying the datasource 
and schema to load into the DataFrame, as shown below. (Note: if you are using a notebook, 
then you do not have to create the SparkSession.)

val spark: SparkSession = SparkSession.builder()
.appName(“uber”).getOrCreate()

import spark.implicits._

// path to dataset file
var file: String = “/mapr/demo.mapr.com/data/uber.csv” 
 
val df: Dataset[Uber] = spark.read
.option(“inferSchema”, “false”)
.schema(schema)
.csv(file).as[Uber]

DataFrame printSchema() prints the schema to the console in a tree format, shown below:

df.printSchema

result:
root
 |-- dt: timestamp (nullable = true)
 |-- lat: double (nullable = true)
 |-- lon: double (nullable = true)
 |-- base: string (nullable = true)

+--------------------+-------+--------+------+
|                  dt|    lat|     lon|  base|
+--------------------+-------+--------+------+
|2014-08-01 07:00:...| 40.729|-73.9422|B02598|
|2014-08-01 07:00:...|40.7476|-73.9871|B02598|
|2014-08-01 07:00:...|40.7424|-74.0044|B02598|
|2014-08-01 07:00:...| 40.751|-73.9869|B02598|
|2014-08-01 07:00:...|40.7406|-73.9902|B02598|
+--------------------+-------+--------+------+

DataFrameLoad Data
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DataFrame show(5) displays the first 5 rows:

df.show(5)

result:
+-------------------+-------+--------+------+
|                 dt|    lat|     lon|  base|
+-------------------+-------+--------+------+
|2014-08-01 00:00:00| 40.729|-73.9422|B02598|
|2014-08-01 00:00:00|40.7476|-73.9871|B02598|
|2014-08-01 00:00:00|40.7424|-74.0044|B02598|
|2014-08-01 00:00:00| 40.751|-73.9869|B02598|
|2014-08-01 00:00:00|40.7406|-73.9902|B02598|
+-------------------+-------+--------+------+

Define Features Array

In order for the features to be used by a machine learning algorithm, they are transformed 
and put into feature vectors, which are vectors of numbers representing the value for 
each feature. Below, a VectorAssembler transformer is used to return a new DataFrame 
with the input columns lat, lon in a vector features column. The df2 DataFrame with the 
features column is cached, since it will be used iteratively by the k-means estimator to 
create a model.

+--------------------+-------+--------+------+------------------+
|                  dt|    lat|     lon|  base|          features|
+--------------------+-------+--------+------+------------------+
|2014-08-01 07:00:...| 40.729|-73.9422|B02598| [40.729,-73.9422]|
|2014-08-01 07:00:...|40.7476|-73.9871|B02598|[40.7476,-73.9871]| 
|2014-08-01 07:00:...|40.7424|-74.0044|B02598|[40.7424,-74.0044]|
|2014-08-01 07:00:...| 40.751|-73.9869|B02598| [40.751,-73.9869]|
|2014-08-01 07:00:...|40.7406|-73.9902|B02598|[40.7406,-73.9902]|
+--------------------+-------+--------+------+------------------+

DataFrameLoad Data DataFrame +
Features

Transform

VectorAssembler
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// input column names
val featureCols = Array("lat", "lon")

// create transformer
val assembler = new VectorAssembler()
  .setInputCols(featureCols)
  .setOutputCol("features")

// transform method adds features column
val df2 = assembler.transform(df)

// cache transformed DataFrame
df2.cache

df2.show(5)

result:
+-------------------+-------+---------+-------+------------------+
|                 dt|    lat|      lon|   base|          features|
+-------------------+-------+---------+-------+------------------+
|2014-08-01 00:00:00| 40.729| -73.9422| B02598| [40.729,-73.9422]|
|2014-08-01 00:00:00|40.7476| -73.9871| B02598|[40.7476,-73.9871]|
|2014-08-01 00:00:00|40.7424| -74.0044| B02598|[40.7424,-74.0044]|
|2014-08-01 00:00:00| 40.751| -73.9869| B02598| [40.751,-73.9869]|
|2014-08-01 00:00:00|40.7406| -73.9902| B02598|[40.7406,-73.9902]|
+------------------+--------+---------+-------+------------------+
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Next, we create a k-means estimator; we set the parameters to define the number of 
clusters and the column name for the cluster IDs. Then we use the k-means estimator 
fit method, on the VectorAssembler transformed DataFrame, to train and return a 
k-means model. 

// create the estimator
val kmeans: KMeans = new KMeans()
.setK(20)
.setFeaturesCol(“features”)
.setPredictionCol(“cid”)
.setSeed(1L)

// use the estimator to fit (train) a KMeans model
val model: KMeansModel = kmeans.fit(df2)

// print out the cluster center latitude and longitude
println(“Final Centers: “)
val centers = model.clusterCenters
centers.foreach(println)

result:
Final Centers: 
[40.77486503453673,-73.95529530005687]
[40.71471849886388,-74.01021744470336]
[40.77360039001209,-73.86783834670749]
[40.68434684712066,-73.98492349953315]
...

+--------------------+-------+--------+------+------------------+
|                  dt|    lat|     lon|  base|          features|
+--------------------+-------+--------+------+------------------+
|2014-08-01 07:00:...| 40.729|-73.9422|B02598| [40.729,-73.9422]|
|2014-08-01 07:00:...|40.7476|-73.9871|B02598|[40.7476,-73.9871]| 
|2014-08-01 07:00:...|40.7424|-74.0044|B02598|[40.7424,-74.0044]|
|2014-08-01 07:00:...| 40.751|-73.9869|B02598| [40.751,-73.9869]|
|2014-08-01 07:00:...|40.7406|-73.9902|B02598|[40.7406,-73.9902]|
+--------------------+-------+--------+------+------------------+

DataFrameLoad Data
K-Means

Model

Transform

VectorAssembler BucketizerDataFrame +
Features

K-Means
Estimator

Input Fit
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Below, the 20 cluster centers are displayed on a Google Map:

Below, the 20 cluster centers and 5000 trip locations are displayed on a Google Heatmap:
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We use the k-means model summary and k-means model summary predictions methods, 
which return the clusterIDs added as a column in a new DataFrame, in order to further 
analyze the clustering. Then we register the DataFrame as a temporary table in order to 
run SQL statements on the table.

// get the KMeansModelSummary from the KMeansModel
val summary : KMeansModelSummary = model.summary

// get the cluster centers in a dataframe column from the summary
val clusters : Dataframe = summary.predictions

// register the DataFrame as a temporary table
clusters.createOrReplaceTempView(“uber”)
clusters.show(5)

result:
+-------------------+-------+--------+------+------------------+---+
|                 dt|    lat|     lon|  base|          features|cid|
+-------------------+-------+--------+------+------------------+---+
|2014-08-01 00:00:00| 40.729|-73.9422|B02598| [40.729,-73.9422]| 14|
|2014-08-01 00:00:00|40.7476|-73.9871|B02598|[40.7476,-73.9871]| 10|
|2014-08-01 00:00:00|40.7424|-74.0044|B02598|[40.7424,-74.0044]| 16|
|2014-08-01 00:00:00| 40.751|-73.9869|B02598| [40.751,-73.9869]| 10|
|2014-08-01 00:00:00|40.7406|-73.9902|B02598|[40.7406,-73.9902]| 10|
+-------------------+-------+--------+------+------------------+---+

Now we can ask questions like: 

Which clusters had the highest number of pickups? 

clusters.groupBy(“cid”).count().orderBy(desc( “count”)).show(5)

result: 
+---+------+
|cid| count|
+---+------+
|  4|101566|
| 10| 95560|
| 11| 93224|
| 15| 77019|
| 16| 75563|
+---+------+
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Below, the top cluster centers are displayed on a Google Map:

Which clusters had the highest number of pickups? (in Spark SQL)

%sql
select cid, count(cid) as count from uber group by cid order by 
count desc
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With a notebook, we can also display query results in bar charts or graphs. Below, the x 
axis is the cluster ID, and the y axis is the count.

Which hours of the day had the highest number of pickups? 

%sql SELECT hour(uber.dt) as hr,count(cid) as ct FROM uber group By 
hour(uber.dt) order by hour(uber.dt)

(Below, the x axis is the hour, and the y axis is the count.)
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Which hours of the day and which cluster had the highest number of pickups?

clusters.select(hour($”dt”).alias(“hour”), $”cid”)
   .groupBy(“hour”, “cid”).agg(count(“cid”)
   .alias(“count”)).orderBy(desc(“count”),$”hour”).show(5)

result:
+----+---+-----+
|hour|cid|count|
+----+---+-----+
|  16| 11| 8563|
|  17| 11| 8535|
|  17| 10| 8111|
|  18| 11| 7833|
|  18| 10| 7546|
+----+---+-----+

in Spark SQL:

%sql SELECT hour(uber.dt) as hr, cid, count(cid) as ct FROM uber 
WHERE cid IN (1,4, 10,11,16,15) group By hour(uber.dt), cid order by 
hr, cid

(Below, the x axis is the hour, the y axis is the count, and the grouping is the cluster ID.)
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Which clusters had the highest number of pickups during morning rush hour?

%sql SELECT hour(uber.dt) as hr, cid, count(cid) as ct FROM uber 
WHERE cid IN (0,1,4,9, 10,11,16,15) and hour(uber.dt) IN (6,7,8,9) 
group By hour(uber.dt), cid order by hr, cid

Which clusters had the highest number of pickups during evening rush hour?

%sql SELECT hour(uber.dt) as hr, cid, count(cid) as ct FROM 
uber WHERE cid IN (0,1,4,9, 10,11,16,15) and hour(uber.dt) IN 
(16,17,18,19) group By hour(uber.dt), cid order by hr, cid
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Save The Model

The model can be persisted to disk as shown below, in order to use later (for example, 
with Spark Streaming).

model.write.overwrite().save(modeldir)

The result of saving the model is a JSON file for metadata and a Parquet file for model 
data. We can reload the model with the load command; the original and reloaded models 
are the same:

val sameModel = KMeansModel.load(savedirectory)

Summary

In this chapter, you learned how to use Spark ML’s k-means clustering for analysis of 
Uber event data to detect and visualize popular Uber locations. In the next chapter, we 
will use the saved k-means model with streaming data.
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Real-Time Analysis of Popular Uber 
Locations using Apache APIs: Spark 
Structured Streaming, Machine 
Learning, Kafka, and MapR-DB
According to Gartner, 20.8 billion connected things will be in use worldwide by 2020. 
Examples of connected things include cars and devices as well as applications used 
for healthcare, telecom, manufacturing, retail, and finance. Connected vehicles are 
projected to generate 25 GB of data per hour, which can be analyzed to provide real-
time monitoring and apps and will lead to new concepts of mobility and vehicle usage. 
Leveraging the huge amounts of data coming from these devices requires processing 
events in real time, applying machine learning to add value, and providing scalable, 
fast storage. Architectures for these types of applications are usually an event-driven 
microservices architecture. 

https://www.zdnet.com/article/iot-devices-will-outnumber-the-worlds-population-this-year-for-the-first-time/
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This chapter will discuss using the saved k-means model from the previous chapter with 
Apache Spark Structured Streaming in a data processing pipeline for cluster analysis on 
Uber event data to detect and visualize popular Uber locations.

We start with a review of several Structured Streaming concepts, then explore the end-
to-end use case. (Note the code in this example is not from Uber, only the data.)

Streaming Concepts

Publish-Subscribe Event Streams with MapR-ES

MapR-ES is a distributed publish-subscribe event streaming system that enables 
producers and consumers to exchange events in real time in a parallel and fault-
tolerant manner via the Apache Kafka API.

A stream represents a continuous sequence of events that goes from producers to 
consumers, where an event is defined as a key-value pair.

UBER LOCATION

UBER LOCATION

UBER LOCATION

MACHINE
LEARNING 

MODEL

SQL

SQL

DATA COLLECT PROCESS STORE ANALYZE

Topic

Stream

MAPR-DB

JSON

Stream of Data

PRODUCERS CONSUMERS

KEY VALUE KEY VALUE KEY VALUE KEY VALUE

https://mapr.com/products/mapr-streams/
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Topics are a logical stream of events. Topics organize events into categories and decouple 
producers from consumers. Topics are partitioned for throughput and scalability. MapR-ES 
can scale to very high throughput levels, easily delivering millions of messages per second 
using very modest hardware.
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You can think of a partition like an event log: new events are appended to the end and 
are assigned a sequential ID number called the offset. 
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Like a queue, events are delivered in the order they are received.

Unlike a queue, however, messages are not deleted when read. They remain on the 
partition available to other consumers. Messages, once published, are immutable and 
can be retained forever.
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Not deleting messages when they are read allows for high performance at scale and 
also for processing of the same messages by different consumers for different purposes 
such as multiple views with polyglot persistence.
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https://mapr.com/blog/event-driven-microservices-patterns/
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Spark Dataset, DataFrame, SQL

A Spark Dataset is a distributed collection of typed objects partitioned across multiple 
nodes in a cluster. A Dataset can be manipulated using functional transformations (map, 
flatMap, filter, etc.) and/or Spark SQL. A DataFrame is a Dataset of Row objects and 
represents a table of data with rows and columns.

Spark Structured Streaming

Structured Streaming is a scalable and fault-tolerant stream processing engine built 
on the Spark SQL engine. Structured Streaming enables you to view data published to 
Kafka as an unbounded DataFrame and process this data with the same DataFrame, 
Dataset, and SQL APIs used for batch processing.
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As streaming data continues to arrive, the Spark SQL engine incrementally and 
continuously processes it and updates the final result.

Stream processing of events is useful for real-time ETL, filtering, transforming, 
creating counters and aggregations, correlating values, enriching with other data 
sources or machine learning, persisting to files or Database, and publishing to a 
different topic for pipelines.

SELECT account_id, SUM(amount)
FROM accounts GROUP BY account_id

STREAM
3 2 14

1 {”Id”: ”WillO”, ”Amount”: 100.00}

2 {”Id”: ”BradA”, ”Amount”: 30.00}

3 {”Id”: ”WillO”, ”Amount”: -30.00}

4 {”Id”: ”BradA”, ”Amount”: 20.00}

ACCOUNT ID AMOUNT

WILLO 70.00

BRADA 50.00

CONTINUOUSLY
PROCESSED

StorageStructured StreamingStreams

RAW

ENRICHED

FILTERED

CONTINUOUS:
FILTERING
TRANSFORMATIONS
AGGREGATIONS
ETL
ENRICHMENTS WITH ML, JOINS 

MAPR-DB

MAPR-XD
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Spark Structured Streaming Use Case Example Code

Below is the data processing pipeline for this use case of cluster analysis on Uber event 
data to detect popular pickup locations.

1.	 Uber trip data is published to a MapR-ES topic using the Kafka API.

2.	 A Spark Streaming application subscribed to the topic:

•	 Ingests a stream of Uber trip data 

•	Uses a deployed machine learning model to enrich the trip data with a cluster ID 
and cluster location

•	Stores the transformed and enriched data in MapR-DB JSON
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JSON

2014-08-06T05:29:00.000-07:00, 40.8068, 
-73.9548, B02682, 922337050559328 

Transform 
and Enrich

{   
"_id":0_922337050559328,
"dt":"2014-08-01 08:51:00", 
"lat":40.6858, 
"lon":-73.9923, 
"base":"B02682", 
"cid":0, 
"clat":40.67462874550765, 
"clon":-73.98667466026531
} 

MACHINE
LEARNING 

MODEL

UBER LOCATION Topic

Stream

MAPR-DB

JSON

https://mapr.com/blog/getting-started-sample-programs-mapr-streams/
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Example Use Case Data 

The example data set is Uber trip data from chapter 6. The incoming data is in CSV 
format; an example is shown below, with the header:

date/time, latitude, longitude, base, reverse time stamp
2014-08-06T05:29:00.000-07:00, 40.7276, -74.0033, B02682, 
9223370505593280605

We enrich this data with the cluster ID and location, then transform it into the following 
JSON object:

{   
“_id”:0_922337050559328,
“dt”:”2014-08-01 08:51:00”, 
“lat”:40.6858, 
“lon”:-73.9923, 
“base”:”B02682”, 
“cid”:0, 
“clat”:40.67462874550765, 
“clon”:-73.98667466026531
}

2014-08-06T05:29:00.000-07:00, 40.8068, 
-73.9548, B02682, 922337050559328 

Transform 
and Enrich

{   
"_id":0_922337050559328,
"dt":"2014-08-01 08:51:00", 
"lat":40.6858, 
"lon":-73.9923, 
"base":"B02682", 
"cid":0, 
"clat":40.67462874550765, 
"clon":-73.98667466026531
} 
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Loading the K-Means Model 

The Spark KMeansModel class is used to load a k-means model, which was fitted on 
the historical Uber trip data and then saved to the MapR-XD cluster. Next, a Dataset of 
Cluster Center IDs and location is created to join later with the Uber trip locations. 

// load the saved model from the distributed file system
val model = KMeansModel.load(savedirectory)

// create a Dataset with cluster id and location
case class Center(cid: Integer, clat: Double, 
clon: Double) 

var ac = new Array[Center](10)
var index: Int = 0
model.clusterCenters.foreach(x => {
      ac(index) = Center(index, x(0), x(1));
      index += 1;
})

val ccdf = spark.createDataset(ac)
ccdf.show(3)

+---+------------------+------------------+
|cid|              clat|              clon|
+---+------------------+------------------+
|  0|  40.7564201526695|-73.98253669425347|
|  1| 40.69774864372469| -74.1746190485833|
|  2| 40.65913663371848|-73.77616609142027|
+---+------------------+------------------+

https://spark.apache.org/docs/2.0.1/api/scala/index.html#org.apache.spark.ml.clustering.KMeansModel
https://mapr.com/blog/monitoring-real-time-uber-data-using-spark-machine-learning-streaming-and-kafka-api-part-1/
https://mapr.com/blog/monitoring-real-time-uber-data-using-spark-machine-learning-streaming-and-kafka-api-part-1/
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Below the cluster centers are displayed on a Google Map in a Zeppelin notebook:

(Note: In the previous chapter, we used 20 cluster IDs; in this example, we are using 
10. Also, when you run this model, the cluster IDs will be different, but the locations 
will be about the same, depending on how many iterations you run. When you save and 
reload the same model, the cluster IDs will be the same.) 

Reading Data from Kafka Topics

In order to read from Kafka, we must first specify the stream format, topic, and offset 
options. For more information on the configuration parameters, see the MapR Streams 
documentation. 

var topic: String = “/apps/uberstream:ubers”

val df1 = spark.readStream.format(“kafka”)
      .option(“kafka.bootstrap.servers”, “maprdemo:9092”)
      .option(“subscribe”, topic)
      .option(“group.id”, “testgroup”)
      .option(“startingOffsets”, “earliest”)
      .option(“failOnDataLoss”, false)
      .option(“maxOffsetsPerTrigger”, 1000)
      .load()

https://mapr.com/docs/home/MapR_Streams/differences_in_configuration_parameters_for_producers_and_consumers.html
https://mapr.com/docs/home/MapR_Streams/differences_in_configuration_parameters_for_producers_and_consumers.html
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This returns a DataFrame with the following schema:

df1.printSchema()

result:
root
 |-- key: binary (nullable = true)
 |-- value: binary (nullable = true)
 |-- topic: string (nullable = true)
 |-- partition: integer (nullable = true)
 |-- offset: long (nullable = true)
 |-- timestamp: timestamp (nullable = true)
 |-- timestampType: integer (nullable = true)

The next step is to parse and transform the binary values column into a Dataset of 
Uber objects.

Parsing the Message Values into a Dataset of Uber Objects

A Scala Uber case class defines the schema corresponding to the CSV records. The 
parseUber function parses a comma separated value string into an Uber object. 

case class Uber(dt: String, lat: Double, lon: Double, base: String, 
rdt: String)   

// Parse string into Uber case class
 def parseUber(str: String): Uber = {
    val p = str.split(“,”)
    Uber(p(0), p(1).toDouble, p(2).toDouble, p(3), p(4))
 }

In the code below, we register a user-defined function (UDF) to deserialize the message 
value strings using the parseUber function. Then we use the UDF in a select expression 
with a String Cast of the df1 column value, which returns a DataFrame of Uber objects. 

import spark.implicits._

spark.udf.register(“deserialize”, 
    (message: String) => parseUber(message))

val df2 = df1.selectExpr(“””deserialize(CAST(value as STRING)) AS 
message”””).select($”message”.as[Uber])
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Enriching the Dataset of Uber Objects with Cluster Center IDs and Location 

A VectorAssembler is used to transform and return a new DataFrame with the latitude 
and longitude feature columns in a vector column.

val featureCols = Array(“lat”, “lon”)

val assembler = new VectorAssembler()
    .setInputCols(featureCols)
    .setOutputCol(“features”)

val df3 = assembler.transform(df2)

The k-means model is used to get the clusters from the features with the model transform 
method, which returns a DataFrame with the cluster ID (labeled predictions). This 
resulting Dataset is joined with the cluster center Dataset created earlier (ccdf) to create 
a Dataset of UberC objects, which contain the trip information combined with the cluster 
Center ID and location.

DT LON LAT BASE FEATURES

2014-08-01 00:00:00 40.729 -73.9422 B02598 [40.729,-73.9422]

LOAD DATA DATA FRAME TRANSFORM FEATURES

LOAD DATA DATA FRAME TRANSFORM FEATURES FIT MODEL TRANSFORM PREDICTIONS

DT LON LAT BASE FEATURES PREDICTION

2014-08-01 00:00:00 40.729 -73.9422 B02598 [40.729,-73.9422] 1
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//use model to get the clusters from the features
val clusters1 = model.transform(df3)

val temp= clusters1.select($”dt”.cast(TimestampType), 
    $”lat”, $”lon”, $”base”,$”rdt”, $”prediction”
    .alias(“cid”))
    
// Uber class with Cluster id,lat lon
case class UberC(dt: java.sql.Timestamp, lat: Double,
 lon: Double, base: String, rdt: String, cid: Integer,
 clat: Double, clon: Double) extends Serializable

val clusters = temp.join(ccdf, Seq(“cid”)).as[UberC]

The final Dataset transformation is to add a unique ID to our objects for storing in MapR-
DB JSON. The createUberwId function creates a unique ID, consisting of the cluster ID 
and the reverse timestamp. Since MapR-DB partitions and sorts rows by the ID, the rows 
will be sorted by cluster ID with the most recent first. This function is used with a map to 
create a Dataset of UberwId objects.

// Uber with unique Id and Cluster id and cluster lat lon
case class UberwId(_id: String, dt: java.sql.Timestamp,
  base: String, cid: Integer, 
  clat: Double, clon: Double) 
    
// enrich with unique id for Mapr-DB
def createUberwId(uber: UberC): UberwId = {
  val id = uber.cid + “_” + uber.rdt 
  UberwId(id, uber.dt, uber.lat, uber.lon, uber.base,
  uber.cid , uber.clat, uber.clon)
} 
val cdf: Dataset[UberwId] = clusters.map(uber => 
createUberwId(uber)) 
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Writing to a Memory Sink

We have now set up the enrichments and transformations on the streaming data. Next, 
for debugging purposes, we can start receiving data and storing the data in memory as 
an in-memory table, which can then be queried. 

val streamingquery = cdf
    .writeStream
    .queryName(“uber”)
    .format(“memory”)
    .outputMode(“append”)
    .start

Here is example output from %sql select * from Uber limit 10:

Now we can query the streaming data to ask questions, like: which hours and clusters 
have the highest number of pickups? (Output is shown in a Zeppelin notebook.)

%sql
SELECT hour(uber.dt) as hr,cid, count(cid) as ct FROM uber group By 
hour(uber.dt), cid

_ID DT LAT LON BASE CID CLAT CLON

0_9223370505601502336 2014-08-01 00:00:00 40.7476 -73.9871 B02598 0 40.7564201526695 -73.98253669425347

3_9223370505601500625 2014-08-01 00:00:00 40.7424 -74.0044 B02598 3 40.727167721391965 -73.99996932251409

0_9223370505601500564 2014-08-01 00:00:00 40.751 -73.9869 B02598 0 40.7564201526695 -73.98253669425347

948
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Spark Streaming Writing to MapR-DB

The MapR-DB Connector for Apache Spark enables you to use MapR-DB as a sink for 
Spark Structured Streaming or Spark Streaming.

One of the challenges when you are processing lots of streaming data is: where do 
you want to store it? For this application, MapR-DB JSON, a high performance NoSQL 
database, was chosen for its scalability and flexible ease of use with JSON. 

2014-08-06T05:29:00.000-07:00, 40.8068, 
-73.9548, B02682, 922337050559328 

Transform 
and Enrich

{   
"_id":0_922337050559328,
"dt":"2014-08-01 08:51:00", 
"lat":40.6858, 
"lon":-73.9923, 
"base":"B02682", 
"cid":0, 
"clat":40.67462874550765, 
"clon":-73.98667466026531
} 
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https://mapr.com/docs/home/MapR-DB/developing_client_applications_for_mapr_db.html
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JSON Schema Flexibility

MapR-DB supports JSON documents as a native data store. MapR-DB makes it easy to 
store, query, and build applications with JSON documents. The Spark connector makes 
it easy to build real-time or batch pipelines between your JSON data and MapR-DB and 
leverage Spark within the pipeline. 

With MapR-DB, a table is automatically partitioned into tablets across a cluster by key 
range, providing for scalable and fast reads and writes by row key. In this use case, 
the row key, the _id, consists of the cluster ID and reverse timestamp, so the table is 
automatically partitioned and sorted by cluster ID with the most recent first. 

    {
“_id:0_922337050559328,
”dt”: “2014-08-01-08:51:00”,
“lat”: 40.6858,
“lon”: -73.9923,
“base”: B02682”,
“cid”: 0,
“clat”: 40.67462874550765,
“clon”: -73.98667466026531
}   

FIELDS
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STRING TYPES

Table Is Partitioned by Row Key, 
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XXX Val Val

XXX Val Val
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https://mapr.com/products/mapr-db/
https://mapr.com/products/mapr-db/
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The Spark MapR-DB Connector leverages the Spark DataSource API. The connector 
architecture has a connection object in every Spark Executor, allowing for distributed 
parallel writes, reads, or scans with MapR-DB tablets (partitions).

Writing to a MapR-DB Sink

To write a Spark Stream to MapR-DB, specify the format with the tablePath, idFieldPath, 
createTable, bulkMode, and sampleSize parameters. The following example writes out 
the cdf DataFrame to MapR-DB and starts the stream. 

import com.mapr.db.spark.impl._
import com.mapr.db.spark.streaming._
import com.mapr.db.spark.sql._
import com.mapr.db.spark.streaming.MapRDBSourceConfig

var tableName: String = “/apps/ubertable”
val writedb = cdf.writeStream
   .format(MapRDBSourceConfig.Format)
   .option(MapRDBSourceConfig.TablePathOption, tableName)
   .option(MapRDBSourceConfig.IdFieldPathOption, “_id”)
   .option(MapRDBSourceConfig.CreateTableOption, false)
   .option(“checkpointLocation”, “/tmp/uberdb”)
   .option(MapRDBSourceConfig.BulkModeOption, true)
   .option(MapRDBSourceConfig.SampleSizeOption, 1000)

writedb.start()

Connection in Every Spark Executor
Allowing for Distributed Parallel Writes, 
Reads, or Scans

Spark Driver Program
Application and Config

SparkContext

Cluster
Manager

SPARK EXECUTOR

MAPR SERVER

Task

Connection

Task

KEY coIB coIC

XXX Val Val

XXX Val Val

SPARK EXECUTOR

MAPR SERVER

Task

Connection

Task

KEY coIB coIC

XXX Val Val

XXX Val Val

https://databricks.com/blog/2015/01/09/spark-sql-data-sources-api-unified-data-access-for-the-spark-platform.html
https://mapr.com/docs/home/Spark/StructuredSparkStreaming.html
https://mapr.com/docs/home/Spark/StructuredSparkStreaming.html
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Querying MapR-DB JSON with Spark SQL

The Spark MapR-DB Connector enables users to perform complex SQL queries and 
updates on top of MapR-DB using a Spark Dataset, while applying critical techniques 
such as projection and filter pushdown, custom partitioning, and data locality.
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Loading Data from MapR-DB into a Spark Dataset

To load data from a MapR-DB JSON table into an Apache Spark Dataset, we invoke the 
loadFromMapRDB method on a SparkSession object, providing the tableName, schema, 
and case class. This returns a Dataset of UberwId objects:

case class UberwId(_id: String, dt: java.sql.Timestamp, 
    lat: Double, lon: Double, base: String,cid: Integer, 
    clat: Double, clon: Double) extends Serializable  

val schema = StructType(Array(
    StructField(“_id”, StringType, true),    
    StructField(“dt”, TimestampType, true),
    StructField(“lat”, DoubleType, true),
    StructField(“lon”, DoubleType, true),
    StructField(“base”, StringType, true),
    StructField(“cid”, IntegerType, true),
    StructField(“clat”, DoubleType, true),
    StructField(“clon”, DoubleType, true)
))

var tableName: String = “/apps/ubertable”
val df: Dataset[UberwId] = spark
    .loadFromMapRDB[UberwId](tableName, schema)
    .as[UberwId]

df.createOrReplaceTempView(“uber”)

Explore and Query the Uber Data with Spark SQL

Now we can query the data that is continuously streaming into MapR-DB to ask 
questions with the Spark DataFrames domain-specific language or with Spark SQL.

Below, we use the DataFrames show method to display the first rows in tabular format. 
(Note how the rows are partitioned and sorted by the _id, which is composed of the 
cluster ID and reverse timestamp; the reverse timestamp sorts most recent first.)

df.show

+--------------------+---------------------+-------+--------+------+---+----------------+------------------+
|                 _id|                   dt|    lat|     lon|  base|cid|            clat|              clon|
+--------------------+---------------------+-------+--------+------+---+----------------+------------------+
|0_922337050559328...|2014-08-06 05:28 0:00|40.7663|-73.9915|B02598|  0|40.7564201526695|-73.98253669425347|
|0_922337050559328...|2014-08-06 05:27 0:00|40.7674|-73.9848|B02682|  0|40.7564201526695|-73.98253669425347|
|0_922337050559328...|2014-08-06 05:27 0:00|40.7564|-73.9975|B02617|  0|40.7564201526695|-73.98253669425347|
|0_922337050559328...|2014-08-06 05:26 0:00| 40.768|-73.9833|B02617|  0|40.7564201526695|-73.98253669425347|
|0_922337050559328...|2014-08-06 05:26 0:00|40.7656|-73.9636|B02598|  0|40.7564201526695|-73.98253669425347|
|0_922337050559328...|2014-08-06 05:25 0:00|40.7499|-73.9895|B02764|  0|40.7564201526695|-73.98253669425347|
 

https://mapr.com/docs/home/Spark/LoadDataFromMapRDBasDataset.html
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What are the top 5 pickup cluster locations?

df.groupBy(“cid”).count().orderBy(desc( “count”)).show(5)

result:
+---+-----+
|cid|count|
+---+-----+
|  3|43544|
|  0|43301|
|  9|15182|
|  6| 8411|
|  7| 8324|
+---+-----+

or with Spark SQL:

%sql SELECT COUNT(cid), cid FROM uber GROUP BY cid ORDER BY 
COUNT(cid) DESC
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With Angular and Google Maps script in a Zeppelin notebook, we can display cluster center 
markers and the latest 5000 trip locations on a map, which shows that the most popular 
locations – 0, 3, and 9 – are in Manhattan.

Which hours have the highest number of pickups for cluster 0?

df.filter($”_id” <= “1”)
   .select(hour($”dt”).alias(“hour”), $”cid”)
   .groupBy(“hour”,”cid”).agg(count(“cid”)
   .alias(“count”)).show



133

Chapter 7: Real-Time Analysis of Popular Uber Locations using Apache APIs:  
Spark Structured Streaming, Machine Learning, Kafka, and MapR-DB

Which hours of the day and which cluster had the highest number of pickups?

%sql SELECT hour(uber.dt), cid, count(cid) FROM uber GROUP BY 
hour(uber.dt), cid
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Display cluster counts for Uber trips by datetime:

%sql select cid, dt, count(cid) as count from uber group by dt, cid 
order by dt, cid limit 100

Summary

In this chapter, you learned how to use the following:

•	A Spark machine learning model in a Spark Structured Streaming application

•	Spark Structured Streaming with MapR-ES to ingest messages using the Kafka API

•	Spark Structured Streaming to persist to MapR-DB for continuously and rapidly 
available SQL analysis

All of the components of the use case architecture we just discussed can run on the 
same cluster with the MapR Data Platform. 
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Predicting Forest Fire Locations with 
K-Means in Spark
Contributed by: Ian Downard

Every summer, wildfires become front-of-mind for thousands of people who live in the 
Western United States. In recent years, the business of firefighting has been setting 
records. Wildland fire suppression costs exceeded $2 billion in 2017, making it the most 
expensive year on record for the United States Forest Service. The Forest Service is the 
primary agency of the United States government responsible for wildfire management. 
Part of their mission is to provide the public with a wide variety of information about past 
and current wildfires. This includes datasets that describe wildfires which have occurred 
in Canada and the United States since the year 2000. That data can be downloaded from 
https://fsapps.nwcg.gov/gisdata.php. 

Anytime you have lat/long coordinates, you have an opportunity to do data science with 
k-means clustering and visualization on a map. Let’s look at one small way in which 
k-means could be applied within the context of wildland firefighting to reduce costs and 
incident response time.

https://www.usda.gov/media/press-releases/2017/09/14/forest-service-wildland-fire-suppression-costs-exceed-2-billion
https://fsapps.nwcg.gov/gisdata.php
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Problem Statement

Fires have a tendency to explode in size. It’s not unusual for fires to grow by 40,000 acres 
in one day when winds are high and the terrain is steep. This is why it’s so important to 
respond to fires as quickly as possible when they start. However, the logistics of moving 
firefighting equipment is one of the major factors limiting incident response time. By 
strategically staging equipment where fires are prone to occur, it may be possible to 
improve incident response time, but how do we pinpoint those locations?

The Solution

One way to estimate where wildfires are prone to occur is to partition the locations of 
past burns into clusters. The centroids for those clusters could conceivably help wildland 
management agencies optimally place heavy wildfire suppression equipment, such as 
water tanks, as near as possible to where fires are likely to occur. The k-means clustering 
algorithm is perfectly suited for this purpose.

K-Means Clusters (> 5% of population)
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The first step in solving this problem is to download the dataset containing locations for 
past burns. Here is how to do that with Bash: 

mkdir -p data/fires
cd data/fires
curl -s --remote-name https://fsapps.nwcg.gov/afm/data/fireptdata/
modis_fire_2016_365_conus_shapefile.zip
curl -s --remote-name https://fsapps.nwcg.gov/afm/data/fireptdata/
modis_fire_2015_365_conus_shapefile.zip
curl -s --remote-name https://fsapps.nwcg.gov/afm/data/fireptdata/
modis_fire_2014_365_conus_shapefile.zip
curl -s --remote-name https://fsapps.nwcg.gov/afm/data/fireptdata/
modis_fire_2013_365_conus_shapefile.zip
curl -s --remote-name https://fsapps.nwcg.gov/afm/data/fireptdata/
modis_fire_2012_366_conus_shapefile.zip
curl -s --remote-name https://fsapps.nwcg.gov/afm/data/fireptdata/
modis_fire_2011_365_conus_shapefile.zip
curl -s --remote-name https://fsapps.nwcg.gov/afm/data/fireptdata/
modis_fire_2010_365_conus_shapefile.zip
curl -s --remote-name https://fsapps.nwcg.gov/afm/data/fireptdata/
modis_fire_2009_365_conus_shapefile.zip
curl -s --remote-name https://fsapps.nwcg.gov/afm/data/fireptdata/
mcd14ml_2008_005_01_conus_shp.zip
curl -s --remote-name https://fsapps.nwcg.gov/afm/data/fireptdata/
mcd14ml_2007_005_01_conus_shp.zip
curl -s --remote-name https://fsapps.nwcg.gov/afm/data/fireptdata/
mcd14ml_2006_005_01_conus_shp.zip
curl -s --remote-name https://fsapps.nwcg.gov/afm/data/fireptdata/
mcd14ml_2005_005_01_conus_shp.zip
curl -s --remote-name https://fsapps.nwcg.gov/afm/data/fireptdata/
mcd14ml_2004_005_01_conus_shp.zip
curl -s --remote-name https://fsapps.nwcg.gov/afm/data/fireptdata/
mcd14ml_2003_005_01_conus_shp.zip
curl -s --remote-name https://fsapps.nwcg.gov/afm/data/fireptdata/
mcd14ml_2002_005_01_conus_shp.zip
curl -s --remote-name https://fsapps.nwcg.gov/afm/data/fireptdata/
mcd14ml_2001_005_01_conus_shp.zip
find modis*.zip | xargs -I {} unzip {} modis*.dbf
find mcd*.zip | xargs -I {} unzip {} mcd*.dbf
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Raw data is hardly ever suitable for machine learning without cleansing. The process 
of cleaning and unifying messy datasets is called “data wrangling,” and it frequently 
comprises the bulk of the effort involved in real-world machine learning. 

The dataset used for this study also requires a bit of wrangling. It’s provided in an 
inconvenient shapefile format, which we’ll transform into CSV in order to make it more 
easily usable in Spark. Also, the records after 2008 have a different schema than prior 
years, so after converting the shapefiles to CSV, they’ll need to be ingested into Spark 
using separate user-defined schemas. 

The following Python code will reformat shapefiles into CSV:

%python
import csv
from dbfpy import dbf
import os
import sys
DATADIR=’data/fires/’

for filename in os.listdir(DATADIR):

    if filename.endswith(‘.dbf’):
        print “Converting %s to csv” % filename
        csv_fn = DATADIR+filename[:-4]+ “.csv”
        with open(csv_fn,’wb’) as csvfile:
            in_db = dbf.Dbf(DATADIR+filename)
            out_csv = csv.writer(csvfile)
            names = []
            for field in in_db.header.fields:
                names.append(field.name)
            out_csv.writerow(names)
            for rec in in_db:
                out_csv.writerow(rec.fieldData)
            in_db.close()
            print “Done...”

http://doc.arcgis.com/en/arcgis-online/reference/shapefiles.htm
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The following Spark Scala code will ingest the CSV files and train a k-means model with 
Spark libraries:

import org.apache.spark._
import org.apache.spark.rdd.RDD
import org.apache.spark.sql.types._
import org.apache.spark.sql.functions._
import org.apache.spark.sql._
import org.apache.spark._
import org.apache.spark.ml.feature.StringIndexer
import org.apache.spark.ml.feature.VectorAssembler
import org.apache.spark.ml.clustering.KMeans
import org.apache.spark.ml.clustering.KMeansModel
import org.apache.spark.mllib.linalg.Vectors
import sqlContext.implicits._
import sqlContext._

val schema = StructType(Array(
  StructField(“area”, DoubleType, true),
  StructField(“perimeter”, DoubleType, true),
  StructField(“firenum”, DoubleType, true),      
  StructField(“fire_id”, DoubleType, true),      
  StructField(“lat”, DoubleType, true),
  StructField(“lon”, DoubleType, true),
  StructField(“date”, TimestampType, true),
  StructField(“julian”, IntegerType, true),
  StructField(“gmt”, IntegerType, true),
  StructField(“temp”, DoubleType, true),     
  StructField(“spix”, DoubleType, true),      
  StructField(“tpix”, DoubleType, true),   
  StructField(“src”, StringType, true),
  StructField(“sat_src”, StringType, true),      
  StructField(“conf”, IntegerType, true),
  StructField(“frp”, DoubleType, true)
))
val df_all = sqlContext.read.format(“com.databricks.spark.csv”).
option(“header”, “true”).schema(schema).load(“data/fires/modis*.csv”)
// Include only fires with coordinates in the Pacific Northwest
val df = df_all.filter($”lat” > 42).filter($”lat” < 50).filter($”lon” > 
-124).filter($”lon” < -110)
val featureCols = Array(“lat”, “lon”)
val assembler = new VectorAssembler().setInputCols(featureCols).
setOutputCol(“features”)
val df2 = assembler.transform(df)
val Array(trainingData, testData) = df2.randomSplit(Array(0.7, 0.3), 5043)
val kmeans = new KMeans().setK(400).setFeaturesCol(“features”).setMaxIter(5)
val model = kmeans.fit(trainingData)
println(“Final Centers: “)
model.clusterCenters.foreach(println)
// Save the model to disk
model.write.overwrite().save(“data/save_fire_model”)
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The resulting cluster centers are shown below. Where would you stage fire  
fighting equipment?

These centroids were calculated by analyzing the locations for fires that have occurred 
in the past. These points can be used to help stage fire fighting equipment as near as 
possible to regions prone to burn, but how do we know which staging area should respond 
when a new forest fire starts? We can use our previously saved model to answer that 
question. The Scala code for that would look like this:

val test_coordinate = Seq((42.3,-112.2 )).toDF(“latitude”, 
“longitude”)
val df3 = assembler.transform(test_coordinate)
val categories = model.transform(df3)
val centroid_id = categories.select(“prediction”).rdd.map(r => 
r(0)).collect()(0).asInstanceOf[Int]
println(model.clusterCenters(centroid_id))
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Data scientists have embraced web-based notebooks, such as Apache Zeppelin, because 
they allow you to interactively transform and visually explore datasets without the burden 
of compiling and running a full program. To view the processes described above for data 
wrangling, k-means modeling, and centroid visualization on a map, see the following 
Zeppelin notebook:

https://www.zepl.com/viewer/notebooks/bm90ZTovL2lhbmRvdy8zNmNjMmU1ODJk
NGQ0ZWRmYjg5MzI4MzUzYTBjNmViYi9ub3RlLmpzb24

Operationalizing This Model as a Real-Time “Fire Response” App

The previous code excerpt shows how the model we developed could be used to identify 
which fire station (i.e., centroid) should be assigned to a given wildfire. We could 
operationalize this as a real-time fire response application with the following ML pipeline:

FIRE POSITION 
(LAT. LONG)

RESPONSEMODEL

Streams ensure requests
and responses are saved,
replicated, and replayable.

https://www.zepl.com/viewer/notebooks/bm90ZTovL2lhbmRvdy8zNmNjMmU1ODJkNGQ0ZWRmYjg5MzI4MzUzYTBjNmViYi9ub3RlLmpzb24
https://www.zepl.com/viewer/notebooks/bm90ZTovL2lhbmRvdy8zNmNjMmU1ODJkNGQ0ZWRmYjg5MzI4MzUzYTBjNmViYi9ub3RlLmpzb24
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Most machine learning applications are initially architected with a synchronous pipeline 
like the one shown above, but there are limitations to this simplistic approach. Since it is 
only architected for a single model, your options are limited when it comes to the following:

•	How do you A/B test different versions of your model?

•	How do you load balance inference requests?

•	How do you process inference requests with multiple models optimized for different 
objectives (e.g., speed versus accuracy)?

In order to do these things, the model must be a modular component in the pipeline, and 
model results should rendezvous at a point where they can be compared, monitored, 
and selected based upon user-defined criteria. This design pattern can be achieved with 
an architecture called the rendezvous architecture.

The Rendezvous Architecture

The rendezvous architecture is a machine learning pipeline that allows multiple models 
to process inference requests and rendezvous at a point where user-defined logic can 
be applied to choose which ML result to return to the requester. Such logic could say, 
“Give me the fastest result,” or “give me the highest confidence score after waiting 10 
seconds.” The rendezvous point also gives us a point where models can be monitored and 
requests can be captured when model results significantly disagree with each other.

REQUEST MODEL A

Everyone gets their own 
persisted, replicated, and 
replayable request queue.

RESPONSE

MODEL B

(Scores, tracable 
recorded ID)

Capture model
disagreements.

(ML result, 
provenance, 
perf metrics)

RENDEZVOUS
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Note the emphasis on streams. Streams buffer requests in an infinite, resilient, and 
replayable queue. This makes it easy to hot swap models and scale ML executors in  
a microservices fashion. It also guarantees traceability for every inference request 
and response.

If you’d like to learn more about the rendezvous architecture, read the highly recommended 
Machine Learning Logistics by Ted Dunning and Ellen Friedman, which is available as a 
free downloadable ebook.

Conclusion

This was a story about how I used geolocation data with k-means clustering that 
relates to a topic which deeply affects a lot of people – wildfires! Anytime you have lat/
long coordinates, you have an opportunity to do data science with k-means clustering 
and visualization on a map. I hope this example illustrates the basics of k-means 
clustering and also gives some perspective on how machine learning models can be 
operationalized in production scenarios using streaming interfaces.

https://mapr.com/ebook/machine-learning-logistics/
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Using Apache Spark GraphFrames to 
Analyze Flight Delays and Distances
This chapter will help you get started using Apache Spark GraphFrames. We will begin 
with an overview of Graph and GraphFrames concepts, then we will analyze the flight 
dataset from previous chapters for flight distances and delays. 

Graphs provide a powerful way to analyze the connections in a Dataset. GraphX is the 
Apache Spark component for graph-parallel and data-parallel computations, built upon a 
branch of mathematics called graph theory. It is a distributed graph processing framework 
that sits on top of the Spark core. GraphX brings the speed and scalability of parallel, 
iterative processing to graphs for big datasets. It partitions graphs that are too large to fit 
in the memory of a single computer among multiple computers in a cluster. In addition, 
GraphX partitions vertices independently of edges, which avoids the load imbalance often 
suffered when putting all the edges for a vertex onto a single machine.

GraphFrames extends Spark GraphX to provide the DataFrame API, making the analysis 
easier to use and, for some queries, more efficient with the Spark SQL Catalyst optimizer. 
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Overview of Some Graph Concepts

A graph is a mathematical structure used to model relations between objects. A graph 
is made up of vertices and edges that connect them. The vertices are the objects, and 
the edges are the relationships between them.

A regular graph is a graph where each vertex has the same number of edges. An example 
of a regular graph is Facebook friends. If Ted is a friend of Carol, then Carol is also a friend 
of Ted. 

A directed graph is a graph where the edges have a direction associated with them. 
An example of a directed graph is a Twitter follower. Carol can follow Oprah without 
implying that Oprah follows Carol. 

edge
vertex

Ted

Carol

Relationship 
Facebook friends

Relationship 
follows

1

3

2

6

edge

vertex

Oprah

Carol
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Graph Examples

Examples of connected data that can be represented by graphs include:

Websites: The breakthrough for the creators of the Google search engine was to create 
the PageRank graph algorithm, which represents pages as nodes and links as edges and 
measures the importance of each page by the number of links to a page and the number 
of links to each of the linking pages.

Recommendation Engines: Recommendation algorithms can use graphs where the 
nodes are the users and products, and their respective attributes and the edges are the 
ratings or purchases of the products by users. Graph algorithms can calculate weights 
for how similar users rated or purchased similar products.

A
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B
0.17

D
0.17

E
0.16

C
0.23

Ted
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Bob
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B
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Fraud: Graphs are useful for fraud detection algorithms in banking, healthcare, and 
network security. In healthcare, graph algorithms can explore the connections between 
patients, doctors, and pharmacy prescriptions. In banking, graph algorithms can explore 
the relationship between credit card applicants and phone numbers and addresses or 
between credit cards customers and merchant transactions. In network security, graph 
algorithms can explore data breaches.

These are just some examples of the uses of graphs. Next, we will look at a specific 
example, using Spark GraphFrames.

Narcotic
Abuse
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GraphFrame Property Graph

Spark GraphX supports graph computation with a distributed property graph. A property 
graph is a directed multigraph, which can have multiple edges in parallel. Every edge and 
vertex has user defined properties associated with it. The parallel edges allow multiple 
relationships between the same vertices. 

With GraphFrames, vertices and edges are represented as DataFrames, which adds the 
advantages of querying with Spark SQL and support for DataFrame data sources like 
Parquet, JSON, and CSV. 

Flight 123

SJC

Flight 1002

LAX
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Example Flight Scenario

As a starting simple example, we will analyze 3 flights; for each flight, we have the 
following information:

Originating Airport Destination Airport Distance
SFO ORD 1800 miles
ORD DFW 800 miles
DFW SFO 1400 miles

In this scenario, we are going to represent the airports as vertices and flight routes as 
edges. For our graph, we will have three vertices, each representing an airport. The 
vertices each have the airport code as the ID, and the city as a property: 

Vertex Table for Airports

id city
SFO San Francisco
ORD Chicago
DFW Texas

The edges have the Source ID, the Destination ID, and the distance as a property. 

vertex

edge

ORD

DFW

SFO
1800 miles

800 miles1400 miles
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Edges Table for Routes

src dst distance delay
SFO ORD 1800 40
ORD DFW 800 0
DFW SFO 1400 10

Launching the Spark Interactive Shell with GraphFrames

Because GraphFrames is a separate package from Spark, start the Spark shell, 
specifying the GraphFrames package as shown below: 

$SPARK_HOME/bin/spark-shell --packages 
graphframes:graphframes:0.6.0-spark2.3-s_2.11

Define Vertices

First, we will import the DataFrames, GraphX, and GraphFrames packages. 

import org.apache.spark._
import org.apache.spark.graphx._
import org.apache.spark.sql._
import org.apache.spark.sql.functions._
import org.apache.spark.sql.types._
import org.apache.spark.sql.types.StructType
import org.graphframes._
import spark.implicits._

We define airports as vertices. A vertex DataFrame must have an ID column and may 
have multiple attribute columns. In this example, each airport vertex consists of:

•	Vertex ID → id 

•	Vertex Property → city

Vertex Table for Airports

id city
SFO San Francisco
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We define a DataFrame with the above properties, which will be used for the vertices in 
the GraphFrame.

// create vertices with ID and Name
case class Airport(id: String, city: String) extends 
Serializable

val airports=Array(Airport(“SFO”,”San 
Francisco”),Airport(“ORD”,”Chicago”),Airport(“DFW”,”Dallas Fort 
Worth”))

val vertices = spark.createDataset(airports).toDF
vertices.show

result:
+---+-----------------+
| id|             city|
+---+-----------------+
|SFO|    San Francisco|
|ORD|          Chicago|
|DFW|Dallas Fort Worth|
+---+-----------------+

Define Edges

Edges are the flights between airports. An edge DataFrame must have src and  
dst columns and may have multiple relationship columns. In our example, an  
edge consists of:

•	Edge origin ID → src 

•	Edge destination ID → dst 

•	Edge property distance → dist

•	Edge property delay→ delay

Edges Table for Flights

id src src src delay
AA_2017-01-
01_SFO_ORD

SFO SFO SFO 40
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We define a DataFrame with the above properties, which will be used for the edges in 
the GraphFrame.

// create  flights with srcid, destid, distance
case class Flight(id: String, src: String,dst: String, dist: 
Double, delay: Double)

val flights=Array(Flight(“SFO_ORD_2017-01-01_AA”,”SFO”,”ORD”,1800, 
40),Flight(“ORD_DFW_2017-01-01_UA”,”ORD”,”DFW”,800, 
0),Flight(“DFW_SFO_2017-01-01_DL”,”DFW”,”SFO”,1400, 10))

val edges = spark.createDataset(flights).toDF
edges.show

result:
+--------------------+---+---+------+-----+
|                  id|src|dst|  dist|delay|
+--------------------+---+---+------+-----+
|SFO_ORD_2017-01-0...|SFO|ORD|1800.0| 40.0|
|ORD_DFW_2017-01-0...|ORD|DFW| 800.0|  0.0|
|DFW_SFO_2017-01-0...|DFW|SFO|1400.0| 10.0|
+--------------------+---+---+------+-----+
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Create the GraphFrame

Below, we create a GraphFrame by supplying a vertex DataFrame and an edge DataFrame. 
It is also possible to create a GraphFrame with just an edge DataFrame; then the vertices 
will be inferred. 

// define the graph
val graph = GraphFrame(vertices, edges)

// show graph vertices 
graph.vertices.show

+---+-----------------+
| id|             name|
+---+-----------------+
|SFO|    San Francisco|
|ORD|          Chicago|
|DFW|Dallas Fort Worth|
+---+-----------------+

// show graph edges 
graph.edges.show

result:
+--------------------+---+---+------+-----+
|                  id|src|dst|  dist|delay|
+--------------------+---+---+------+-----+
|SFO_ORD_2017-01-0...|SFO|ORD|1800.0| 40.0|
|ORD_DFW_2017-01-0...|ORD|DFW| 800.0|  0.0|
|DFW_SFO_2017-01-0...|DFW|SFO|1400.0| 10.0|
+--------------------+---+---+------+-----+



154

Chapter 9: Using Apache Spark GraphFrames to Analyze Flight Delays and Distances

Querying the GraphFrame

Now we can query the GraphFrame to answer the following questions:

How many airports are there? 

// How many airports?
graph.vertices.count

result: Long = 3

How many flights are there between airports?

// How many flights?
graph.edges.count

result: = 3

Which flight routes are greater than 1000 miles in distance?

// routes > 1000 miles distance?
graph.edges.filter(“dist > 800”).show

+--------------------+---+---+------+-----+
|                  id|src|dst|  dist|delay|
+--------------------+---+---+------+-----+
|SFO_ORD_2017-01-0...|SFO|ORD|1800.0| 40.0|
|DFW_SFO_2017-01-0...|DFW|SFO|1400.0| 10.0|
+--------------------+---+---+------+-----+
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The GraphFrames triplets put all of the edge, src, and dst columns together in a 
DataFrame.

// triplets
graph.triplets.show

result:

+--------------------+--------------------+--------------------+
|                 src|                edge|                 dst|
+--------------------+--------------------+--------------------+
| [SFO,San Francisco]|[SFO_ORD_2017-01-...|       [ORD,Chicago]|
|       [ORD,Chicago]|[ORD_DFW_2017-01-...|[DFW,Dallas Fort ...|
|[DFW,Dallas Fort ...|[DFW_SFO_2017-01-...| [SFO,San Francisco]|
+--------------------+--------------------+--------------------+

What are the longest distance routes?

// print out longest routes
graph.edges
  .groupBy(“src”, “dst”)
  .max(“dist”)
  .sort(desc(“max(dist)”)).show

+---+---+---------+
|src|dst|max(dist)|
+---+---+---------+
|SFO|ORD|   1800.0|
|DFW|SFO|   1400.0|
|ORD|DFW|    800.0|
+---+---+---------+
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Analyze Real Flight Data with GraphFrames Scenario

Now, we will analyze flight delays and distances, using the real flight data that we 
explored in chapter 2. For each airport, we have the following information:

Vertex Table for Airports

id city state
SFO San Francisco CA

For each flight, we have the following information

Edges Table for Flights

id src dst dist dist
AA_2017-01-
01_SFO_ORD

SFO ORD 1800 1800

Again, in this scenario, we are going to represent the airports as vertices and flights 
as edges. We are interested in analyzing airports and flights to determine the busiest 
airports, their flight delays, and distances.

First, we will import the needed packages. 

import org.apache.spark._
import org.apache.spark.graphx._
import org.apache.spark.sql._
import org.apache.spark.sql.functions._
import org.apache.spark.sql.types._
import org.apache.spark.sql.types.StructType
import org.graphframes._
import spark.implicits._
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Below, we define the flight schema, corresponding to the JSON data file. 

// define the Flight Schema
val schema = StructType(Array(
    StructField(“_id”, StringType, true),
    StructField(“dofW”, IntegerType, true),
    StructField(“carrier”, StringType, true),
    StructField(“origin”, StringType, true),
    StructField(“dest”, StringType, true),
    StructField(“crsdephour”, IntegerType, true),
    StructField(“crsdeptime”, DoubleType, true),
    StructField(“depdelay”, DoubleType, true),
    StructField(“crsarrtime”, DoubleType, true),
    StructField(“arrdelay”, DoubleType, true),
    StructField(“crselapsedtime”, DoubleType, true),
    StructField(“dist”, DoubleType, true)
  ))

case class Flight(_id: String, dofW: Integer, carrier: String, 
origin: String, dest: String, crsdephour: Integer, crsdeptime: 
Double, depdelay: Double,crsarrtime: Double, arrdelay: Double, 
crselapsedtime: Double, dist: Double) extends Serializable 

Define Edges

Edges are the flights between airports. An edge must have src and dst columns and can 
have multiple relationship columns. In our example, an edge consists of:

id src dst dist delay carrier crsdephour
AA_2017-01-
01_SFO_ORD

SFO ORD 1800 40 AA 17
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Below, we load the flights data from a JSON file into a DataFrame. Then we select the 
columns that we will use for the flight edge DataFrame. The required column names are 
id, src, and dst, so we rename those columns in the select statement.

var file = “maprfs:///data/flights20170102.json”

val df = spark.read.option(“inferSchema”, “false”).
schema(schema).json(file).as[Flight]

val flights = df.withColumnRenamed(“_id”, “id”)
.withColumnRenamed(“origin”, “src”)
.withColumnRenamed(“dest”, “dst”)
.withColumnRenamed(“depdelay”, “delay”)

flights.show

result:
+--------------------+---+---+-----+-----+-------+----------+
|                  id|src|dst|delay| dist|carrier|crsdephour|
+--------------------+---+---+-----+-----+-------+----------+
|ATL_BOS_2017-01-0...|ATL|BOS| 30.0|946.0|     DL|         9|
|ATL_BOS_2017-01-0...|ATL|BOS|  0.0|946.0|     DL|        11|
|ATL_BOS_2017-01-0...|ATL|BOS|  0.0|946.0|     WN|        13|
+--------------------+---+---+-----+-----+-------+----------+
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Define Vertices

We define airports as vertices. Vertices can have properties or attributes associated 
with them. For each airport, we have the following information:

Vertex Table for Airports

id city state
SFO San Francisco CA

Note that our dataset contains only a subset of the airports in the USA; below are the 
airports in our dataset shown on a map.

DEN

ATL

IAH

ORD

BOS

SFO

MIA

LGA

EWR
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Below, we read the airports information into a DataFrame from a JSON file.

// create airports DataFrame

val airports = spark.read.json(“maprfs:///data/airports.json”)
airports.createOrReplaceTempView(“airports”)
airports.show

result:
+-------------+-------+-----+---+
|         City|Country|State| id|
+-------------+-------+-----+---+
|      Houston|    USA|   TX|IAH|
|     New York|    USA|   NY|LGA|
|       Boston|    USA|   MA|BOS|
|       Newark|    USA|   NJ|EWR|
|       Denver|    USA|   CO|DEN|
|        Miami|    USA|   FL|MIA|
|San Francisco|    USA|   CA|SFO|
|      Atlanta|    USA|   GA|ATL|
|      Chicago|    USA|   IL|ORD|
+-------------+-------+-----+---+
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Create the Property Graph

Below, we create a GraphFrame by supplying a vertex DataFrame and an edge DataFrame.

// define the graphframe
val graph = GraphFrame(airports, flights)

// show graph vertices 
graph.vertices.show(2)

result:
+--------+-------+-----+---+
|    City|Country|State| id|
+--------+-------+-----+---+
| Houston|    USA|   TX|IAH|
|New York|    USA|   NY|LGA|
+--------+-------+-----+---+

// show graph edges 
graph.edges.show(2)

result:
+--------------------+---+---+-----+-----+-------+----------+
|                  id|src|dst|delay| dist|carrier|crsdephour|
+--------------------+---+---+-----+-----+-------+----------+
|ATL_BOS_2017-01-0...|ATL|BOS| 30.0|946.0|     DL|         9|
|ATL_BOS_2017-01-0...|ATL|BOS|  0.0|946.0|     DL|        11|
+--------------------+---+---+-----+-----+-------+----------+

Querying the GraphFrame

Now we can query the GraphFrame to answer the following questions:

How many airports are there? 

// How many airports?
val numairports = graph.vertices.count

result:
 Long = 9
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How many flights are there?

// How many flights?
val numflights = graph.edges.count

result:
// Long = 41348

Which flight routes have the longest distance?

// show the longest distance routes
graph.edges
.groupBy(“src”, “dst”)
.max(“dist”)
.sort(desc(“max(dist)”)).show(4)

result:
+---+---+---------+
|src|dst|max(dist)|
+---+---+---------+
|SFO|BOS|   2704.0|
|BOS|SFO|   2704.0|
|SFO|MIA|   2585.0|
|MIA|SFO|   2585.0|
+---+---+---------+
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Which flight routes have the highest average delays?

graph.edges
.groupBy(“src”, “dst”)
.avg(“delay”)
.sort(desc(“avg(delay)”)).show(5)

result:
+---+---+------------------+
|src|dst|        avg(delay)|
+---+---+------------------+
|ATL|SFO|            33.505|
|MIA|SFO| 32.30797101449275|
|SFO|BOS| 26.77319587628866|
|DEN|SFO|          26.45375|
|IAH|SFO|26.002141327623125|
+---+---+------------------+

Which flight hours have the highest average delays?

graph.edges
.groupBy(“crsdephour”)
.avg(“delay”)
.sort(desc(“avg(delay)”)).show(5)

result:
+----------+------------------+
|crsdephour|        avg(delay)|
+----------+------------------+
|        18| 24.24118415324336|
|        19|23.348782771535582|
|        21|19.617375231053604|
|        16| 19.30346232179226|
|        17| 18.77857142857143|
+----------+------------------+
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Which flight routes have the most delays over 40 minutes?

graph.edges
.filter(“ delay > 40”)
.groupBy(“src”, “dst”)
.agg(count(“delay”).as(“flightcount”))
.sort(desc(“flightcount”)).show(5)

result:
+---+---+-----------+
|src|dst|flightcount|
+---+---+-----------+
|DEN|SFO|        172|
|ORD|SFO|        168|
|ATL|LGA|        155|
|ATL|EWR|        141|
|SFO|DEN|        134|
+---+---+-----------+
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What are the longest delays for flights that are greater than 1500 miles in distance?

// flights > 1500 miles distance ordered by delay 

graph.edges.filter(“dist > 1500”)
.orderBy(desc(“delay”)).show(3)

result:
+--------------------+---+---+------+------+-------+----------+
|                  id|src|dst| delay|  dist|carrier|crsdephour|
+--------------------+---+---+------+------+-------+----------+
|SFO_ORD_2017-02-2...|SFO|ORD|1440.0|1846.0|     AA|         8|
|DEN_EWR_2017-02-2...|DEN|EWR|1138.0|1605.0|     UA|        12|
|DEN_LGA_2017-02-2...|DEN|LGA|1004.0|1620.0|     DL|        16|
+--------------------+---+---+------+------+-------+----------+

What are the worst hours for delayed flights departing from Atlanta?

graph.edges.filter(“src = ‘ATL’ and delay > 1”).
groupBy(“crsdephour”).avg(“delay”).sort(desc(“avg(delay)”)).
show(5)

result:
+----------+------------------+
|crsdephour|        avg(delay)|
+----------+------------------+
|        19| 60.15021459227468|
|        20|56.816901408450704|
|        18|  55.5187969924812|
|        22| 48.61971830985915|
|        17|           47.5125|
+----------+------------------+
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What are the four most frequent flight routes in the data set?

graph.edges.groupBy(“src”, “dst”).count().orderBy(desc(“count”)).
show(4)

result: 
+---+---+-----+
|src|dst|count|
+---+---+-----+
|ATL|LGA| 1271|
|LGA|ATL| 1268|
|LGA|ORD| 1107|
|ORD|LGA| 1070|
+---+---+-----+
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Vertex Degrees

The degree of a vertex is the number of edges that touch the vertex. The degree of a 
graph vertex v of a graph G is the number of graph edges that touch v. 

GraphFrames provides vertex inDegree, outDegree, and degree queries, which 
determine the number of incoming edges, outgoing edges, and total edges. Using 
GraphFrames degree queries, we can answer the following questions. 

Which airports have the most incoming flights? 

// get top 3
graph.inDegrees.orderBy(desc(“inDegree”)).show(3)

+---+--------+
| id|inDegree|
+---+--------+
|ORD|    6212|
|ATL|    6012|
|LGA|    4974|
+---+--------+

Which airports have the most outgoing flights?

// which airport has the most outgoing flights?
graph.outDegrees.orderBy(desc(“outDegree”)).show(3)

+---+---------+
| id|outDegree|
+---+---------+
|ORD|     6300|
|ATL|     5971|
|LGA|     4992|
+---+---------+
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Which airports have the most incoming and outgoing flights?

// Define a reduce operation to compute the highest degree vertex
graph.degrees.orderBy(desc(“degree”)).show()

result:
+---+------+
| id|degree|
+---+------+
|ORD| 12512|
|ATL| 11983|
|LGA|  9966|
|MIA|  8864|
|DEN|  8486|
|EWR|  8428|
|SFO|  7623|
|BOS|  7423|
|IAH|  7411|
+---+------+
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PageRank

Another GraphFrames query is PageRank, which is based on the Google PageRank 
algorithm. PageRank measures the importance of each vertex in a graph, by determining 
which vertices have the most edges with other vertices. In our example, we can use 
PageRank to determine which airports are the most important, by measuring which 
airports have the most connections to other airports. We have to specify the probability 
tolerance, which is the measure of convergence.

What are the most important airports, according to PageRank?

// use pageRank
val ranks = graph.pageRank.resetProbability(0.15).maxIter(10).
run()

ranks.vertices.orderBy($”pagerank”.desc).show()

result:
+-------------+-------+-----+---+------------------+
|         City|Country|State| id|          pagerank|
+-------------+-------+-----+---+------------------+
|      Chicago|    USA|   IL|ORD|1.3093391746898806|
|      Atlanta|    USA|   GA|ATL|1.2643315314643224|
|     New York|    USA|   NY|LGA|1.0647854334640885|
|        Miami|    USA|   FL|MIA|0.9682949340363207|
|       Newark|    USA|   NJ|EWR|0.9322291015836434|
|       Denver|    USA|   CO|DEN|0.9318184799701961|
|San Francisco|    USA|   CA|SFO|0.8558792499530605|
|      Houston|    USA|   TX|IAH|0.8397625821927315|
|       Boston|    USA|   MA|BOS|0.8335595126457567|
+-------------+-------+-----+---+------------------+



170

 
Message Passing via AggregateMessages

Many important graph algorithms are iterative algorithms, since properties of vertices 
depend on properties of their neighbors, which depend on properties of their neighbors. 
Pregel is an iterative graph processing model, developed at Google, which uses a 
sequence of iterations of messages passing between vertices in a graph. GraphFrames 
provides aggregateMessages, which implements an aggregation message-passing API, 
based on the Pregel model. GraphFrames aggregateMessages sends messages between 
vertices and aggregates message values from the neighboring edges and vertices of 
each vertex.

Chapter 9: Using Apache Spark GraphFrames to Analyze Flight Delays and Distances
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The code below shows how to use aggregateMessages to compute the average flight 
delay by the originating airport. The flight delay for each flight is sent to the src vertex, 
then the average is calculated for the vertices.

import org.graphframes.lib.AggregateMessages

val AM = AggregateMessages
val msgToSrc = AM.edge(“delay”)
val agg = { graph.aggregateMessages
  .sendToSrc(msgToSrc)    
  .agg(avg(AM.msg).as(“avgdelay”))
  .orderBy(desc(“avgdelay”))
  .limit(5) } 
agg.show()

result:
+---+------------------+
| id|          avgdelay|
+---+------------------+
|SFO|20.306176084099867|
|EWR|16.317373785257170|
|DEN|16.167720777699696|
|IAH|15.925946093111898|
|ORD|14.880476190476191|
+---+------------------+

Summary

GraphFrames provides a scalable and easy way to query and process large graph datasets, 
which can be used to solve many types of analysis problems. In this chapter, we gave 
an overview of the GraphFrames graph processing APIs. We encourage you to try out 
GraphFrames in more depth on some of your own projects. 
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Tips and Best Practices to Take 
Advantage of Spark 2.x
With Apache Spark 2.0 and later versions, big improvements were implemented to enable 
Spark to execute faster, making lot of earlier tips and best practices obsolete. This chapter 
will first give a quick overview of what changes were made and then some tips to take 
advantage of these changes.

Project Tungsten 

Tungsten is the code name for the Spark project that makes changes to Apache Spark’s 
execution engine, focusing on improvements to the efficiency of memory and CPU 
usage. Tungsten builds upon ideas from modern compilers and massively parallel 
processing (MPP) technologies, such as Apache Drill, Presto, and Apache Arrow. Spark 2.x 
improvements include:
•	To reduce JVM object memory size, creation, and garbage collection processing, Spark 

explicitly manages memory and converts most operations to operate directly against 
binary data.

•	Columnar layout for memory data avoids unnecessary I/O and accelerates analytical 
processing performance on modern CPUs and GPUs.

Logical Table
Representation

a b

a1 b1 c1

a2 b2 c2

a3 b3 c3

a4 b4 c4

a5 b5 c5

c a1 b1 c1

Row
Layout

a2 b2 c2 a3 b3 c3 a4 b4 c4 a5 b5 c5

a1 a2 a3

Column
Layout

a4 a5 b1 b2 b3 b4 b5 c1 c2 c3 c4 c5

https://databricks.com/glossary/tungsten
https://mapr.com/blog/apache-drill-architecture-ultimate-guide/
https://prestodb.io/docs/current/overview/concepts.html#query-execution-model
https://arrow.apache.org/
https://arrow.apache.org/
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•	Vectorization allows the CPU to operate on vectors, which are arrays of column values 
from multiple records. This takes advantage of modern CPU designs, by keeping all 
pipelines full to achieve efficiency. 

•	To improve the speed of data processing through more effective use of L1/ L2/L3 CPU 
caches, Spark algorithms and data structures exploit memory hierarchy with cache-
aware computation. 

•	Spark SQL’s Catalyst Optimizer underpins all the major new APIs in Spark 2.0 
and later versions, from DataFrames and Datasets to Structured Streaming. The 
Catalyst optimizer handles: analysis, logical optimization, physical planning, and code 
generation to compile parts of queries to Java bytecode. Catalyst now supports both 
rule-based and cost-based optimization.

Image reference: Databricks
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https://databricks.com/glossary/what-are-dataframes
https://databricks.com/glossary/what-are-datasets
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•	Spark SQL “Whole-Stage Java Code Generation” optimizes CPU usage by generating 
a single optimized function in bytecode for the set of operators in a SQL query (when 
possible), instead of generating iterator code for each operator.

Tips for Taking Advantage of Spark 2.x Improvements

Use Dataset, DataFrames, Spark SQL 

In order to take advantage of Spark 2.x, you should be using Datasets, DataFrames, and 
Spark SQL, instead of RDDs. Datasets, DataFrames and Spark SQL provide the following 
advantages: 
•	Compact columnar memory format

•	Direct memory access

•	Reduced garbage collection processing overhead

•	Catalyst query optimization

•	Whole-stage code generation

DETAILS FOR QUERY 0
Submitted Time: 2018/07/31 1:22:12
Duration: 0.9 s
Succeeded Jobs: 1

WholeStageCodegen
0 ms (0 ms, 0 ms, 0 ms)

Filter
number of output rows: 22

Project

CollectLimit

Scan json
number of output rows: 313
number of files: 1
metadata time (ms): 0
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When possible, use Spark SQL functions – for example, to_date(), hour() – instead of 
custom UDFs in order to benefit from the advantages above.

Datasets provide the advantage of compile time type safety over DataFrames. However, 
Dataset functional transformations (like map) will not take advantage of query 
optimization, whole-stage code generation, and reduced GC. To learn more about 
Datasets, DataFrames, and Spark SQL, refer to chapters 2 and 3. 

Use the Best Data Store for Your Use Case

Spark supports several data formats, including CSV, JSON, ORC, and Parquet, and 
several data sources or connectors, including distributed file stores such as MapR XD, 
Hadoop’s HDFS, and Amazon’s S3, popular NoSQL databases such as MapR Database 
and Apache HBase, and distributed messaging stores such as Apache Kafka and MapR 
Event Store for Kafka. 

But just because Spark supports a given data storage or format doesn’t mean you’ll get 
the same performance with all of them. Typically, data pipelines will involve multiple data 
sources and sinks and multiple formats to support different use cases and different read/
write latency requirements. Here are some guidelines: 
•	File data stores are good for write once (append only), read many use cases. CVS 

and JSON data formats give excellent write path performance but are slower for 
reading; these formats are good candidates for collecting raw data for example logs, 
which require high throughput writes. Parquet is slower for writing but gives the best 
performance for reading; this format is good for BI and analytics, which require low 
latency reads. 

•	Apache HBase and MapR Database are good for random read/write use cases. MapR 
Database supports consistent, predictable, high throughput, fast reads and writes with 
efficient updates, automatic partitioning, and sorting. MapR Database is multi-model: 
wide-column, key-value with the HBase API or JSON (document) with the OJAI API. 
MapR Database is good for real-time analytics on changing data use cases. 

•	Apache Kafka and MapR Event Store for Kafka are good for scalable reading and writing 
of real-time streaming data. MapR Event Store is good for data pipelines with stream-
first architecture patterns and kappa or lambda architectures. 
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CSV and JSON Tips and Best Practices

When persisting and compressing CSV and JSON files, make sure they are splittable, 
give high speeds, and yield reasonable compression. ZIP compression is not splittable, 
whereas Snappy is splittable; Snappy also gives reasonable compression with high 
speed. When reading CSV and JSON files, you will get better performance by specifying 
the schema, instead of using inference; specifying the schema reduces errors for 
data types and is recommended for production code. See chapter two for examples of 
specifying the schema on read.
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Parquet Tips and Best Practices 

Apache Parquet gives the fastest read performance with Spark. Parquet arranges data 
in columns, putting related values in close proximity to each other to optimize query 
performance, minimize I/O, and facilitate compression. Parquet detects and encodes the 
same or similar data, using a technique that conserves resources. Parquet also stores 
column metadata and statistics, which can be pushed down to filter columns (discussed 
below). Spark 2.x has a vectorized Parquet reader that does decompression and decoding 
in column batches, providing ~ 10x faster read performance. 

Parquet files are immutable; modifications require a rewrite of the dataset. For streaming 
data, you can stream to a fast read/write data store, such as MapR Database, then extract 
data to Parquet files for specific analytic use cases, or stream new datasets to a new 
partition (see partitioning below).

Parquet Partitioning

Spark table partitioning optimizes reads by storing files in a hierarchy of directories based 
on partitioning columns. For example, a directory structure could be organized by location, 
such as state/city, or by date, such as year/month, shown below:

Parquet Columnar Format

a1 a2 a3 b1 b2 b3 c1 c2 c3

file directory
 year=2018

  month=01
   data1.parquet
  month=02
   data2.parquet
  ...
 year=2017

  month=01
   data1.parquet
  month=02
   data1.parquet
  ...
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DataFrames can be saved as persistent tables into a Hive metastore, using the saveAsTable 
command. If you do not have Hive setup, Spark will create a default local Hive metastore 
(using Derby). Persistent tables have several optimization benefits: partition and statistic 
metadata, and they can be bucketed (discussed later). 

As an example with the flight dataset (used in chapters 2, 3, 5, and 9), a lot of queries about 
departure delays are organized around the originating airport (the src column), so this 
could make a good partitioning column. Here is a JSON row from this Dataset: 

{    
“id”: “ATL_LGA_2017-01-01_AA_1678”,
“dofW”: 7,
“carrier”: “AA”,
“src”: “ATL”,
“dst”: “LGA”,
“crsdephour”: 17,
“crsdeptime”: 1700,
“depdelay”: 0.0,
“crsarrtime”: 1912,
“arrdelay”: 0.0,
“crselapsedtime”: 132.0,
“dist”: 762.0
}

Here is the code to persist a flights DataFrame as a table consisting of Parquet files 
partitioned by the src column:

df.write.format(“parquet”)
.partitionBy(“src”)
.option(“path”, “/user/mapr/data/flights”)
.saveAsTable(“flights”)

https://spark.apache.org/docs/latest/sql-data-sources-load-save-functions.html
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Below is the resulting directory structure as shown by a Hadoop list files command:

hadoop fs -ls /user/mapr/data/flights

  /user/mapr/data/flights/src=ATL
  /user/mapr/data/flights/src=BOS
  /user/mapr/data/flights/src=CLT
  /user/mapr/data/flights/src=DEN
  /user/mapr/data/flights/src=DFW
  /user/mapr/data/flights/src=EWR
  /user/mapr/data/flights/src=IAH
  /user/mapr/data/flights/src=LAX
  /user/mapr/data/flights/src=LGA
  /user/mapr/data/flights/src=MIA
  /user/mapr/data/flights/src=ORD
  /user/mapr/data/flights/src=SEA
  /user/mapr/data/flights/src=SFO

Below, we see that the src=DEN subdirectory contains two Parquet files:

hadoop fs -ls /user/mapr/data/flights/src=DEN

/user/mapr/data/flights/src=DEN/part-00000-deb4a3d4-d8c3-4983-8756-
ad7e0b29e780.c000.snappy.parquet
/user/mapr/data/flights/src=DEN/part-00001-deb4a3d4-d8c3-4983-8756-
ad7e0b29e780.c000.snappy.parquet

Partition Pruning and Predicate Pushdown

Partition pruning is a performance optimization that limits the number of files and 
partitions that Spark reads when querying. After partitioning the data, queries that 
match certain partition filter criteria improve performance by allowing Spark to only 
read a subset of the directories and files. When partition filters are present, the catalyst 
optimizer pushes down the partition filters. The scan reads only the directories that 
match the partition filters, thus reducing disk I/O. For example, the following query 
reads only the files in the src=DEN partition directory in order to query the average 
departure delay for flights originating from Denver.
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df.filter(“src = ‘DEN’ and depdelay > 1”)
.groupBy(“src”, “dst”).avg(“depdelay”)
.sort(desc(“avg(depdelay)”)).show()

result:
+---+---+------------------+
|src|dst|     avg(depdelay)|
+---+---+------------------+
|DEN|EWR|54.352020860495436|
|DEN|MIA| 48.95263157894737|
|DEN|SFO|47.189473684210526|
|DEN|ORD| 46.47721518987342|
|DEN|DFW|44.473118279569896|
|DEN|CLT|37.097744360902254|
|DEN|LAX|36.398936170212764|
|DEN|LGA| 34.59444444444444|
|DEN|BOS|33.633187772925766|
|DEN|IAH| 32.10775862068966|
|DEN|SEA|30.532345013477087|
|DEN|ATL| 29.29113924050633|
+---+---+------------------+

Or in SQL:

%sql
select src, dst, avg(depdelay)
from flights where src=’DEN’ and depdelay > 1 
group by src, dst
ORDER BY src

You can see the physical plan for a DataFrame query in the Spark web UI SQL tab 
(discussed in chapter 3) or by calling the explain method shown below. Here in red, we see 
partition filter push down, which means that the src=DEN filter is pushed down into the 
Parquet file scan. This minimizes the files and data scanned and reduces the amount of 
data passed back to the Spark engine for the aggregation average on the departure delay. 
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df.filter(“src = ‘DEN’ and depdelay > 1”)
.groupBy(“src”, “dst”).avg(“depdelay”)
.sort(desc(“avg(depdelay)”)).explain

== Physical Plan ==
TakeOrderedAndProject(limit=1001, orderBy=[avg(depdelay)#304 DESC 
NULLS LAST], output=[src#157,dst#149,avg(depdelay)#314])

+- *(2) HashAggregate(keys=[src#157, dst#149],
       functions=[avg(depdelay#152)], 
       output=[src#157, dst#149, avg(depdelay)#304])

   +- Exchange hashpartitioning(src#157, dst#149, 200)

      +- *(1) HashAggregate(keys=[src#157, dst#149], 
              functions=[partial_avg(depdelay#152)],  
output=[src#157,  dst#149,
              sum#321, count#322L])

   +- *(1) Project [dst#149, depdelay#152, src#157]

     +- *(1) Filter (isnotnull(depdelay#152) && (depdelay#152 > 
1.0))

       +- *(1) FileScan parquet default.
flights[dst#149,depdelay#152,src#157] Batched: true, Format: 
Parquet, Location: PrunedInMemoryFileIndex[maprfs:/user/mapr/
data/flights/src=DEN], PartitionCount: 1, PartitionFilters: 
[isnotnull(src#157), (src#157 = DEN)], PushedFilters: 
[IsNotNull(depdelay), GreaterThan(depdelay,1.0)], ReadSchema: 
struct<dst:string,depdelay:double>

The physical plan is read from the bottom up, whereas the DAG is read from the top 
down. Note: the Exchange means a shuffle occurred between stages. 
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Duration: 1 s
Succeeded Jobs: 7

WholeStageCodegen
218 ms (82 ms, 136 ms, 136 ms)

Filter
number of output rows: 8,373

Project

HashAggregate
aggregate time total (min, med, max): 
172 ms (65 ms, 107 ms, 107 ms) 
peak memory total (min, med, max): 
512.0 KB (256.0 KB, 256.0 KB, 256.0 KB) 
number of output rows: 24

Scan parquet default.flights
number of output rows: 23,410, scan time 
total (min, med, max): 
150 ms (54 ms, 96 ms, 96 ms)

Exchange
data size total (min, med, max): 1342.0 B 
(671.0 B, 671.0 B, 671.0 B)

WholeStageCodegen
21 ms (0 ms, 0 ms, 33 ms)

HashAggregate
aggregate time total (min, med, max):
0 ms (0 ms, 0 ms, 0 ms) 
peak memory total (min, med, max): 
242.0 MB (256.0 KB, 256.0 KB, 16.2 MB) 
number of output rows: 12 avg hash 
probe (min, med, max): (1, 1, 1, )

TakeOrderedAndProject
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Partitioning Tips

The partition columns should be used frequently in queries for filtering and should 
have a small range of values with enough corresponding data to distribute the files in 
the directories. You want to avoid too many small files, which make scans less efficient 
with excessive parallelism. You also want to avoid having too few large files, which can 
hurt parallelism. 

Coalesce and Repartition 

Before or when writing a DataFrame, you can use dataframe.coalesce(N) to reduce the 
number of partitions in a DataFrame, without shuffling, or df.repartition(N) to reorder 
and either increase or decrease the number of partitions with shuffling data across the 
network to achieve even load balancing. 

df.write.format(“parquet”)
.repartition(13)
.partitionBy(“src”)
.option(“path”, “/user/mapr/data/flights”)
.saveAsTable(“flights”)

Bucketing

Bucketing is another data organization technique that groups data with the same 
bucket value across a fixed number of “buckets.” This can improve performance in 
wide transformations and joins by avoiding “shuffles.” Recall from chapter 3, with wide 
transformation shuffles, data is sent across the network to other nodes and written to 
disk, causing network and disk I/O, and making the shuffle a costly operation. Below 
is a shuffle caused by a df.groupBy(“carrier”).count; if this dataset were bucketed by 
“carrier,” then the shuffle could be avoided. 

WIDE

AA UA 
DL

AA UA 
DL

AA UA 
DL

AA AA 
AA AA

DL DL
DL DL

UA UA
UA UA

AA UA 
DL
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Bucketing is similar to partitioning, but partitioning creates a directory for each partition, 
whereas bucketing distributes data across a fixed number of buckets by a hash on the 
bucket value. Tables can be bucketed on more than one value and bucketing can be used 
with or without partitioning.

As an example with the flight dataset, here is the code to persist a flights DataFrame as 
a table, consisting of Parquet files partitioned by the src column and bucketed by the dst 
and carrier columns (sorting by the id will sort by the src, dst, flightdate, and carrier, since 
that is what the id is made up of):

df.write.format(“parquet”)
.sortBy(“id”)
.partitionBy(“src”)
.bucketBy(4,”dst”,”carrier”)
.option(“path”, “/user/mapr/data/flightsbkdc”)
.saveAsTable(“flightsbkdc”)

The resulting directory structure is the same as before, with the files in the src directories 
bucketed by dst and carrier. The code below computes statistics on the table, which can 
then be used by the Catalyst optimizer. Next, the partitioned and bucketed table is 
read into a new DataFrame df2.

spark.sql(“ANALYZE TABLE flightsbkdc COMPUTE STATISTICS”)
val df2  = spark.table(“flightsbkdc”)

Next, let’s look at the optimizations for the following query:

df2.filter(“src = ‘DEN’ and depdelay > 1”)
.groupBy(“src”, “dst”,”carrier”)
.avg(“depdelay”)
.sort(desc(“avg(depdelay)”)).show()

result:
+---+---+-------+------------------+
|src|dst|carrier|     avg(depdelay)|
+---+---+-------+------------------+
|DEN|EWR|     UA| 60.95841209829867|
|DEN|LAX|     DL|59.849624060150376|
|DEN|SFO|     UA|59.058282208588956|
. . . 
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Here again, we see partition filter and filter pushdown, but we also see that there is 
no “Exchange” like there was before bucketing, which means there was no shuffle to 
aggregate by src, dst, and carrier.

== Physical Plan ==
TakeOrderedAndProject(limit=1001, orderBy=[avg(depdelay)#491 DESC 
NULLS LAST], output=[src#460,dst#452,carrier#451,avg(depdelay)#504])

+- *(1) HashAggregate(keys=[src#460, dst#452, carrier#451], 
functions=[avg(depdelay#455)], output=[src#460, dst#452, 
carrier#451, avg(depdelay)#491])
 +- *(1) HashAggregate(keys=[src#460, dst#452, carrier#451], 
functions=[partial_avg(depdelay#455)], output=[src#460, dst#452, 
carrier#451, sum#512, count#513L])

  +- *(1) Project [carrier#451, dst#452, depdelay#455, src#460]

   +- *(1) Filter (isnotnull(depdelay#455) && (depdelay#455 > 1.0))

     +- *(1) FileScan parquet default.flightsbkdc
          [carrier#451,dst#452,depdelay#455,src#460] 
          Batched: true, Format: Parquet, Location:     
PrunedInMemoryFileIndex
         [maprfs:/user/mapr/data/flightsbkdc/src=DEN], 
         PartitionCount: 1, PartitionFilters: [isnotnull(src#460), 
(src#460 = DEN)], 
         PushedFilters: [IsNotNull(depdelay), 
GreaterThan(depdelay,1.0)], 
         ReadSchema: 
struct<carrier:string,dst:string,depdelay:double>

In the DAG below, we see that there is no exchange shuffle, and we see “Whole-Stage 
Java Code Generation,” which optimizes CPU usage by generating a single optimized 
function in bytecode. 
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Duration: 0.2 s
Succeeded Jobs: 11

WholeStageCodegen
272 ms (35 ms, 65 ms, 135 ms)

Filter
number of output rows: 8,373

Project

HashAggregate
aggregate time total (min, med, max): 
96 ms (11 ms, 25 ms, 49 ms) 
peak memory total (min, med, max): 
1024.0 KB (256.0 KB, 256.0 KB, 256.0 KB) 
number of output rows: 28

Scan parquet default.flightsbkdc
number of output rows: 23,410
scan time total (min, med, max): 
83 ms (8 ms, 21 ms, 45 ms)

TakeOrderedAndProject

HashAggregate
aggregate time total (min, med, max): 
97 ms (11 ms, 25 ms, 50 ms) 
peak memory total (min, med, max): 
65.0 MB (16.2 MB, 16.2 MB, 16.2 MB) 
number of output rows: 28
avg hash probe (min, med, max): (1, 1, 1)
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Bucketing Tips

Partitioning should only be used with columns that have a limited number of values; 
bucketing works well when the number of unique values is large. Columns which are 
used often in queries and provide high selectivity are good choices for bucketing. Spark 
tables that are bucketed store metadata about how they are bucketed and sorted, which 
optimizes:
•	Queries on bucketed values (Spark 2.4 supports bucket pruning)

•	Aggregations on bucketed values (wide transformations)

•	Joins on bucketed values 

MapR Database, Data Modeling, Partitioning, and Filter Pushdown

Partitioning and Row Key Design

With MapR Database, a table is automatically partitioned into tablets across a cluster by 
key range, providing for scalable and fast reads and writes by row key. 

KEY coIB coIC

XXX Val Val

XXX Val Val

KEY RANGE

XXXX

XXXX

Data is 
Automatically 
Partitioned by 
Key Range

Fast Reads 
and Writes 
by Key

KEY coIB coIC

XXX Val Val

XXX Val Val

KEY RANGE

XXXX

XXXX

KEY coIB coIC

XXX Val Val

XXX Val Val

KEY RANGE

XXXX

XXXX

https://mapr.com/products/mapr-db/
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In this use case, the row key (the id) starts with the origin (destination airport codes), 
followed by the flightdate and carrier, so the table is automatically partitioned and 
sorted by the src, dst, date, and carrier.

MapR Database Data Modeling: Avoiding JOINS with Nested Entities 

If your tables exist in a one-to-many relationship, it’s possible to model it as a single 
document; this can avoid expensive JOINS. In the one-to-many relationship example 
below, we have an order table, which has a one-to-many relationship with an order 
items table. 

Table is automatically 
partitioned and sorted 
by id row key

     {
 “id”:“ATL_LGA_2017-01-01_AA_1678”,
 “dofW”:7,
 “carrier”:”AA”,
 “src”:”ATL”,
 “dst”:”LGA”,
 “crsdehour”:17,
 “crsdeptime”:1700,
 “depdelay”:0.0,
 “crsarrtime”:1912,
 ”arrdelay”:0.0,
 “crselapsedtime”:132.0,
 ”dist”:762.0
     } 

ORDER_ID ORDER_DATE SHIP_STATUS TOTAL

123 2012-07-11 SHIPPED 39.45

124 2012-07-12 BACKORDER 29.37

125 2012-07-13 SHIPPED 42.47

ORDER_ID ITEM_ID PRICE

123 83924893 10.00

123 563344893 20.00

123 343978893 9.45

124 83924893 29.37

125 563344893 20.00

125 343978893 22.47

Primary Key Foreign Key 

Table: SALES_ITEMS Table: ORDER_ITEMS
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Here is a nested entity example of this one-to-many relationship in a document database. 
In this example, the order and related line items are stored together and can be read 
together with a find on the row key (_id). This makes the reads a lot faster than joining 
tables together. 

{
     “id”: “123”,
     “date”: “10/10/2017”,
     “ship_status”:”backordered”
     “orderitems”: [
          {
               “itemid”: “4348”,
               “price”: 10.00
          },
          {
               “itemid”: “5648”,
               “price”: 15.00
          }]
}

See Data Modeling Guidelines for NoSQL JSON Document Databases and Guidelines for 
HBase Schema Design for more information on designing your MapR Database schema. 
(Nested Entities are also possible with JSON and Parquet files.)

Projection and Filter Pushdown into MapR Database

Below, we see the physical plan for a DataFrame query, with projection and filter 
pushdown highlighted in red. This means that the scanning of the src, dst, and depdelay 
columns and the filter on the depdelay column are pushed down into MapR Database, 
meaning that the scanning and filtering will take place in MapR Database before returning 
the data to Spark. Projection pushdown minimizes data transfer between MapR Database 
and the Spark engine by omitting unnecessary fields from table scans. It is especially 
beneficial when a table contains many columns. Filter pushdown improves performance by 
reducing the amount of data passed between MapR Database and the Spark engine when 
filtering data.

https://mapr.com/blog/data-modeling-guidelines-nosql-json-document-databases/
https://mapr.com/blog/guidelines-hbase-schema-design/
https://mapr.com/blog/guidelines-hbase-schema-design/
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df.filter(“src = ‘ATL’ and depdelay > 1”)
.groupBy(“src”, “dst”)
.avg(“depdelay”).sort(desc(“avg(depdelay)”)).explain

== Physical Plan ==
*(3) Sort [avg(depdelay)#273 DESC NULLS LAST], true, 0
+- Exchange rangepartitioning(avg(depdelay)#273 DESC NULLS LAST, 
200)
   +- *(2) HashAggregate(keys=[src#5, dst#6],
         functions=[avg(depdelay#9)])
      +- Exchange hashpartitioning(src#5, dst#6, 200)
         +- *(1) HashAggregate(keys=[src#5, dst#6],
            functions=[partial_avg(depdelay#9)])
            +- *(1) Filter (((isnotnull(src#5) &&
                isnotnull(depdelay#9)) && 
                (src#5 = ATL)) && (depdelay#9 > 1.0))
               +- *(1) Scan MapRDBRelation(/user/mapr/flighttable 
[src#5,dst#6,depdelay#9] PushedFilters: [IsNotNull(src), 
IsNotNull(depdelay), EqualTo(src,ATL), GreaterThan(depdelay,1.0)]

Spark Web UI and SQL Tips

Read or review chapter 3 in order to understand how to use the Spark Web UI to explore 
your task jobs, storage, and SQL query plan. Here is a summary of tips and what to look for:

SQL Tab

You can see details about the query plan produced by Catalyst on the web UI SQL tab. In 
the query plan details, you can check and see:
•	The amount of time for each stage.

•	 If partition filters, projection, and filter pushdown are occurring.

•	Shuffles between stages (Exchange), and the amount of data shuffled. If joins or 
aggregations are shuffling a lot of data, consider bucketing. You can set the number of 
partitions to use when shuffling with the spark.sql.shuffle.partitions option.

•	The join algorithm being used. Broadcast join should be used when one table is small; 
sort-merge join should be used for large tables. You can use broadcast hint to guide 
Spark to broadcast a table in a join. For faster joins with large tables using the sort-
merge join algorithm, you can use bucketing to pre-sort and group tables; this will 
avoid shuffling in the sort merge.

Use the Spark SQL “ANALYZE TABLE tablename COMPUTE STATISTICS” to take advantage 
of cost-based optimization in the Catalyst Planner. 
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Stages Tab

You can use the stage detail metrics to identify problems with an executor or task 
distribution. Things to look for: 
•	Tasks that are taking longer and/or killed tasks. If your task process time is not 

balanced, then resources could be wasted. 

•	Shuffle read size that is not balanced.

•	 If your partitions/tasks are not balanced, then consider repartition as described 
under partitioning. 

Storage Tab 

Caching Datasets can make execution faster if the data will be reused. You can use the 
storage tab to see if important Datasets are fitting into memory.

Executors Tab

You can use the executors tab to confirm that your application has the amount of 
resources needed. 
•	Shuffle Read Write Columns: shows size of data transferred between stages

•	Storage Memory Column: shows the current used/available memory 

•	Task Time Column: shows task time/garbage collection time 
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Appendix
We have covered a lot of ground in this book. By no means, however, does it cover 
everything to be experienced with Spark. Spark is constantly growing and adding 
functionality to make Spark programs easier to program, use less memory, execute faster, 
run more predictably, and work with new machine learning libraries or frameworks.

Code

You can download the code, data, and instructions to run the examples in the book from 
here: https://github.com/mapr-demos/mapr-spark2-ebook

Running the Code

All of the components of the examples discussed in this book can run on the same 
cluster with the MapR Data Platform. 

ON-PREMISES, MULTI-CLOUD, IoT EDGE

COMMODITY
SERVER

VIRTUAL
MACHINE

IoT & Edge

MAPR DATA PLATFORM

APIs: NFS, POSIX, REST, S3, HDFS, HBASE, JSON, KAFKA

https://github.com/mapr-demos/mapr-spark2-ebook
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•	MapR Sandbox is a single node MapR cluster, available as a VMware or VirtualBox VM 
that lets you get started quickly with MapR and Spark.

•	MapR Container for Developers is a Docker container that enables you to create a single 
node MapR cluster. The container is lightweight and designed to run on your laptop.

•	MapR Data Science Refinery is an easy-to-deploy and scalable data science toolkit 
with native access to all platform assets and superior out-of-the-box security.

•	Find out more at Get Started with MapR.

Additional Resources

•	MapR Developer Portal

•	MapR Spark Documentation

•	Spark SQL, DataFrames, and Datasets Guide

•	Structured Streaming Programming Guide

•	Spark GraphX Guide

•	Spark Machine Learning Library (MLlib) Guide

•	Streaming Architecture ebook

•	Machine Learning Logistics ebook

•	Event-Driven Microservices Patterns

•	Free On-Demand Training: Apache Spark

•	MapR and Spark

•	Spark: The Definitive Guide - O’Reilly Media

•	Spark documentation including deployment and configuration:  
https://spark.apache.org/docs/latest/
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